1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 21 struct xfs_writepage_ctx { 22 struct iomap_writepage_ctx ctx; 23 unsigned int data_seq; 24 unsigned int cow_seq; 25 }; 26 27 static inline struct xfs_writepage_ctx * 28 XFS_WPC(struct iomap_writepage_ctx *ctx) 29 { 30 return container_of(ctx, struct xfs_writepage_ctx, ctx); 31 } 32 33 /* 34 * Fast and loose check if this write could update the on-disk inode size. 35 */ 36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 37 { 38 return ioend->io_offset + ioend->io_size > 39 XFS_I(ioend->io_inode)->i_d.di_size; 40 } 41 42 STATIC int 43 xfs_setfilesize_trans_alloc( 44 struct iomap_ioend *ioend) 45 { 46 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 47 struct xfs_trans *tp; 48 int error; 49 50 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 51 if (error) 52 return error; 53 54 ioend->io_private = tp; 55 56 /* 57 * We may pass freeze protection with a transaction. So tell lockdep 58 * we released it. 59 */ 60 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 61 /* 62 * We hand off the transaction to the completion thread now, so 63 * clear the flag here. 64 */ 65 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 66 return 0; 67 } 68 69 /* 70 * Update on-disk file size now that data has been written to disk. 71 */ 72 STATIC int 73 __xfs_setfilesize( 74 struct xfs_inode *ip, 75 struct xfs_trans *tp, 76 xfs_off_t offset, 77 size_t size) 78 { 79 xfs_fsize_t isize; 80 81 xfs_ilock(ip, XFS_ILOCK_EXCL); 82 isize = xfs_new_eof(ip, offset + size); 83 if (!isize) { 84 xfs_iunlock(ip, XFS_ILOCK_EXCL); 85 xfs_trans_cancel(tp); 86 return 0; 87 } 88 89 trace_xfs_setfilesize(ip, offset, size); 90 91 ip->i_d.di_size = isize; 92 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 93 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 94 95 return xfs_trans_commit(tp); 96 } 97 98 int 99 xfs_setfilesize( 100 struct xfs_inode *ip, 101 xfs_off_t offset, 102 size_t size) 103 { 104 struct xfs_mount *mp = ip->i_mount; 105 struct xfs_trans *tp; 106 int error; 107 108 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 109 if (error) 110 return error; 111 112 return __xfs_setfilesize(ip, tp, offset, size); 113 } 114 115 STATIC int 116 xfs_setfilesize_ioend( 117 struct iomap_ioend *ioend, 118 int error) 119 { 120 struct xfs_inode *ip = XFS_I(ioend->io_inode); 121 struct xfs_trans *tp = ioend->io_private; 122 123 /* 124 * The transaction may have been allocated in the I/O submission thread, 125 * thus we need to mark ourselves as being in a transaction manually. 126 * Similarly for freeze protection. 127 */ 128 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 129 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 130 131 /* we abort the update if there was an IO error */ 132 if (error) { 133 xfs_trans_cancel(tp); 134 return error; 135 } 136 137 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 138 } 139 140 /* 141 * IO write completion. 142 */ 143 STATIC void 144 xfs_end_ioend( 145 struct iomap_ioend *ioend) 146 { 147 struct xfs_inode *ip = XFS_I(ioend->io_inode); 148 xfs_off_t offset = ioend->io_offset; 149 size_t size = ioend->io_size; 150 unsigned int nofs_flag; 151 int error; 152 153 /* 154 * We can allocate memory here while doing writeback on behalf of 155 * memory reclaim. To avoid memory allocation deadlocks set the 156 * task-wide nofs context for the following operations. 157 */ 158 nofs_flag = memalloc_nofs_save(); 159 160 /* 161 * Just clean up the in-memory strutures if the fs has been shut down. 162 */ 163 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 164 error = -EIO; 165 goto done; 166 } 167 168 /* 169 * Clean up any COW blocks on an I/O error. 170 */ 171 error = blk_status_to_errno(ioend->io_bio->bi_status); 172 if (unlikely(error)) { 173 if (ioend->io_flags & IOMAP_F_SHARED) 174 xfs_reflink_cancel_cow_range(ip, offset, size, true); 175 goto done; 176 } 177 178 /* 179 * Success: commit the COW or unwritten blocks if needed. 180 */ 181 if (ioend->io_flags & IOMAP_F_SHARED) 182 error = xfs_reflink_end_cow(ip, offset, size); 183 else if (ioend->io_type == IOMAP_UNWRITTEN) 184 error = xfs_iomap_write_unwritten(ip, offset, size, false); 185 else 186 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private); 187 188 done: 189 if (ioend->io_private) 190 error = xfs_setfilesize_ioend(ioend, error); 191 iomap_finish_ioends(ioend, error); 192 memalloc_nofs_restore(nofs_flag); 193 } 194 195 /* 196 * If the to be merged ioend has a preallocated transaction for file 197 * size updates we need to ensure the ioend it is merged into also 198 * has one. If it already has one we can simply cancel the transaction 199 * as it is guaranteed to be clean. 200 */ 201 static void 202 xfs_ioend_merge_private( 203 struct iomap_ioend *ioend, 204 struct iomap_ioend *next) 205 { 206 if (!ioend->io_private) { 207 ioend->io_private = next->io_private; 208 next->io_private = NULL; 209 } else { 210 xfs_setfilesize_ioend(next, -ECANCELED); 211 } 212 } 213 214 /* Finish all pending io completions. */ 215 void 216 xfs_end_io( 217 struct work_struct *work) 218 { 219 struct xfs_inode *ip = 220 container_of(work, struct xfs_inode, i_ioend_work); 221 struct iomap_ioend *ioend; 222 struct list_head tmp; 223 unsigned long flags; 224 225 spin_lock_irqsave(&ip->i_ioend_lock, flags); 226 list_replace_init(&ip->i_ioend_list, &tmp); 227 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 228 229 iomap_sort_ioends(&tmp); 230 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 231 io_list))) { 232 list_del_init(&ioend->io_list); 233 iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private); 234 xfs_end_ioend(ioend); 235 } 236 } 237 238 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend) 239 { 240 return ioend->io_private || 241 ioend->io_type == IOMAP_UNWRITTEN || 242 (ioend->io_flags & IOMAP_F_SHARED); 243 } 244 245 STATIC void 246 xfs_end_bio( 247 struct bio *bio) 248 { 249 struct iomap_ioend *ioend = bio->bi_private; 250 struct xfs_inode *ip = XFS_I(ioend->io_inode); 251 unsigned long flags; 252 253 ASSERT(xfs_ioend_needs_workqueue(ioend)); 254 255 spin_lock_irqsave(&ip->i_ioend_lock, flags); 256 if (list_empty(&ip->i_ioend_list)) 257 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 258 &ip->i_ioend_work)); 259 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 260 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 261 } 262 263 /* 264 * Fast revalidation of the cached writeback mapping. Return true if the current 265 * mapping is valid, false otherwise. 266 */ 267 static bool 268 xfs_imap_valid( 269 struct iomap_writepage_ctx *wpc, 270 struct xfs_inode *ip, 271 loff_t offset) 272 { 273 if (offset < wpc->iomap.offset || 274 offset >= wpc->iomap.offset + wpc->iomap.length) 275 return false; 276 /* 277 * If this is a COW mapping, it is sufficient to check that the mapping 278 * covers the offset. Be careful to check this first because the caller 279 * can revalidate a COW mapping without updating the data seqno. 280 */ 281 if (wpc->iomap.flags & IOMAP_F_SHARED) 282 return true; 283 284 /* 285 * This is not a COW mapping. Check the sequence number of the data fork 286 * because concurrent changes could have invalidated the extent. Check 287 * the COW fork because concurrent changes since the last time we 288 * checked (and found nothing at this offset) could have added 289 * overlapping blocks. 290 */ 291 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) 292 return false; 293 if (xfs_inode_has_cow_data(ip) && 294 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 295 return false; 296 return true; 297 } 298 299 /* 300 * Pass in a dellalloc extent and convert it to real extents, return the real 301 * extent that maps offset_fsb in wpc->iomap. 302 * 303 * The current page is held locked so nothing could have removed the block 304 * backing offset_fsb, although it could have moved from the COW to the data 305 * fork by another thread. 306 */ 307 static int 308 xfs_convert_blocks( 309 struct iomap_writepage_ctx *wpc, 310 struct xfs_inode *ip, 311 int whichfork, 312 loff_t offset) 313 { 314 int error; 315 unsigned *seq; 316 317 if (whichfork == XFS_COW_FORK) 318 seq = &XFS_WPC(wpc)->cow_seq; 319 else 320 seq = &XFS_WPC(wpc)->data_seq; 321 322 /* 323 * Attempt to allocate whatever delalloc extent currently backs offset 324 * and put the result into wpc->iomap. Allocate in a loop because it 325 * may take several attempts to allocate real blocks for a contiguous 326 * delalloc extent if free space is sufficiently fragmented. 327 */ 328 do { 329 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 330 &wpc->iomap, seq); 331 if (error) 332 return error; 333 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 334 335 return 0; 336 } 337 338 static int 339 xfs_map_blocks( 340 struct iomap_writepage_ctx *wpc, 341 struct inode *inode, 342 loff_t offset) 343 { 344 struct xfs_inode *ip = XFS_I(inode); 345 struct xfs_mount *mp = ip->i_mount; 346 ssize_t count = i_blocksize(inode); 347 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 348 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 349 xfs_fileoff_t cow_fsb; 350 int whichfork; 351 struct xfs_bmbt_irec imap; 352 struct xfs_iext_cursor icur; 353 int retries = 0; 354 int error = 0; 355 356 if (XFS_FORCED_SHUTDOWN(mp)) 357 return -EIO; 358 359 /* 360 * COW fork blocks can overlap data fork blocks even if the blocks 361 * aren't shared. COW I/O always takes precedent, so we must always 362 * check for overlap on reflink inodes unless the mapping is already a 363 * COW one, or the COW fork hasn't changed from the last time we looked 364 * at it. 365 * 366 * It's safe to check the COW fork if_seq here without the ILOCK because 367 * we've indirectly protected against concurrent updates: writeback has 368 * the page locked, which prevents concurrent invalidations by reflink 369 * and directio and prevents concurrent buffered writes to the same 370 * page. Changes to if_seq always happen under i_lock, which protects 371 * against concurrent updates and provides a memory barrier on the way 372 * out that ensures that we always see the current value. 373 */ 374 if (xfs_imap_valid(wpc, ip, offset)) 375 return 0; 376 377 /* 378 * If we don't have a valid map, now it's time to get a new one for this 379 * offset. This will convert delayed allocations (including COW ones) 380 * into real extents. If we return without a valid map, it means we 381 * landed in a hole and we skip the block. 382 */ 383 retry: 384 cow_fsb = NULLFILEOFF; 385 whichfork = XFS_DATA_FORK; 386 xfs_ilock(ip, XFS_ILOCK_SHARED); 387 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 388 (ip->i_df.if_flags & XFS_IFEXTENTS)); 389 390 /* 391 * Check if this is offset is covered by a COW extents, and if yes use 392 * it directly instead of looking up anything in the data fork. 393 */ 394 if (xfs_inode_has_cow_data(ip) && 395 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 396 cow_fsb = imap.br_startoff; 397 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 398 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 399 xfs_iunlock(ip, XFS_ILOCK_SHARED); 400 401 whichfork = XFS_COW_FORK; 402 goto allocate_blocks; 403 } 404 405 /* 406 * No COW extent overlap. Revalidate now that we may have updated 407 * ->cow_seq. If the data mapping is still valid, we're done. 408 */ 409 if (xfs_imap_valid(wpc, ip, offset)) { 410 xfs_iunlock(ip, XFS_ILOCK_SHARED); 411 return 0; 412 } 413 414 /* 415 * If we don't have a valid map, now it's time to get a new one for this 416 * offset. This will convert delayed allocations (including COW ones) 417 * into real extents. 418 */ 419 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 420 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 421 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 422 xfs_iunlock(ip, XFS_ILOCK_SHARED); 423 424 /* landed in a hole or beyond EOF? */ 425 if (imap.br_startoff > offset_fsb) { 426 imap.br_blockcount = imap.br_startoff - offset_fsb; 427 imap.br_startoff = offset_fsb; 428 imap.br_startblock = HOLESTARTBLOCK; 429 imap.br_state = XFS_EXT_NORM; 430 } 431 432 /* 433 * Truncate to the next COW extent if there is one. This is the only 434 * opportunity to do this because we can skip COW fork lookups for the 435 * subsequent blocks in the mapping; however, the requirement to treat 436 * the COW range separately remains. 437 */ 438 if (cow_fsb != NULLFILEOFF && 439 cow_fsb < imap.br_startoff + imap.br_blockcount) 440 imap.br_blockcount = cow_fsb - imap.br_startoff; 441 442 /* got a delalloc extent? */ 443 if (imap.br_startblock != HOLESTARTBLOCK && 444 isnullstartblock(imap.br_startblock)) 445 goto allocate_blocks; 446 447 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); 448 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 449 return 0; 450 allocate_blocks: 451 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 452 if (error) { 453 /* 454 * If we failed to find the extent in the COW fork we might have 455 * raced with a COW to data fork conversion or truncate. 456 * Restart the lookup to catch the extent in the data fork for 457 * the former case, but prevent additional retries to avoid 458 * looping forever for the latter case. 459 */ 460 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 461 goto retry; 462 ASSERT(error != -EAGAIN); 463 return error; 464 } 465 466 /* 467 * Due to merging the return real extent might be larger than the 468 * original delalloc one. Trim the return extent to the next COW 469 * boundary again to force a re-lookup. 470 */ 471 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 472 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 473 474 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 475 wpc->iomap.length = cow_offset - wpc->iomap.offset; 476 } 477 478 ASSERT(wpc->iomap.offset <= offset); 479 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 480 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 481 return 0; 482 } 483 484 static int 485 xfs_prepare_ioend( 486 struct iomap_ioend *ioend, 487 int status) 488 { 489 unsigned int nofs_flag; 490 491 /* 492 * We can allocate memory here while doing writeback on behalf of 493 * memory reclaim. To avoid memory allocation deadlocks set the 494 * task-wide nofs context for the following operations. 495 */ 496 nofs_flag = memalloc_nofs_save(); 497 498 /* Convert CoW extents to regular */ 499 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 500 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 501 ioend->io_offset, ioend->io_size); 502 } 503 504 /* Reserve log space if we might write beyond the on-disk inode size. */ 505 if (!status && 506 ((ioend->io_flags & IOMAP_F_SHARED) || 507 ioend->io_type != IOMAP_UNWRITTEN) && 508 xfs_ioend_is_append(ioend) && 509 !ioend->io_private) 510 status = xfs_setfilesize_trans_alloc(ioend); 511 512 memalloc_nofs_restore(nofs_flag); 513 514 if (xfs_ioend_needs_workqueue(ioend)) 515 ioend->io_bio->bi_end_io = xfs_end_bio; 516 return status; 517 } 518 519 /* 520 * If the page has delalloc blocks on it, we need to punch them out before we 521 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 522 * inode that can trip up a later direct I/O read operation on the same region. 523 * 524 * We prevent this by truncating away the delalloc regions on the page. Because 525 * they are delalloc, we can do this without needing a transaction. Indeed - if 526 * we get ENOSPC errors, we have to be able to do this truncation without a 527 * transaction as there is no space left for block reservation (typically why we 528 * see a ENOSPC in writeback). 529 */ 530 static void 531 xfs_discard_page( 532 struct page *page, 533 loff_t fileoff) 534 { 535 struct inode *inode = page->mapping->host; 536 struct xfs_inode *ip = XFS_I(inode); 537 struct xfs_mount *mp = ip->i_mount; 538 unsigned int pageoff = offset_in_page(fileoff); 539 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff); 540 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff); 541 int error; 542 543 if (XFS_FORCED_SHUTDOWN(mp)) 544 goto out_invalidate; 545 546 xfs_alert_ratelimited(mp, 547 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 548 page, ip->i_ino, fileoff); 549 550 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 551 i_blocks_per_page(inode, page) - pageoff_fsb); 552 if (error && !XFS_FORCED_SHUTDOWN(mp)) 553 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 554 out_invalidate: 555 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff); 556 } 557 558 static const struct iomap_writeback_ops xfs_writeback_ops = { 559 .map_blocks = xfs_map_blocks, 560 .prepare_ioend = xfs_prepare_ioend, 561 .discard_page = xfs_discard_page, 562 }; 563 564 STATIC int 565 xfs_vm_writepage( 566 struct page *page, 567 struct writeback_control *wbc) 568 { 569 struct xfs_writepage_ctx wpc = { }; 570 571 return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops); 572 } 573 574 STATIC int 575 xfs_vm_writepages( 576 struct address_space *mapping, 577 struct writeback_control *wbc) 578 { 579 struct xfs_writepage_ctx wpc = { }; 580 581 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 582 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 583 } 584 585 STATIC int 586 xfs_dax_writepages( 587 struct address_space *mapping, 588 struct writeback_control *wbc) 589 { 590 struct xfs_inode *ip = XFS_I(mapping->host); 591 592 xfs_iflags_clear(ip, XFS_ITRUNCATED); 593 return dax_writeback_mapping_range(mapping, 594 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 595 } 596 597 STATIC sector_t 598 xfs_vm_bmap( 599 struct address_space *mapping, 600 sector_t block) 601 { 602 struct xfs_inode *ip = XFS_I(mapping->host); 603 604 trace_xfs_vm_bmap(ip); 605 606 /* 607 * The swap code (ab-)uses ->bmap to get a block mapping and then 608 * bypasses the file system for actual I/O. We really can't allow 609 * that on reflinks inodes, so we have to skip out here. And yes, 610 * 0 is the magic code for a bmap error. 611 * 612 * Since we don't pass back blockdev info, we can't return bmap 613 * information for rt files either. 614 */ 615 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 616 return 0; 617 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 618 } 619 620 STATIC int 621 xfs_vm_readpage( 622 struct file *unused, 623 struct page *page) 624 { 625 return iomap_readpage(page, &xfs_read_iomap_ops); 626 } 627 628 STATIC void 629 xfs_vm_readahead( 630 struct readahead_control *rac) 631 { 632 iomap_readahead(rac, &xfs_read_iomap_ops); 633 } 634 635 static int 636 xfs_iomap_swapfile_activate( 637 struct swap_info_struct *sis, 638 struct file *swap_file, 639 sector_t *span) 640 { 641 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 642 return iomap_swapfile_activate(sis, swap_file, span, 643 &xfs_read_iomap_ops); 644 } 645 646 const struct address_space_operations xfs_address_space_operations = { 647 .readpage = xfs_vm_readpage, 648 .readahead = xfs_vm_readahead, 649 .writepage = xfs_vm_writepage, 650 .writepages = xfs_vm_writepages, 651 .set_page_dirty = iomap_set_page_dirty, 652 .releasepage = iomap_releasepage, 653 .invalidatepage = iomap_invalidatepage, 654 .bmap = xfs_vm_bmap, 655 .direct_IO = noop_direct_IO, 656 .migratepage = iomap_migrate_page, 657 .is_partially_uptodate = iomap_is_partially_uptodate, 658 .error_remove_page = generic_error_remove_page, 659 .swap_activate = xfs_iomap_swapfile_activate, 660 }; 661 662 const struct address_space_operations xfs_dax_aops = { 663 .writepages = xfs_dax_writepages, 664 .direct_IO = noop_direct_IO, 665 .set_page_dirty = noop_set_page_dirty, 666 .invalidatepage = noop_invalidatepage, 667 .swap_activate = xfs_iomap_swapfile_activate, 668 }; 669