xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision d8bcaabe)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /*
41  * structure owned by writepages passed to individual writepage calls
42  */
43 struct xfs_writepage_ctx {
44 	struct xfs_bmbt_irec    imap;
45 	bool			imap_valid;
46 	unsigned int		io_type;
47 	struct xfs_ioend	*ioend;
48 	sector_t		last_block;
49 };
50 
51 void
52 xfs_count_page_state(
53 	struct page		*page,
54 	int			*delalloc,
55 	int			*unwritten)
56 {
57 	struct buffer_head	*bh, *head;
58 
59 	*delalloc = *unwritten = 0;
60 
61 	bh = head = page_buffers(page);
62 	do {
63 		if (buffer_unwritten(bh))
64 			(*unwritten) = 1;
65 		else if (buffer_delay(bh))
66 			(*delalloc) = 1;
67 	} while ((bh = bh->b_this_page) != head);
68 }
69 
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 	struct inode		*inode)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 	struct xfs_mount	*mp = ip->i_mount;
76 
77 	if (XFS_IS_REALTIME_INODE(ip))
78 		return mp->m_rtdev_targp->bt_bdev;
79 	else
80 		return mp->m_ddev_targp->bt_bdev;
81 }
82 
83 struct dax_device *
84 xfs_find_daxdev_for_inode(
85 	struct inode		*inode)
86 {
87 	struct xfs_inode	*ip = XFS_I(inode);
88 	struct xfs_mount	*mp = ip->i_mount;
89 
90 	if (XFS_IS_REALTIME_INODE(ip))
91 		return mp->m_rtdev_targp->bt_daxdev;
92 	else
93 		return mp->m_ddev_targp->bt_daxdev;
94 }
95 
96 /*
97  * We're now finished for good with this page.  Update the page state via the
98  * associated buffer_heads, paying attention to the start and end offsets that
99  * we need to process on the page.
100  *
101  * Note that we open code the action in end_buffer_async_write here so that we
102  * only have to iterate over the buffers attached to the page once.  This is not
103  * only more efficient, but also ensures that we only calls end_page_writeback
104  * at the end of the iteration, and thus avoids the pitfall of having the page
105  * and buffers potentially freed after every call to end_buffer_async_write.
106  */
107 static void
108 xfs_finish_page_writeback(
109 	struct inode		*inode,
110 	struct bio_vec		*bvec,
111 	int			error)
112 {
113 	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
114 	bool			busy = false;
115 	unsigned int		off = 0;
116 	unsigned long		flags;
117 
118 	ASSERT(bvec->bv_offset < PAGE_SIZE);
119 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122 
123 	local_irq_save(flags);
124 	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 	do {
126 		if (off >= bvec->bv_offset &&
127 		    off < bvec->bv_offset + bvec->bv_len) {
128 			ASSERT(buffer_async_write(bh));
129 			ASSERT(bh->b_end_io == NULL);
130 
131 			if (error) {
132 				mark_buffer_write_io_error(bh);
133 				clear_buffer_uptodate(bh);
134 				SetPageError(bvec->bv_page);
135 			} else {
136 				set_buffer_uptodate(bh);
137 			}
138 			clear_buffer_async_write(bh);
139 			unlock_buffer(bh);
140 		} else if (buffer_async_write(bh)) {
141 			ASSERT(buffer_locked(bh));
142 			busy = true;
143 		}
144 		off += bh->b_size;
145 	} while ((bh = bh->b_this_page) != head);
146 	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 	local_irq_restore(flags);
148 
149 	if (!busy)
150 		end_page_writeback(bvec->bv_page);
151 }
152 
153 /*
154  * We're now finished for good with this ioend structure.  Update the page
155  * state, release holds on bios, and finally free up memory.  Do not use the
156  * ioend after this.
157  */
158 STATIC void
159 xfs_destroy_ioend(
160 	struct xfs_ioend	*ioend,
161 	int			error)
162 {
163 	struct inode		*inode = ioend->io_inode;
164 	struct bio		*bio = &ioend->io_inline_bio;
165 	struct bio		*last = ioend->io_bio, *next;
166 	u64			start = bio->bi_iter.bi_sector;
167 	bool			quiet = bio_flagged(bio, BIO_QUIET);
168 
169 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 		struct bio_vec	*bvec;
171 		int		i;
172 
173 		/*
174 		 * For the last bio, bi_private points to the ioend, so we
175 		 * need to explicitly end the iteration here.
176 		 */
177 		if (bio == last)
178 			next = NULL;
179 		else
180 			next = bio->bi_private;
181 
182 		/* walk each page on bio, ending page IO on them */
183 		bio_for_each_segment_all(bvec, bio, i)
184 			xfs_finish_page_writeback(inode, bvec, error);
185 
186 		bio_put(bio);
187 	}
188 
189 	if (unlikely(error && !quiet)) {
190 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 			"writeback error on sector %llu", start);
192 	}
193 }
194 
195 /*
196  * Fast and loose check if this write could update the on-disk inode size.
197  */
198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199 {
200 	return ioend->io_offset + ioend->io_size >
201 		XFS_I(ioend->io_inode)->i_d.di_size;
202 }
203 
204 STATIC int
205 xfs_setfilesize_trans_alloc(
206 	struct xfs_ioend	*ioend)
207 {
208 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
209 	struct xfs_trans	*tp;
210 	int			error;
211 
212 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
213 	if (error)
214 		return error;
215 
216 	ioend->io_append_trans = tp;
217 
218 	/*
219 	 * We may pass freeze protection with a transaction.  So tell lockdep
220 	 * we released it.
221 	 */
222 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
223 	/*
224 	 * We hand off the transaction to the completion thread now, so
225 	 * clear the flag here.
226 	 */
227 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
228 	return 0;
229 }
230 
231 /*
232  * Update on-disk file size now that data has been written to disk.
233  */
234 STATIC int
235 __xfs_setfilesize(
236 	struct xfs_inode	*ip,
237 	struct xfs_trans	*tp,
238 	xfs_off_t		offset,
239 	size_t			size)
240 {
241 	xfs_fsize_t		isize;
242 
243 	xfs_ilock(ip, XFS_ILOCK_EXCL);
244 	isize = xfs_new_eof(ip, offset + size);
245 	if (!isize) {
246 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
247 		xfs_trans_cancel(tp);
248 		return 0;
249 	}
250 
251 	trace_xfs_setfilesize(ip, offset, size);
252 
253 	ip->i_d.di_size = isize;
254 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
255 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
256 
257 	return xfs_trans_commit(tp);
258 }
259 
260 int
261 xfs_setfilesize(
262 	struct xfs_inode	*ip,
263 	xfs_off_t		offset,
264 	size_t			size)
265 {
266 	struct xfs_mount	*mp = ip->i_mount;
267 	struct xfs_trans	*tp;
268 	int			error;
269 
270 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
271 	if (error)
272 		return error;
273 
274 	return __xfs_setfilesize(ip, tp, offset, size);
275 }
276 
277 STATIC int
278 xfs_setfilesize_ioend(
279 	struct xfs_ioend	*ioend,
280 	int			error)
281 {
282 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
283 	struct xfs_trans	*tp = ioend->io_append_trans;
284 
285 	/*
286 	 * The transaction may have been allocated in the I/O submission thread,
287 	 * thus we need to mark ourselves as being in a transaction manually.
288 	 * Similarly for freeze protection.
289 	 */
290 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
291 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
292 
293 	/* we abort the update if there was an IO error */
294 	if (error) {
295 		xfs_trans_cancel(tp);
296 		return error;
297 	}
298 
299 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
300 }
301 
302 /*
303  * IO write completion.
304  */
305 STATIC void
306 xfs_end_io(
307 	struct work_struct *work)
308 {
309 	struct xfs_ioend	*ioend =
310 		container_of(work, struct xfs_ioend, io_work);
311 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
312 	xfs_off_t		offset = ioend->io_offset;
313 	size_t			size = ioend->io_size;
314 	int			error;
315 
316 	/*
317 	 * Just clean up the in-memory strutures if the fs has been shut down.
318 	 */
319 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
320 		error = -EIO;
321 		goto done;
322 	}
323 
324 	/*
325 	 * Clean up any COW blocks on an I/O error.
326 	 */
327 	error = blk_status_to_errno(ioend->io_bio->bi_status);
328 	if (unlikely(error)) {
329 		switch (ioend->io_type) {
330 		case XFS_IO_COW:
331 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
332 			break;
333 		}
334 
335 		goto done;
336 	}
337 
338 	/*
339 	 * Success:  commit the COW or unwritten blocks if needed.
340 	 */
341 	switch (ioend->io_type) {
342 	case XFS_IO_COW:
343 		error = xfs_reflink_end_cow(ip, offset, size);
344 		break;
345 	case XFS_IO_UNWRITTEN:
346 		/* writeback should never update isize */
347 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
348 		break;
349 	default:
350 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
351 		break;
352 	}
353 
354 done:
355 	if (ioend->io_append_trans)
356 		error = xfs_setfilesize_ioend(ioend, error);
357 	xfs_destroy_ioend(ioend, error);
358 }
359 
360 STATIC void
361 xfs_end_bio(
362 	struct bio		*bio)
363 {
364 	struct xfs_ioend	*ioend = bio->bi_private;
365 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
366 
367 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
368 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
369 	else if (ioend->io_append_trans)
370 		queue_work(mp->m_data_workqueue, &ioend->io_work);
371 	else
372 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
373 }
374 
375 STATIC int
376 xfs_map_blocks(
377 	struct inode		*inode,
378 	loff_t			offset,
379 	struct xfs_bmbt_irec	*imap,
380 	int			type)
381 {
382 	struct xfs_inode	*ip = XFS_I(inode);
383 	struct xfs_mount	*mp = ip->i_mount;
384 	ssize_t			count = i_blocksize(inode);
385 	xfs_fileoff_t		offset_fsb, end_fsb;
386 	int			error = 0;
387 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
388 	int			nimaps = 1;
389 
390 	if (XFS_FORCED_SHUTDOWN(mp))
391 		return -EIO;
392 
393 	ASSERT(type != XFS_IO_COW);
394 	if (type == XFS_IO_UNWRITTEN)
395 		bmapi_flags |= XFS_BMAPI_IGSTATE;
396 
397 	xfs_ilock(ip, XFS_ILOCK_SHARED);
398 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
399 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
400 	ASSERT(offset <= mp->m_super->s_maxbytes);
401 
402 	if (offset + count > mp->m_super->s_maxbytes)
403 		count = mp->m_super->s_maxbytes - offset;
404 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
405 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
406 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
407 				imap, &nimaps, bmapi_flags);
408 	/*
409 	 * Truncate an overwrite extent if there's a pending CoW
410 	 * reservation before the end of this extent.  This forces us
411 	 * to come back to writepage to take care of the CoW.
412 	 */
413 	if (nimaps && type == XFS_IO_OVERWRITE)
414 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
415 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
416 
417 	if (error)
418 		return error;
419 
420 	if (type == XFS_IO_DELALLOC &&
421 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
422 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
423 				imap);
424 		if (!error)
425 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
426 		return error;
427 	}
428 
429 #ifdef DEBUG
430 	if (type == XFS_IO_UNWRITTEN) {
431 		ASSERT(nimaps);
432 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
433 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
434 	}
435 #endif
436 	if (nimaps)
437 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
438 	return 0;
439 }
440 
441 STATIC bool
442 xfs_imap_valid(
443 	struct inode		*inode,
444 	struct xfs_bmbt_irec	*imap,
445 	xfs_off_t		offset)
446 {
447 	offset >>= inode->i_blkbits;
448 
449 	return offset >= imap->br_startoff &&
450 		offset < imap->br_startoff + imap->br_blockcount;
451 }
452 
453 STATIC void
454 xfs_start_buffer_writeback(
455 	struct buffer_head	*bh)
456 {
457 	ASSERT(buffer_mapped(bh));
458 	ASSERT(buffer_locked(bh));
459 	ASSERT(!buffer_delay(bh));
460 	ASSERT(!buffer_unwritten(bh));
461 
462 	bh->b_end_io = NULL;
463 	set_buffer_async_write(bh);
464 	set_buffer_uptodate(bh);
465 	clear_buffer_dirty(bh);
466 }
467 
468 STATIC void
469 xfs_start_page_writeback(
470 	struct page		*page,
471 	int			clear_dirty)
472 {
473 	ASSERT(PageLocked(page));
474 	ASSERT(!PageWriteback(page));
475 
476 	/*
477 	 * if the page was not fully cleaned, we need to ensure that the higher
478 	 * layers come back to it correctly. That means we need to keep the page
479 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
480 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
481 	 * write this page in this writeback sweep will be made.
482 	 */
483 	if (clear_dirty) {
484 		clear_page_dirty_for_io(page);
485 		set_page_writeback(page);
486 	} else
487 		set_page_writeback_keepwrite(page);
488 
489 	unlock_page(page);
490 }
491 
492 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
493 {
494 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
495 }
496 
497 /*
498  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
499  * it, and we submit that bio. The ioend may be used for multiple bio
500  * submissions, so we only want to allocate an append transaction for the ioend
501  * once. In the case of multiple bio submission, each bio will take an IO
502  * reference to the ioend to ensure that the ioend completion is only done once
503  * all bios have been submitted and the ioend is really done.
504  *
505  * If @fail is non-zero, it means that we have a situation where some part of
506  * the submission process has failed after we have marked paged for writeback
507  * and unlocked them. In this situation, we need to fail the bio and ioend
508  * rather than submit it to IO. This typically only happens on a filesystem
509  * shutdown.
510  */
511 STATIC int
512 xfs_submit_ioend(
513 	struct writeback_control *wbc,
514 	struct xfs_ioend	*ioend,
515 	int			status)
516 {
517 	/* Convert CoW extents to regular */
518 	if (!status && ioend->io_type == XFS_IO_COW) {
519 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
520 				ioend->io_offset, ioend->io_size);
521 	}
522 
523 	/* Reserve log space if we might write beyond the on-disk inode size. */
524 	if (!status &&
525 	    ioend->io_type != XFS_IO_UNWRITTEN &&
526 	    xfs_ioend_is_append(ioend) &&
527 	    !ioend->io_append_trans)
528 		status = xfs_setfilesize_trans_alloc(ioend);
529 
530 	ioend->io_bio->bi_private = ioend;
531 	ioend->io_bio->bi_end_io = xfs_end_bio;
532 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
533 
534 	/*
535 	 * If we are failing the IO now, just mark the ioend with an
536 	 * error and finish it. This will run IO completion immediately
537 	 * as there is only one reference to the ioend at this point in
538 	 * time.
539 	 */
540 	if (status) {
541 		ioend->io_bio->bi_status = errno_to_blk_status(status);
542 		bio_endio(ioend->io_bio);
543 		return status;
544 	}
545 
546 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
547 	submit_bio(ioend->io_bio);
548 	return 0;
549 }
550 
551 static void
552 xfs_init_bio_from_bh(
553 	struct bio		*bio,
554 	struct buffer_head	*bh)
555 {
556 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
557 	bio_set_dev(bio, bh->b_bdev);
558 }
559 
560 static struct xfs_ioend *
561 xfs_alloc_ioend(
562 	struct inode		*inode,
563 	unsigned int		type,
564 	xfs_off_t		offset,
565 	struct buffer_head	*bh)
566 {
567 	struct xfs_ioend	*ioend;
568 	struct bio		*bio;
569 
570 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
571 	xfs_init_bio_from_bh(bio, bh);
572 
573 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
574 	INIT_LIST_HEAD(&ioend->io_list);
575 	ioend->io_type = type;
576 	ioend->io_inode = inode;
577 	ioend->io_size = 0;
578 	ioend->io_offset = offset;
579 	INIT_WORK(&ioend->io_work, xfs_end_io);
580 	ioend->io_append_trans = NULL;
581 	ioend->io_bio = bio;
582 	return ioend;
583 }
584 
585 /*
586  * Allocate a new bio, and chain the old bio to the new one.
587  *
588  * Note that we have to do perform the chaining in this unintuitive order
589  * so that the bi_private linkage is set up in the right direction for the
590  * traversal in xfs_destroy_ioend().
591  */
592 static void
593 xfs_chain_bio(
594 	struct xfs_ioend	*ioend,
595 	struct writeback_control *wbc,
596 	struct buffer_head	*bh)
597 {
598 	struct bio *new;
599 
600 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
601 	xfs_init_bio_from_bh(new, bh);
602 
603 	bio_chain(ioend->io_bio, new);
604 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
605 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
606 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
607 	submit_bio(ioend->io_bio);
608 	ioend->io_bio = new;
609 }
610 
611 /*
612  * Test to see if we've been building up a completion structure for
613  * earlier buffers -- if so, we try to append to this ioend if we
614  * can, otherwise we finish off any current ioend and start another.
615  * Return the ioend we finished off so that the caller can submit it
616  * once it has finished processing the dirty page.
617  */
618 STATIC void
619 xfs_add_to_ioend(
620 	struct inode		*inode,
621 	struct buffer_head	*bh,
622 	xfs_off_t		offset,
623 	struct xfs_writepage_ctx *wpc,
624 	struct writeback_control *wbc,
625 	struct list_head	*iolist)
626 {
627 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
628 	    bh->b_blocknr != wpc->last_block + 1 ||
629 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
630 		if (wpc->ioend)
631 			list_add(&wpc->ioend->io_list, iolist);
632 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
633 	}
634 
635 	/*
636 	 * If the buffer doesn't fit into the bio we need to allocate a new
637 	 * one.  This shouldn't happen more than once for a given buffer.
638 	 */
639 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
640 		xfs_chain_bio(wpc->ioend, wbc, bh);
641 
642 	wpc->ioend->io_size += bh->b_size;
643 	wpc->last_block = bh->b_blocknr;
644 	xfs_start_buffer_writeback(bh);
645 }
646 
647 STATIC void
648 xfs_map_buffer(
649 	struct inode		*inode,
650 	struct buffer_head	*bh,
651 	struct xfs_bmbt_irec	*imap,
652 	xfs_off_t		offset)
653 {
654 	sector_t		bn;
655 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
656 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
657 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
658 
659 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
660 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
661 
662 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
663 	      ((offset - iomap_offset) >> inode->i_blkbits);
664 
665 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
666 
667 	bh->b_blocknr = bn;
668 	set_buffer_mapped(bh);
669 }
670 
671 STATIC void
672 xfs_map_at_offset(
673 	struct inode		*inode,
674 	struct buffer_head	*bh,
675 	struct xfs_bmbt_irec	*imap,
676 	xfs_off_t		offset)
677 {
678 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
679 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
680 
681 	xfs_map_buffer(inode, bh, imap, offset);
682 	set_buffer_mapped(bh);
683 	clear_buffer_delay(bh);
684 	clear_buffer_unwritten(bh);
685 }
686 
687 /*
688  * Test if a given page contains at least one buffer of a given @type.
689  * If @check_all_buffers is true, then we walk all the buffers in the page to
690  * try to find one of the type passed in. If it is not set, then the caller only
691  * needs to check the first buffer on the page for a match.
692  */
693 STATIC bool
694 xfs_check_page_type(
695 	struct page		*page,
696 	unsigned int		type,
697 	bool			check_all_buffers)
698 {
699 	struct buffer_head	*bh;
700 	struct buffer_head	*head;
701 
702 	if (PageWriteback(page))
703 		return false;
704 	if (!page->mapping)
705 		return false;
706 	if (!page_has_buffers(page))
707 		return false;
708 
709 	bh = head = page_buffers(page);
710 	do {
711 		if (buffer_unwritten(bh)) {
712 			if (type == XFS_IO_UNWRITTEN)
713 				return true;
714 		} else if (buffer_delay(bh)) {
715 			if (type == XFS_IO_DELALLOC)
716 				return true;
717 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
718 			if (type == XFS_IO_OVERWRITE)
719 				return true;
720 		}
721 
722 		/* If we are only checking the first buffer, we are done now. */
723 		if (!check_all_buffers)
724 			break;
725 	} while ((bh = bh->b_this_page) != head);
726 
727 	return false;
728 }
729 
730 STATIC void
731 xfs_vm_invalidatepage(
732 	struct page		*page,
733 	unsigned int		offset,
734 	unsigned int		length)
735 {
736 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
737 				 length);
738 	block_invalidatepage(page, offset, length);
739 }
740 
741 /*
742  * If the page has delalloc buffers on it, we need to punch them out before we
743  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
744  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
745  * is done on that same region - the delalloc extent is returned when none is
746  * supposed to be there.
747  *
748  * We prevent this by truncating away the delalloc regions on the page before
749  * invalidating it. Because they are delalloc, we can do this without needing a
750  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
751  * truncation without a transaction as there is no space left for block
752  * reservation (typically why we see a ENOSPC in writeback).
753  *
754  * This is not a performance critical path, so for now just do the punching a
755  * buffer head at a time.
756  */
757 STATIC void
758 xfs_aops_discard_page(
759 	struct page		*page)
760 {
761 	struct inode		*inode = page->mapping->host;
762 	struct xfs_inode	*ip = XFS_I(inode);
763 	struct buffer_head	*bh, *head;
764 	loff_t			offset = page_offset(page);
765 
766 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
767 		goto out_invalidate;
768 
769 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
770 		goto out_invalidate;
771 
772 	xfs_alert(ip->i_mount,
773 		"page discard on page %p, inode 0x%llx, offset %llu.",
774 			page, ip->i_ino, offset);
775 
776 	xfs_ilock(ip, XFS_ILOCK_EXCL);
777 	bh = head = page_buffers(page);
778 	do {
779 		int		error;
780 		xfs_fileoff_t	start_fsb;
781 
782 		if (!buffer_delay(bh))
783 			goto next_buffer;
784 
785 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
786 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
787 		if (error) {
788 			/* something screwed, just bail */
789 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
790 				xfs_alert(ip->i_mount,
791 			"page discard unable to remove delalloc mapping.");
792 			}
793 			break;
794 		}
795 next_buffer:
796 		offset += i_blocksize(inode);
797 
798 	} while ((bh = bh->b_this_page) != head);
799 
800 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
801 out_invalidate:
802 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
803 	return;
804 }
805 
806 static int
807 xfs_map_cow(
808 	struct xfs_writepage_ctx *wpc,
809 	struct inode		*inode,
810 	loff_t			offset,
811 	unsigned int		*new_type)
812 {
813 	struct xfs_inode	*ip = XFS_I(inode);
814 	struct xfs_bmbt_irec	imap;
815 	bool			is_cow = false;
816 	int			error;
817 
818 	/*
819 	 * If we already have a valid COW mapping keep using it.
820 	 */
821 	if (wpc->io_type == XFS_IO_COW) {
822 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
823 		if (wpc->imap_valid) {
824 			*new_type = XFS_IO_COW;
825 			return 0;
826 		}
827 	}
828 
829 	/*
830 	 * Else we need to check if there is a COW mapping at this offset.
831 	 */
832 	xfs_ilock(ip, XFS_ILOCK_SHARED);
833 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
834 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
835 
836 	if (!is_cow)
837 		return 0;
838 
839 	/*
840 	 * And if the COW mapping has a delayed extent here we need to
841 	 * allocate real space for it now.
842 	 */
843 	if (isnullstartblock(imap.br_startblock)) {
844 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
845 				&imap);
846 		if (error)
847 			return error;
848 	}
849 
850 	wpc->io_type = *new_type = XFS_IO_COW;
851 	wpc->imap_valid = true;
852 	wpc->imap = imap;
853 	return 0;
854 }
855 
856 /*
857  * We implement an immediate ioend submission policy here to avoid needing to
858  * chain multiple ioends and hence nest mempool allocations which can violate
859  * forward progress guarantees we need to provide. The current ioend we are
860  * adding buffers to is cached on the writepage context, and if the new buffer
861  * does not append to the cached ioend it will create a new ioend and cache that
862  * instead.
863  *
864  * If a new ioend is created and cached, the old ioend is returned and queued
865  * locally for submission once the entire page is processed or an error has been
866  * detected.  While ioends are submitted immediately after they are completed,
867  * batching optimisations are provided by higher level block plugging.
868  *
869  * At the end of a writeback pass, there will be a cached ioend remaining on the
870  * writepage context that the caller will need to submit.
871  */
872 static int
873 xfs_writepage_map(
874 	struct xfs_writepage_ctx *wpc,
875 	struct writeback_control *wbc,
876 	struct inode		*inode,
877 	struct page		*page,
878 	loff_t			offset,
879 	uint64_t              end_offset)
880 {
881 	LIST_HEAD(submit_list);
882 	struct xfs_ioend	*ioend, *next;
883 	struct buffer_head	*bh, *head;
884 	ssize_t			len = i_blocksize(inode);
885 	int			error = 0;
886 	int			count = 0;
887 	int			uptodate = 1;
888 	unsigned int		new_type;
889 
890 	bh = head = page_buffers(page);
891 	offset = page_offset(page);
892 	do {
893 		if (offset >= end_offset)
894 			break;
895 		if (!buffer_uptodate(bh))
896 			uptodate = 0;
897 
898 		/*
899 		 * set_page_dirty dirties all buffers in a page, independent
900 		 * of their state.  The dirty state however is entirely
901 		 * meaningless for holes (!mapped && uptodate), so skip
902 		 * buffers covering holes here.
903 		 */
904 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
905 			wpc->imap_valid = false;
906 			continue;
907 		}
908 
909 		if (buffer_unwritten(bh))
910 			new_type = XFS_IO_UNWRITTEN;
911 		else if (buffer_delay(bh))
912 			new_type = XFS_IO_DELALLOC;
913 		else if (buffer_uptodate(bh))
914 			new_type = XFS_IO_OVERWRITE;
915 		else {
916 			if (PageUptodate(page))
917 				ASSERT(buffer_mapped(bh));
918 			/*
919 			 * This buffer is not uptodate and will not be
920 			 * written to disk.  Ensure that we will put any
921 			 * subsequent writeable buffers into a new
922 			 * ioend.
923 			 */
924 			wpc->imap_valid = false;
925 			continue;
926 		}
927 
928 		if (xfs_is_reflink_inode(XFS_I(inode))) {
929 			error = xfs_map_cow(wpc, inode, offset, &new_type);
930 			if (error)
931 				goto out;
932 		}
933 
934 		if (wpc->io_type != new_type) {
935 			wpc->io_type = new_type;
936 			wpc->imap_valid = false;
937 		}
938 
939 		if (wpc->imap_valid)
940 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
941 							 offset);
942 		if (!wpc->imap_valid) {
943 			error = xfs_map_blocks(inode, offset, &wpc->imap,
944 					     wpc->io_type);
945 			if (error)
946 				goto out;
947 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
948 							 offset);
949 		}
950 		if (wpc->imap_valid) {
951 			lock_buffer(bh);
952 			if (wpc->io_type != XFS_IO_OVERWRITE)
953 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
954 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
955 			count++;
956 		}
957 
958 	} while (offset += len, ((bh = bh->b_this_page) != head));
959 
960 	if (uptodate && bh == head)
961 		SetPageUptodate(page);
962 
963 	ASSERT(wpc->ioend || list_empty(&submit_list));
964 
965 out:
966 	/*
967 	 * On error, we have to fail the ioend here because we have locked
968 	 * buffers in the ioend. If we don't do this, we'll deadlock
969 	 * invalidating the page as that tries to lock the buffers on the page.
970 	 * Also, because we may have set pages under writeback, we have to make
971 	 * sure we run IO completion to mark the error state of the IO
972 	 * appropriately, so we can't cancel the ioend directly here. That means
973 	 * we have to mark this page as under writeback if we included any
974 	 * buffers from it in the ioend chain so that completion treats it
975 	 * correctly.
976 	 *
977 	 * If we didn't include the page in the ioend, the on error we can
978 	 * simply discard and unlock it as there are no other users of the page
979 	 * or it's buffers right now. The caller will still need to trigger
980 	 * submission of outstanding ioends on the writepage context so they are
981 	 * treated correctly on error.
982 	 */
983 	if (count) {
984 		xfs_start_page_writeback(page, !error);
985 
986 		/*
987 		 * Preserve the original error if there was one, otherwise catch
988 		 * submission errors here and propagate into subsequent ioend
989 		 * submissions.
990 		 */
991 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
992 			int error2;
993 
994 			list_del_init(&ioend->io_list);
995 			error2 = xfs_submit_ioend(wbc, ioend, error);
996 			if (error2 && !error)
997 				error = error2;
998 		}
999 	} else if (error) {
1000 		xfs_aops_discard_page(page);
1001 		ClearPageUptodate(page);
1002 		unlock_page(page);
1003 	} else {
1004 		/*
1005 		 * We can end up here with no error and nothing to write if we
1006 		 * race with a partial page truncate on a sub-page block sized
1007 		 * filesystem. In that case we need to mark the page clean.
1008 		 */
1009 		xfs_start_page_writeback(page, 1);
1010 		end_page_writeback(page);
1011 	}
1012 
1013 	mapping_set_error(page->mapping, error);
1014 	return error;
1015 }
1016 
1017 /*
1018  * Write out a dirty page.
1019  *
1020  * For delalloc space on the page we need to allocate space and flush it.
1021  * For unwritten space on the page we need to start the conversion to
1022  * regular allocated space.
1023  * For any other dirty buffer heads on the page we should flush them.
1024  */
1025 STATIC int
1026 xfs_do_writepage(
1027 	struct page		*page,
1028 	struct writeback_control *wbc,
1029 	void			*data)
1030 {
1031 	struct xfs_writepage_ctx *wpc = data;
1032 	struct inode		*inode = page->mapping->host;
1033 	loff_t			offset;
1034 	uint64_t              end_offset;
1035 	pgoff_t                 end_index;
1036 
1037 	trace_xfs_writepage(inode, page, 0, 0);
1038 
1039 	ASSERT(page_has_buffers(page));
1040 
1041 	/*
1042 	 * Refuse to write the page out if we are called from reclaim context.
1043 	 *
1044 	 * This avoids stack overflows when called from deeply used stacks in
1045 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1046 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1047 	 *
1048 	 * This should never happen except in the case of a VM regression so
1049 	 * warn about it.
1050 	 */
1051 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1052 			PF_MEMALLOC))
1053 		goto redirty;
1054 
1055 	/*
1056 	 * Given that we do not allow direct reclaim to call us, we should
1057 	 * never be called while in a filesystem transaction.
1058 	 */
1059 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1060 		goto redirty;
1061 
1062 	/*
1063 	 * Is this page beyond the end of the file?
1064 	 *
1065 	 * The page index is less than the end_index, adjust the end_offset
1066 	 * to the highest offset that this page should represent.
1067 	 * -----------------------------------------------------
1068 	 * |			file mapping	       | <EOF> |
1069 	 * -----------------------------------------------------
1070 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1071 	 * ^--------------------------------^----------|--------
1072 	 * |     desired writeback range    |      see else    |
1073 	 * ---------------------------------^------------------|
1074 	 */
1075 	offset = i_size_read(inode);
1076 	end_index = offset >> PAGE_SHIFT;
1077 	if (page->index < end_index)
1078 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1079 	else {
1080 		/*
1081 		 * Check whether the page to write out is beyond or straddles
1082 		 * i_size or not.
1083 		 * -------------------------------------------------------
1084 		 * |		file mapping		        | <EOF>  |
1085 		 * -------------------------------------------------------
1086 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1087 		 * ^--------------------------------^-----------|---------
1088 		 * |				    |      Straddles     |
1089 		 * ---------------------------------^-----------|--------|
1090 		 */
1091 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1092 
1093 		/*
1094 		 * Skip the page if it is fully outside i_size, e.g. due to a
1095 		 * truncate operation that is in progress. We must redirty the
1096 		 * page so that reclaim stops reclaiming it. Otherwise
1097 		 * xfs_vm_releasepage() is called on it and gets confused.
1098 		 *
1099 		 * Note that the end_index is unsigned long, it would overflow
1100 		 * if the given offset is greater than 16TB on 32-bit system
1101 		 * and if we do check the page is fully outside i_size or not
1102 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1103 		 * will be evaluated to 0.  Hence this page will be redirtied
1104 		 * and be written out repeatedly which would result in an
1105 		 * infinite loop, the user program that perform this operation
1106 		 * will hang.  Instead, we can verify this situation by checking
1107 		 * if the page to write is totally beyond the i_size or if it's
1108 		 * offset is just equal to the EOF.
1109 		 */
1110 		if (page->index > end_index ||
1111 		    (page->index == end_index && offset_into_page == 0))
1112 			goto redirty;
1113 
1114 		/*
1115 		 * The page straddles i_size.  It must be zeroed out on each
1116 		 * and every writepage invocation because it may be mmapped.
1117 		 * "A file is mapped in multiples of the page size.  For a file
1118 		 * that is not a multiple of the page size, the remaining
1119 		 * memory is zeroed when mapped, and writes to that region are
1120 		 * not written out to the file."
1121 		 */
1122 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1123 
1124 		/* Adjust the end_offset to the end of file */
1125 		end_offset = offset;
1126 	}
1127 
1128 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1129 
1130 redirty:
1131 	redirty_page_for_writepage(wbc, page);
1132 	unlock_page(page);
1133 	return 0;
1134 }
1135 
1136 STATIC int
1137 xfs_vm_writepage(
1138 	struct page		*page,
1139 	struct writeback_control *wbc)
1140 {
1141 	struct xfs_writepage_ctx wpc = {
1142 		.io_type = XFS_IO_INVALID,
1143 	};
1144 	int			ret;
1145 
1146 	ret = xfs_do_writepage(page, wbc, &wpc);
1147 	if (wpc.ioend)
1148 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1149 	return ret;
1150 }
1151 
1152 STATIC int
1153 xfs_vm_writepages(
1154 	struct address_space	*mapping,
1155 	struct writeback_control *wbc)
1156 {
1157 	struct xfs_writepage_ctx wpc = {
1158 		.io_type = XFS_IO_INVALID,
1159 	};
1160 	int			ret;
1161 
1162 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1163 	if (dax_mapping(mapping))
1164 		return dax_writeback_mapping_range(mapping,
1165 				xfs_find_bdev_for_inode(mapping->host), wbc);
1166 
1167 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1168 	if (wpc.ioend)
1169 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1170 	return ret;
1171 }
1172 
1173 /*
1174  * Called to move a page into cleanable state - and from there
1175  * to be released. The page should already be clean. We always
1176  * have buffer heads in this call.
1177  *
1178  * Returns 1 if the page is ok to release, 0 otherwise.
1179  */
1180 STATIC int
1181 xfs_vm_releasepage(
1182 	struct page		*page,
1183 	gfp_t			gfp_mask)
1184 {
1185 	int			delalloc, unwritten;
1186 
1187 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1188 
1189 	/*
1190 	 * mm accommodates an old ext3 case where clean pages might not have had
1191 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1192 	 * ->releasepage() via shrink_active_list(). Conversely,
1193 	 * block_invalidatepage() can send pages that are still marked dirty
1194 	 * but otherwise have invalidated buffers.
1195 	 *
1196 	 * We want to release the latter to avoid unnecessary buildup of the
1197 	 * LRU, skip the former and warn if we've left any lingering
1198 	 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1199 	 * or unwritten buffers and warn if the page is not dirty. Otherwise
1200 	 * try to release the buffers.
1201 	 */
1202 	xfs_count_page_state(page, &delalloc, &unwritten);
1203 
1204 	if (delalloc) {
1205 		WARN_ON_ONCE(!PageDirty(page));
1206 		return 0;
1207 	}
1208 	if (unwritten) {
1209 		WARN_ON_ONCE(!PageDirty(page));
1210 		return 0;
1211 	}
1212 
1213 	return try_to_free_buffers(page);
1214 }
1215 
1216 /*
1217  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1218  * is, so that we can avoid repeated get_blocks calls.
1219  *
1220  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1221  * for blocks beyond EOF must be marked new so that sub block regions can be
1222  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1223  * was just allocated or is unwritten, otherwise the callers would overwrite
1224  * existing data with zeros. Hence we have to split the mapping into a range up
1225  * to and including EOF, and a second mapping for beyond EOF.
1226  */
1227 static void
1228 xfs_map_trim_size(
1229 	struct inode		*inode,
1230 	sector_t		iblock,
1231 	struct buffer_head	*bh_result,
1232 	struct xfs_bmbt_irec	*imap,
1233 	xfs_off_t		offset,
1234 	ssize_t			size)
1235 {
1236 	xfs_off_t		mapping_size;
1237 
1238 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1239 	mapping_size <<= inode->i_blkbits;
1240 
1241 	ASSERT(mapping_size > 0);
1242 	if (mapping_size > size)
1243 		mapping_size = size;
1244 	if (offset < i_size_read(inode) &&
1245 	    offset + mapping_size >= i_size_read(inode)) {
1246 		/* limit mapping to block that spans EOF */
1247 		mapping_size = roundup_64(i_size_read(inode) - offset,
1248 					  i_blocksize(inode));
1249 	}
1250 	if (mapping_size > LONG_MAX)
1251 		mapping_size = LONG_MAX;
1252 
1253 	bh_result->b_size = mapping_size;
1254 }
1255 
1256 static int
1257 xfs_get_blocks(
1258 	struct inode		*inode,
1259 	sector_t		iblock,
1260 	struct buffer_head	*bh_result,
1261 	int			create)
1262 {
1263 	struct xfs_inode	*ip = XFS_I(inode);
1264 	struct xfs_mount	*mp = ip->i_mount;
1265 	xfs_fileoff_t		offset_fsb, end_fsb;
1266 	int			error = 0;
1267 	int			lockmode = 0;
1268 	struct xfs_bmbt_irec	imap;
1269 	int			nimaps = 1;
1270 	xfs_off_t		offset;
1271 	ssize_t			size;
1272 
1273 	BUG_ON(create);
1274 
1275 	if (XFS_FORCED_SHUTDOWN(mp))
1276 		return -EIO;
1277 
1278 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1279 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1280 	size = bh_result->b_size;
1281 
1282 	if (offset >= i_size_read(inode))
1283 		return 0;
1284 
1285 	/*
1286 	 * Direct I/O is usually done on preallocated files, so try getting
1287 	 * a block mapping without an exclusive lock first.
1288 	 */
1289 	lockmode = xfs_ilock_data_map_shared(ip);
1290 
1291 	ASSERT(offset <= mp->m_super->s_maxbytes);
1292 	if (offset + size > mp->m_super->s_maxbytes)
1293 		size = mp->m_super->s_maxbytes - offset;
1294 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1295 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1296 
1297 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1298 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1299 	if (error)
1300 		goto out_unlock;
1301 
1302 	if (nimaps) {
1303 		trace_xfs_get_blocks_found(ip, offset, size,
1304 			imap.br_state == XFS_EXT_UNWRITTEN ?
1305 				XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1306 		xfs_iunlock(ip, lockmode);
1307 	} else {
1308 		trace_xfs_get_blocks_notfound(ip, offset, size);
1309 		goto out_unlock;
1310 	}
1311 
1312 	/* trim mapping down to size requested */
1313 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1314 
1315 	/*
1316 	 * For unwritten extents do not report a disk address in the buffered
1317 	 * read case (treat as if we're reading into a hole).
1318 	 */
1319 	if (xfs_bmap_is_real_extent(&imap))
1320 		xfs_map_buffer(inode, bh_result, &imap, offset);
1321 
1322 	/*
1323 	 * If this is a realtime file, data may be on a different device.
1324 	 * to that pointed to from the buffer_head b_bdev currently.
1325 	 */
1326 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1327 	return 0;
1328 
1329 out_unlock:
1330 	xfs_iunlock(ip, lockmode);
1331 	return error;
1332 }
1333 
1334 STATIC ssize_t
1335 xfs_vm_direct_IO(
1336 	struct kiocb		*iocb,
1337 	struct iov_iter		*iter)
1338 {
1339 	/*
1340 	 * We just need the method present so that open/fcntl allow direct I/O.
1341 	 */
1342 	return -EINVAL;
1343 }
1344 
1345 STATIC sector_t
1346 xfs_vm_bmap(
1347 	struct address_space	*mapping,
1348 	sector_t		block)
1349 {
1350 	struct inode		*inode = (struct inode *)mapping->host;
1351 	struct xfs_inode	*ip = XFS_I(inode);
1352 
1353 	trace_xfs_vm_bmap(XFS_I(inode));
1354 
1355 	/*
1356 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1357 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1358 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1359 	 * 0 is the magic code for a bmap error.
1360 	 *
1361 	 * Since we don't pass back blockdev info, we can't return bmap
1362 	 * information for rt files either.
1363 	 */
1364 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1365 		return 0;
1366 
1367 	filemap_write_and_wait(mapping);
1368 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1369 }
1370 
1371 STATIC int
1372 xfs_vm_readpage(
1373 	struct file		*unused,
1374 	struct page		*page)
1375 {
1376 	trace_xfs_vm_readpage(page->mapping->host, 1);
1377 	return mpage_readpage(page, xfs_get_blocks);
1378 }
1379 
1380 STATIC int
1381 xfs_vm_readpages(
1382 	struct file		*unused,
1383 	struct address_space	*mapping,
1384 	struct list_head	*pages,
1385 	unsigned		nr_pages)
1386 {
1387 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1388 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1389 }
1390 
1391 /*
1392  * This is basically a copy of __set_page_dirty_buffers() with one
1393  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1394  * dirty, we'll never be able to clean them because we don't write buffers
1395  * beyond EOF, and that means we can't invalidate pages that span EOF
1396  * that have been marked dirty. Further, the dirty state can leak into
1397  * the file interior if the file is extended, resulting in all sorts of
1398  * bad things happening as the state does not match the underlying data.
1399  *
1400  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1401  * this only exist because of bufferheads and how the generic code manages them.
1402  */
1403 STATIC int
1404 xfs_vm_set_page_dirty(
1405 	struct page		*page)
1406 {
1407 	struct address_space	*mapping = page->mapping;
1408 	struct inode		*inode = mapping->host;
1409 	loff_t			end_offset;
1410 	loff_t			offset;
1411 	int			newly_dirty;
1412 
1413 	if (unlikely(!mapping))
1414 		return !TestSetPageDirty(page);
1415 
1416 	end_offset = i_size_read(inode);
1417 	offset = page_offset(page);
1418 
1419 	spin_lock(&mapping->private_lock);
1420 	if (page_has_buffers(page)) {
1421 		struct buffer_head *head = page_buffers(page);
1422 		struct buffer_head *bh = head;
1423 
1424 		do {
1425 			if (offset < end_offset)
1426 				set_buffer_dirty(bh);
1427 			bh = bh->b_this_page;
1428 			offset += i_blocksize(inode);
1429 		} while (bh != head);
1430 	}
1431 	/*
1432 	 * Lock out page->mem_cgroup migration to keep PageDirty
1433 	 * synchronized with per-memcg dirty page counters.
1434 	 */
1435 	lock_page_memcg(page);
1436 	newly_dirty = !TestSetPageDirty(page);
1437 	spin_unlock(&mapping->private_lock);
1438 
1439 	if (newly_dirty) {
1440 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1441 		unsigned long flags;
1442 
1443 		spin_lock_irqsave(&mapping->tree_lock, flags);
1444 		if (page->mapping) {	/* Race with truncate? */
1445 			WARN_ON_ONCE(!PageUptodate(page));
1446 			account_page_dirtied(page, mapping);
1447 			radix_tree_tag_set(&mapping->page_tree,
1448 					page_index(page), PAGECACHE_TAG_DIRTY);
1449 		}
1450 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1451 	}
1452 	unlock_page_memcg(page);
1453 	if (newly_dirty)
1454 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1455 	return newly_dirty;
1456 }
1457 
1458 const struct address_space_operations xfs_address_space_operations = {
1459 	.readpage		= xfs_vm_readpage,
1460 	.readpages		= xfs_vm_readpages,
1461 	.writepage		= xfs_vm_writepage,
1462 	.writepages		= xfs_vm_writepages,
1463 	.set_page_dirty		= xfs_vm_set_page_dirty,
1464 	.releasepage		= xfs_vm_releasepage,
1465 	.invalidatepage		= xfs_vm_invalidatepage,
1466 	.bmap			= xfs_vm_bmap,
1467 	.direct_IO		= xfs_vm_direct_IO,
1468 	.migratepage		= buffer_migrate_page,
1469 	.is_partially_uptodate  = block_is_partially_uptodate,
1470 	.error_remove_page	= generic_error_remove_page,
1471 };
1472