xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision c819e2cf)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 void
41 xfs_count_page_state(
42 	struct page		*page,
43 	int			*delalloc,
44 	int			*unwritten)
45 {
46 	struct buffer_head	*bh, *head;
47 
48 	*delalloc = *unwritten = 0;
49 
50 	bh = head = page_buffers(page);
51 	do {
52 		if (buffer_unwritten(bh))
53 			(*unwritten) = 1;
54 		else if (buffer_delay(bh))
55 			(*delalloc) = 1;
56 	} while ((bh = bh->b_this_page) != head);
57 }
58 
59 STATIC struct block_device *
60 xfs_find_bdev_for_inode(
61 	struct inode		*inode)
62 {
63 	struct xfs_inode	*ip = XFS_I(inode);
64 	struct xfs_mount	*mp = ip->i_mount;
65 
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return mp->m_rtdev_targp->bt_bdev;
68 	else
69 		return mp->m_ddev_targp->bt_bdev;
70 }
71 
72 /*
73  * We're now finished for good with this ioend structure.
74  * Update the page state via the associated buffer_heads,
75  * release holds on the inode and bio, and finally free
76  * up memory.  Do not use the ioend after this.
77  */
78 STATIC void
79 xfs_destroy_ioend(
80 	xfs_ioend_t		*ioend)
81 {
82 	struct buffer_head	*bh, *next;
83 
84 	for (bh = ioend->io_buffer_head; bh; bh = next) {
85 		next = bh->b_private;
86 		bh->b_end_io(bh, !ioend->io_error);
87 	}
88 
89 	mempool_free(ioend, xfs_ioend_pool);
90 }
91 
92 /*
93  * Fast and loose check if this write could update the on-disk inode size.
94  */
95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
96 {
97 	return ioend->io_offset + ioend->io_size >
98 		XFS_I(ioend->io_inode)->i_d.di_size;
99 }
100 
101 STATIC int
102 xfs_setfilesize_trans_alloc(
103 	struct xfs_ioend	*ioend)
104 {
105 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
106 	struct xfs_trans	*tp;
107 	int			error;
108 
109 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
110 
111 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
112 	if (error) {
113 		xfs_trans_cancel(tp, 0);
114 		return error;
115 	}
116 
117 	ioend->io_append_trans = tp;
118 
119 	/*
120 	 * We may pass freeze protection with a transaction.  So tell lockdep
121 	 * we released it.
122 	 */
123 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
124 		      1, _THIS_IP_);
125 	/*
126 	 * We hand off the transaction to the completion thread now, so
127 	 * clear the flag here.
128 	 */
129 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
130 	return 0;
131 }
132 
133 /*
134  * Update on-disk file size now that data has been written to disk.
135  */
136 STATIC int
137 xfs_setfilesize(
138 	struct xfs_ioend	*ioend)
139 {
140 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
141 	struct xfs_trans	*tp = ioend->io_append_trans;
142 	xfs_fsize_t		isize;
143 
144 	/*
145 	 * The transaction may have been allocated in the I/O submission thread,
146 	 * thus we need to mark ourselves as beeing in a transaction manually.
147 	 * Similarly for freeze protection.
148 	 */
149 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
150 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
151 			   0, 1, _THIS_IP_);
152 
153 	xfs_ilock(ip, XFS_ILOCK_EXCL);
154 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
155 	if (!isize) {
156 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 		xfs_trans_cancel(tp, 0);
158 		return 0;
159 	}
160 
161 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
162 
163 	ip->i_d.di_size = isize;
164 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
165 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
166 
167 	return xfs_trans_commit(tp, 0);
168 }
169 
170 /*
171  * Schedule IO completion handling on the final put of an ioend.
172  *
173  * If there is no work to do we might as well call it a day and free the
174  * ioend right now.
175  */
176 STATIC void
177 xfs_finish_ioend(
178 	struct xfs_ioend	*ioend)
179 {
180 	if (atomic_dec_and_test(&ioend->io_remaining)) {
181 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
182 
183 		if (ioend->io_type == XFS_IO_UNWRITTEN)
184 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
185 		else if (ioend->io_append_trans ||
186 			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
187 			queue_work(mp->m_data_workqueue, &ioend->io_work);
188 		else
189 			xfs_destroy_ioend(ioend);
190 	}
191 }
192 
193 /*
194  * IO write completion.
195  */
196 STATIC void
197 xfs_end_io(
198 	struct work_struct *work)
199 {
200 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
201 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
202 	int		error = 0;
203 
204 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
205 		ioend->io_error = -EIO;
206 		goto done;
207 	}
208 	if (ioend->io_error)
209 		goto done;
210 
211 	/*
212 	 * For unwritten extents we need to issue transactions to convert a
213 	 * range to normal written extens after the data I/O has finished.
214 	 */
215 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
216 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
217 						  ioend->io_size);
218 	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
219 		/*
220 		 * For direct I/O we do not know if we need to allocate blocks
221 		 * or not so we can't preallocate an append transaction as that
222 		 * results in nested reservations and log space deadlocks. Hence
223 		 * allocate the transaction here. While this is sub-optimal and
224 		 * can block IO completion for some time, we're stuck with doing
225 		 * it this way until we can pass the ioend to the direct IO
226 		 * allocation callbacks and avoid nesting that way.
227 		 */
228 		error = xfs_setfilesize_trans_alloc(ioend);
229 		if (error)
230 			goto done;
231 		error = xfs_setfilesize(ioend);
232 	} else if (ioend->io_append_trans) {
233 		error = xfs_setfilesize(ioend);
234 	} else {
235 		ASSERT(!xfs_ioend_is_append(ioend));
236 	}
237 
238 done:
239 	if (error)
240 		ioend->io_error = error;
241 	xfs_destroy_ioend(ioend);
242 }
243 
244 /*
245  * Call IO completion handling in caller context on the final put of an ioend.
246  */
247 STATIC void
248 xfs_finish_ioend_sync(
249 	struct xfs_ioend	*ioend)
250 {
251 	if (atomic_dec_and_test(&ioend->io_remaining))
252 		xfs_end_io(&ioend->io_work);
253 }
254 
255 /*
256  * Allocate and initialise an IO completion structure.
257  * We need to track unwritten extent write completion here initially.
258  * We'll need to extend this for updating the ondisk inode size later
259  * (vs. incore size).
260  */
261 STATIC xfs_ioend_t *
262 xfs_alloc_ioend(
263 	struct inode		*inode,
264 	unsigned int		type)
265 {
266 	xfs_ioend_t		*ioend;
267 
268 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
269 
270 	/*
271 	 * Set the count to 1 initially, which will prevent an I/O
272 	 * completion callback from happening before we have started
273 	 * all the I/O from calling the completion routine too early.
274 	 */
275 	atomic_set(&ioend->io_remaining, 1);
276 	ioend->io_isdirect = 0;
277 	ioend->io_error = 0;
278 	ioend->io_list = NULL;
279 	ioend->io_type = type;
280 	ioend->io_inode = inode;
281 	ioend->io_buffer_head = NULL;
282 	ioend->io_buffer_tail = NULL;
283 	ioend->io_offset = 0;
284 	ioend->io_size = 0;
285 	ioend->io_append_trans = NULL;
286 
287 	INIT_WORK(&ioend->io_work, xfs_end_io);
288 	return ioend;
289 }
290 
291 STATIC int
292 xfs_map_blocks(
293 	struct inode		*inode,
294 	loff_t			offset,
295 	struct xfs_bmbt_irec	*imap,
296 	int			type,
297 	int			nonblocking)
298 {
299 	struct xfs_inode	*ip = XFS_I(inode);
300 	struct xfs_mount	*mp = ip->i_mount;
301 	ssize_t			count = 1 << inode->i_blkbits;
302 	xfs_fileoff_t		offset_fsb, end_fsb;
303 	int			error = 0;
304 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
305 	int			nimaps = 1;
306 
307 	if (XFS_FORCED_SHUTDOWN(mp))
308 		return -EIO;
309 
310 	if (type == XFS_IO_UNWRITTEN)
311 		bmapi_flags |= XFS_BMAPI_IGSTATE;
312 
313 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
314 		if (nonblocking)
315 			return -EAGAIN;
316 		xfs_ilock(ip, XFS_ILOCK_SHARED);
317 	}
318 
319 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
320 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
321 	ASSERT(offset <= mp->m_super->s_maxbytes);
322 
323 	if (offset + count > mp->m_super->s_maxbytes)
324 		count = mp->m_super->s_maxbytes - offset;
325 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
326 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
327 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
328 				imap, &nimaps, bmapi_flags);
329 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
330 
331 	if (error)
332 		return error;
333 
334 	if (type == XFS_IO_DELALLOC &&
335 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
336 		error = xfs_iomap_write_allocate(ip, offset, imap);
337 		if (!error)
338 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
339 		return error;
340 	}
341 
342 #ifdef DEBUG
343 	if (type == XFS_IO_UNWRITTEN) {
344 		ASSERT(nimaps);
345 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
346 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
347 	}
348 #endif
349 	if (nimaps)
350 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
351 	return 0;
352 }
353 
354 STATIC int
355 xfs_imap_valid(
356 	struct inode		*inode,
357 	struct xfs_bmbt_irec	*imap,
358 	xfs_off_t		offset)
359 {
360 	offset >>= inode->i_blkbits;
361 
362 	return offset >= imap->br_startoff &&
363 		offset < imap->br_startoff + imap->br_blockcount;
364 }
365 
366 /*
367  * BIO completion handler for buffered IO.
368  */
369 STATIC void
370 xfs_end_bio(
371 	struct bio		*bio,
372 	int			error)
373 {
374 	xfs_ioend_t		*ioend = bio->bi_private;
375 
376 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
377 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
378 
379 	/* Toss bio and pass work off to an xfsdatad thread */
380 	bio->bi_private = NULL;
381 	bio->bi_end_io = NULL;
382 	bio_put(bio);
383 
384 	xfs_finish_ioend(ioend);
385 }
386 
387 STATIC void
388 xfs_submit_ioend_bio(
389 	struct writeback_control *wbc,
390 	xfs_ioend_t		*ioend,
391 	struct bio		*bio)
392 {
393 	atomic_inc(&ioend->io_remaining);
394 	bio->bi_private = ioend;
395 	bio->bi_end_io = xfs_end_bio;
396 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397 }
398 
399 STATIC struct bio *
400 xfs_alloc_ioend_bio(
401 	struct buffer_head	*bh)
402 {
403 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
404 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
405 
406 	ASSERT(bio->bi_private == NULL);
407 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 	bio->bi_bdev = bh->b_bdev;
409 	return bio;
410 }
411 
412 STATIC void
413 xfs_start_buffer_writeback(
414 	struct buffer_head	*bh)
415 {
416 	ASSERT(buffer_mapped(bh));
417 	ASSERT(buffer_locked(bh));
418 	ASSERT(!buffer_delay(bh));
419 	ASSERT(!buffer_unwritten(bh));
420 
421 	mark_buffer_async_write(bh);
422 	set_buffer_uptodate(bh);
423 	clear_buffer_dirty(bh);
424 }
425 
426 STATIC void
427 xfs_start_page_writeback(
428 	struct page		*page,
429 	int			clear_dirty,
430 	int			buffers)
431 {
432 	ASSERT(PageLocked(page));
433 	ASSERT(!PageWriteback(page));
434 
435 	/*
436 	 * if the page was not fully cleaned, we need to ensure that the higher
437 	 * layers come back to it correctly. That means we need to keep the page
438 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
439 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
440 	 * write this page in this writeback sweep will be made.
441 	 */
442 	if (clear_dirty) {
443 		clear_page_dirty_for_io(page);
444 		set_page_writeback(page);
445 	} else
446 		set_page_writeback_keepwrite(page);
447 
448 	unlock_page(page);
449 
450 	/* If no buffers on the page are to be written, finish it here */
451 	if (!buffers)
452 		end_page_writeback(page);
453 }
454 
455 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
456 {
457 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
458 }
459 
460 /*
461  * Submit all of the bios for all of the ioends we have saved up, covering the
462  * initial writepage page and also any probed pages.
463  *
464  * Because we may have multiple ioends spanning a page, we need to start
465  * writeback on all the buffers before we submit them for I/O. If we mark the
466  * buffers as we got, then we can end up with a page that only has buffers
467  * marked async write and I/O complete on can occur before we mark the other
468  * buffers async write.
469  *
470  * The end result of this is that we trip a bug in end_page_writeback() because
471  * we call it twice for the one page as the code in end_buffer_async_write()
472  * assumes that all buffers on the page are started at the same time.
473  *
474  * The fix is two passes across the ioend list - one to start writeback on the
475  * buffer_heads, and then submit them for I/O on the second pass.
476  *
477  * If @fail is non-zero, it means that we have a situation where some part of
478  * the submission process has failed after we have marked paged for writeback
479  * and unlocked them. In this situation, we need to fail the ioend chain rather
480  * than submit it to IO. This typically only happens on a filesystem shutdown.
481  */
482 STATIC void
483 xfs_submit_ioend(
484 	struct writeback_control *wbc,
485 	xfs_ioend_t		*ioend,
486 	int			fail)
487 {
488 	xfs_ioend_t		*head = ioend;
489 	xfs_ioend_t		*next;
490 	struct buffer_head	*bh;
491 	struct bio		*bio;
492 	sector_t		lastblock = 0;
493 
494 	/* Pass 1 - start writeback */
495 	do {
496 		next = ioend->io_list;
497 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
498 			xfs_start_buffer_writeback(bh);
499 	} while ((ioend = next) != NULL);
500 
501 	/* Pass 2 - submit I/O */
502 	ioend = head;
503 	do {
504 		next = ioend->io_list;
505 		bio = NULL;
506 
507 		/*
508 		 * If we are failing the IO now, just mark the ioend with an
509 		 * error and finish it. This will run IO completion immediately
510 		 * as there is only one reference to the ioend at this point in
511 		 * time.
512 		 */
513 		if (fail) {
514 			ioend->io_error = fail;
515 			xfs_finish_ioend(ioend);
516 			continue;
517 		}
518 
519 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
520 
521 			if (!bio) {
522  retry:
523 				bio = xfs_alloc_ioend_bio(bh);
524 			} else if (bh->b_blocknr != lastblock + 1) {
525 				xfs_submit_ioend_bio(wbc, ioend, bio);
526 				goto retry;
527 			}
528 
529 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
530 				xfs_submit_ioend_bio(wbc, ioend, bio);
531 				goto retry;
532 			}
533 
534 			lastblock = bh->b_blocknr;
535 		}
536 		if (bio)
537 			xfs_submit_ioend_bio(wbc, ioend, bio);
538 		xfs_finish_ioend(ioend);
539 	} while ((ioend = next) != NULL);
540 }
541 
542 /*
543  * Cancel submission of all buffer_heads so far in this endio.
544  * Toss the endio too.  Only ever called for the initial page
545  * in a writepage request, so only ever one page.
546  */
547 STATIC void
548 xfs_cancel_ioend(
549 	xfs_ioend_t		*ioend)
550 {
551 	xfs_ioend_t		*next;
552 	struct buffer_head	*bh, *next_bh;
553 
554 	do {
555 		next = ioend->io_list;
556 		bh = ioend->io_buffer_head;
557 		do {
558 			next_bh = bh->b_private;
559 			clear_buffer_async_write(bh);
560 			/*
561 			 * The unwritten flag is cleared when added to the
562 			 * ioend. We're not submitting for I/O so mark the
563 			 * buffer unwritten again for next time around.
564 			 */
565 			if (ioend->io_type == XFS_IO_UNWRITTEN)
566 				set_buffer_unwritten(bh);
567 			unlock_buffer(bh);
568 		} while ((bh = next_bh) != NULL);
569 
570 		mempool_free(ioend, xfs_ioend_pool);
571 	} while ((ioend = next) != NULL);
572 }
573 
574 /*
575  * Test to see if we've been building up a completion structure for
576  * earlier buffers -- if so, we try to append to this ioend if we
577  * can, otherwise we finish off any current ioend and start another.
578  * Return true if we've finished the given ioend.
579  */
580 STATIC void
581 xfs_add_to_ioend(
582 	struct inode		*inode,
583 	struct buffer_head	*bh,
584 	xfs_off_t		offset,
585 	unsigned int		type,
586 	xfs_ioend_t		**result,
587 	int			need_ioend)
588 {
589 	xfs_ioend_t		*ioend = *result;
590 
591 	if (!ioend || need_ioend || type != ioend->io_type) {
592 		xfs_ioend_t	*previous = *result;
593 
594 		ioend = xfs_alloc_ioend(inode, type);
595 		ioend->io_offset = offset;
596 		ioend->io_buffer_head = bh;
597 		ioend->io_buffer_tail = bh;
598 		if (previous)
599 			previous->io_list = ioend;
600 		*result = ioend;
601 	} else {
602 		ioend->io_buffer_tail->b_private = bh;
603 		ioend->io_buffer_tail = bh;
604 	}
605 
606 	bh->b_private = NULL;
607 	ioend->io_size += bh->b_size;
608 }
609 
610 STATIC void
611 xfs_map_buffer(
612 	struct inode		*inode,
613 	struct buffer_head	*bh,
614 	struct xfs_bmbt_irec	*imap,
615 	xfs_off_t		offset)
616 {
617 	sector_t		bn;
618 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
619 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
620 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
621 
622 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
624 
625 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
626 	      ((offset - iomap_offset) >> inode->i_blkbits);
627 
628 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
629 
630 	bh->b_blocknr = bn;
631 	set_buffer_mapped(bh);
632 }
633 
634 STATIC void
635 xfs_map_at_offset(
636 	struct inode		*inode,
637 	struct buffer_head	*bh,
638 	struct xfs_bmbt_irec	*imap,
639 	xfs_off_t		offset)
640 {
641 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
642 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
643 
644 	xfs_map_buffer(inode, bh, imap, offset);
645 	set_buffer_mapped(bh);
646 	clear_buffer_delay(bh);
647 	clear_buffer_unwritten(bh);
648 }
649 
650 /*
651  * Test if a given page contains at least one buffer of a given @type.
652  * If @check_all_buffers is true, then we walk all the buffers in the page to
653  * try to find one of the type passed in. If it is not set, then the caller only
654  * needs to check the first buffer on the page for a match.
655  */
656 STATIC bool
657 xfs_check_page_type(
658 	struct page		*page,
659 	unsigned int		type,
660 	bool			check_all_buffers)
661 {
662 	struct buffer_head	*bh;
663 	struct buffer_head	*head;
664 
665 	if (PageWriteback(page))
666 		return false;
667 	if (!page->mapping)
668 		return false;
669 	if (!page_has_buffers(page))
670 		return false;
671 
672 	bh = head = page_buffers(page);
673 	do {
674 		if (buffer_unwritten(bh)) {
675 			if (type == XFS_IO_UNWRITTEN)
676 				return true;
677 		} else if (buffer_delay(bh)) {
678 			if (type == XFS_IO_DELALLOC)
679 				return true;
680 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
681 			if (type == XFS_IO_OVERWRITE)
682 				return true;
683 		}
684 
685 		/* If we are only checking the first buffer, we are done now. */
686 		if (!check_all_buffers)
687 			break;
688 	} while ((bh = bh->b_this_page) != head);
689 
690 	return false;
691 }
692 
693 /*
694  * Allocate & map buffers for page given the extent map. Write it out.
695  * except for the original page of a writepage, this is called on
696  * delalloc/unwritten pages only, for the original page it is possible
697  * that the page has no mapping at all.
698  */
699 STATIC int
700 xfs_convert_page(
701 	struct inode		*inode,
702 	struct page		*page,
703 	loff_t			tindex,
704 	struct xfs_bmbt_irec	*imap,
705 	xfs_ioend_t		**ioendp,
706 	struct writeback_control *wbc)
707 {
708 	struct buffer_head	*bh, *head;
709 	xfs_off_t		end_offset;
710 	unsigned long		p_offset;
711 	unsigned int		type;
712 	int			len, page_dirty;
713 	int			count = 0, done = 0, uptodate = 1;
714  	xfs_off_t		offset = page_offset(page);
715 
716 	if (page->index != tindex)
717 		goto fail;
718 	if (!trylock_page(page))
719 		goto fail;
720 	if (PageWriteback(page))
721 		goto fail_unlock_page;
722 	if (page->mapping != inode->i_mapping)
723 		goto fail_unlock_page;
724 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
725 		goto fail_unlock_page;
726 
727 	/*
728 	 * page_dirty is initially a count of buffers on the page before
729 	 * EOF and is decremented as we move each into a cleanable state.
730 	 *
731 	 * Derivation:
732 	 *
733 	 * End offset is the highest offset that this page should represent.
734 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
735 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
736 	 * hence give us the correct page_dirty count. On any other page,
737 	 * it will be zero and in that case we need page_dirty to be the
738 	 * count of buffers on the page.
739 	 */
740 	end_offset = min_t(unsigned long long,
741 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
742 			i_size_read(inode));
743 
744 	/*
745 	 * If the current map does not span the entire page we are about to try
746 	 * to write, then give up. The only way we can write a page that spans
747 	 * multiple mappings in a single writeback iteration is via the
748 	 * xfs_vm_writepage() function. Data integrity writeback requires the
749 	 * entire page to be written in a single attempt, otherwise the part of
750 	 * the page we don't write here doesn't get written as part of the data
751 	 * integrity sync.
752 	 *
753 	 * For normal writeback, we also don't attempt to write partial pages
754 	 * here as it simply means that write_cache_pages() will see it under
755 	 * writeback and ignore the page until some point in the future, at
756 	 * which time this will be the only page in the file that needs
757 	 * writeback.  Hence for more optimal IO patterns, we should always
758 	 * avoid partial page writeback due to multiple mappings on a page here.
759 	 */
760 	if (!xfs_imap_valid(inode, imap, end_offset))
761 		goto fail_unlock_page;
762 
763 	len = 1 << inode->i_blkbits;
764 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
765 					PAGE_CACHE_SIZE);
766 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
767 	page_dirty = p_offset / len;
768 
769 	/*
770 	 * The moment we find a buffer that doesn't match our current type
771 	 * specification or can't be written, abort the loop and start
772 	 * writeback. As per the above xfs_imap_valid() check, only
773 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
774 	 * limited here to the buffers that are contiguous with the current
775 	 * ioend, and hence a buffer we can't write breaks that contiguity and
776 	 * we have to defer the rest of the IO to xfs_vm_writepage().
777 	 */
778 	bh = head = page_buffers(page);
779 	do {
780 		if (offset >= end_offset)
781 			break;
782 		if (!buffer_uptodate(bh))
783 			uptodate = 0;
784 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
785 			done = 1;
786 			break;
787 		}
788 
789 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
790 		    buffer_mapped(bh)) {
791 			if (buffer_unwritten(bh))
792 				type = XFS_IO_UNWRITTEN;
793 			else if (buffer_delay(bh))
794 				type = XFS_IO_DELALLOC;
795 			else
796 				type = XFS_IO_OVERWRITE;
797 
798 			/*
799 			 * imap should always be valid because of the above
800 			 * partial page end_offset check on the imap.
801 			 */
802 			ASSERT(xfs_imap_valid(inode, imap, offset));
803 
804 			lock_buffer(bh);
805 			if (type != XFS_IO_OVERWRITE)
806 				xfs_map_at_offset(inode, bh, imap, offset);
807 			xfs_add_to_ioend(inode, bh, offset, type,
808 					 ioendp, done);
809 
810 			page_dirty--;
811 			count++;
812 		} else {
813 			done = 1;
814 			break;
815 		}
816 	} while (offset += len, (bh = bh->b_this_page) != head);
817 
818 	if (uptodate && bh == head)
819 		SetPageUptodate(page);
820 
821 	if (count) {
822 		if (--wbc->nr_to_write <= 0 &&
823 		    wbc->sync_mode == WB_SYNC_NONE)
824 			done = 1;
825 	}
826 	xfs_start_page_writeback(page, !page_dirty, count);
827 
828 	return done;
829  fail_unlock_page:
830 	unlock_page(page);
831  fail:
832 	return 1;
833 }
834 
835 /*
836  * Convert & write out a cluster of pages in the same extent as defined
837  * by mp and following the start page.
838  */
839 STATIC void
840 xfs_cluster_write(
841 	struct inode		*inode,
842 	pgoff_t			tindex,
843 	struct xfs_bmbt_irec	*imap,
844 	xfs_ioend_t		**ioendp,
845 	struct writeback_control *wbc,
846 	pgoff_t			tlast)
847 {
848 	struct pagevec		pvec;
849 	int			done = 0, i;
850 
851 	pagevec_init(&pvec, 0);
852 	while (!done && tindex <= tlast) {
853 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
854 
855 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
856 			break;
857 
858 		for (i = 0; i < pagevec_count(&pvec); i++) {
859 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
860 					imap, ioendp, wbc);
861 			if (done)
862 				break;
863 		}
864 
865 		pagevec_release(&pvec);
866 		cond_resched();
867 	}
868 }
869 
870 STATIC void
871 xfs_vm_invalidatepage(
872 	struct page		*page,
873 	unsigned int		offset,
874 	unsigned int		length)
875 {
876 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
877 				 length);
878 	block_invalidatepage(page, offset, length);
879 }
880 
881 /*
882  * If the page has delalloc buffers on it, we need to punch them out before we
883  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
884  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
885  * is done on that same region - the delalloc extent is returned when none is
886  * supposed to be there.
887  *
888  * We prevent this by truncating away the delalloc regions on the page before
889  * invalidating it. Because they are delalloc, we can do this without needing a
890  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
891  * truncation without a transaction as there is no space left for block
892  * reservation (typically why we see a ENOSPC in writeback).
893  *
894  * This is not a performance critical path, so for now just do the punching a
895  * buffer head at a time.
896  */
897 STATIC void
898 xfs_aops_discard_page(
899 	struct page		*page)
900 {
901 	struct inode		*inode = page->mapping->host;
902 	struct xfs_inode	*ip = XFS_I(inode);
903 	struct buffer_head	*bh, *head;
904 	loff_t			offset = page_offset(page);
905 
906 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
907 		goto out_invalidate;
908 
909 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
910 		goto out_invalidate;
911 
912 	xfs_alert(ip->i_mount,
913 		"page discard on page %p, inode 0x%llx, offset %llu.",
914 			page, ip->i_ino, offset);
915 
916 	xfs_ilock(ip, XFS_ILOCK_EXCL);
917 	bh = head = page_buffers(page);
918 	do {
919 		int		error;
920 		xfs_fileoff_t	start_fsb;
921 
922 		if (!buffer_delay(bh))
923 			goto next_buffer;
924 
925 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
926 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
927 		if (error) {
928 			/* something screwed, just bail */
929 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
930 				xfs_alert(ip->i_mount,
931 			"page discard unable to remove delalloc mapping.");
932 			}
933 			break;
934 		}
935 next_buffer:
936 		offset += 1 << inode->i_blkbits;
937 
938 	} while ((bh = bh->b_this_page) != head);
939 
940 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
941 out_invalidate:
942 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
943 	return;
944 }
945 
946 /*
947  * Write out a dirty page.
948  *
949  * For delalloc space on the page we need to allocate space and flush it.
950  * For unwritten space on the page we need to start the conversion to
951  * regular allocated space.
952  * For any other dirty buffer heads on the page we should flush them.
953  */
954 STATIC int
955 xfs_vm_writepage(
956 	struct page		*page,
957 	struct writeback_control *wbc)
958 {
959 	struct inode		*inode = page->mapping->host;
960 	struct buffer_head	*bh, *head;
961 	struct xfs_bmbt_irec	imap;
962 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
963 	loff_t			offset;
964 	unsigned int		type;
965 	__uint64_t              end_offset;
966 	pgoff_t                 end_index, last_index;
967 	ssize_t			len;
968 	int			err, imap_valid = 0, uptodate = 1;
969 	int			count = 0;
970 	int			nonblocking = 0;
971 
972 	trace_xfs_writepage(inode, page, 0, 0);
973 
974 	ASSERT(page_has_buffers(page));
975 
976 	/*
977 	 * Refuse to write the page out if we are called from reclaim context.
978 	 *
979 	 * This avoids stack overflows when called from deeply used stacks in
980 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
981 	 * allow reclaim from kswapd as the stack usage there is relatively low.
982 	 *
983 	 * This should never happen except in the case of a VM regression so
984 	 * warn about it.
985 	 */
986 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
987 			PF_MEMALLOC))
988 		goto redirty;
989 
990 	/*
991 	 * Given that we do not allow direct reclaim to call us, we should
992 	 * never be called while in a filesystem transaction.
993 	 */
994 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
995 		goto redirty;
996 
997 	/* Is this page beyond the end of the file? */
998 	offset = i_size_read(inode);
999 	end_index = offset >> PAGE_CACHE_SHIFT;
1000 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1001 
1002 	/*
1003 	 * The page index is less than the end_index, adjust the end_offset
1004 	 * to the highest offset that this page should represent.
1005 	 * -----------------------------------------------------
1006 	 * |			file mapping	       | <EOF> |
1007 	 * -----------------------------------------------------
1008 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1009 	 * ^--------------------------------^----------|--------
1010 	 * |     desired writeback range    |      see else    |
1011 	 * ---------------------------------^------------------|
1012 	 */
1013 	if (page->index < end_index)
1014 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
1015 	else {
1016 		/*
1017 		 * Check whether the page to write out is beyond or straddles
1018 		 * i_size or not.
1019 		 * -------------------------------------------------------
1020 		 * |		file mapping		        | <EOF>  |
1021 		 * -------------------------------------------------------
1022 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1023 		 * ^--------------------------------^-----------|---------
1024 		 * |				    |      Straddles     |
1025 		 * ---------------------------------^-----------|--------|
1026 		 */
1027 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1028 
1029 		/*
1030 		 * Skip the page if it is fully outside i_size, e.g. due to a
1031 		 * truncate operation that is in progress. We must redirty the
1032 		 * page so that reclaim stops reclaiming it. Otherwise
1033 		 * xfs_vm_releasepage() is called on it and gets confused.
1034 		 *
1035 		 * Note that the end_index is unsigned long, it would overflow
1036 		 * if the given offset is greater than 16TB on 32-bit system
1037 		 * and if we do check the page is fully outside i_size or not
1038 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1039 		 * will be evaluated to 0.  Hence this page will be redirtied
1040 		 * and be written out repeatedly which would result in an
1041 		 * infinite loop, the user program that perform this operation
1042 		 * will hang.  Instead, we can verify this situation by checking
1043 		 * if the page to write is totally beyond the i_size or if it's
1044 		 * offset is just equal to the EOF.
1045 		 */
1046 		if (page->index > end_index ||
1047 		    (page->index == end_index && offset_into_page == 0))
1048 			goto redirty;
1049 
1050 		/*
1051 		 * The page straddles i_size.  It must be zeroed out on each
1052 		 * and every writepage invocation because it may be mmapped.
1053 		 * "A file is mapped in multiples of the page size.  For a file
1054 		 * that is not a multiple of the page size, the remaining
1055 		 * memory is zeroed when mapped, and writes to that region are
1056 		 * not written out to the file."
1057 		 */
1058 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1059 
1060 		/* Adjust the end_offset to the end of file */
1061 		end_offset = offset;
1062 	}
1063 
1064 	len = 1 << inode->i_blkbits;
1065 
1066 	bh = head = page_buffers(page);
1067 	offset = page_offset(page);
1068 	type = XFS_IO_OVERWRITE;
1069 
1070 	if (wbc->sync_mode == WB_SYNC_NONE)
1071 		nonblocking = 1;
1072 
1073 	do {
1074 		int new_ioend = 0;
1075 
1076 		if (offset >= end_offset)
1077 			break;
1078 		if (!buffer_uptodate(bh))
1079 			uptodate = 0;
1080 
1081 		/*
1082 		 * set_page_dirty dirties all buffers in a page, independent
1083 		 * of their state.  The dirty state however is entirely
1084 		 * meaningless for holes (!mapped && uptodate), so skip
1085 		 * buffers covering holes here.
1086 		 */
1087 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1088 			imap_valid = 0;
1089 			continue;
1090 		}
1091 
1092 		if (buffer_unwritten(bh)) {
1093 			if (type != XFS_IO_UNWRITTEN) {
1094 				type = XFS_IO_UNWRITTEN;
1095 				imap_valid = 0;
1096 			}
1097 		} else if (buffer_delay(bh)) {
1098 			if (type != XFS_IO_DELALLOC) {
1099 				type = XFS_IO_DELALLOC;
1100 				imap_valid = 0;
1101 			}
1102 		} else if (buffer_uptodate(bh)) {
1103 			if (type != XFS_IO_OVERWRITE) {
1104 				type = XFS_IO_OVERWRITE;
1105 				imap_valid = 0;
1106 			}
1107 		} else {
1108 			if (PageUptodate(page))
1109 				ASSERT(buffer_mapped(bh));
1110 			/*
1111 			 * This buffer is not uptodate and will not be
1112 			 * written to disk.  Ensure that we will put any
1113 			 * subsequent writeable buffers into a new
1114 			 * ioend.
1115 			 */
1116 			imap_valid = 0;
1117 			continue;
1118 		}
1119 
1120 		if (imap_valid)
1121 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1122 		if (!imap_valid) {
1123 			/*
1124 			 * If we didn't have a valid mapping then we need to
1125 			 * put the new mapping into a separate ioend structure.
1126 			 * This ensures non-contiguous extents always have
1127 			 * separate ioends, which is particularly important
1128 			 * for unwritten extent conversion at I/O completion
1129 			 * time.
1130 			 */
1131 			new_ioend = 1;
1132 			err = xfs_map_blocks(inode, offset, &imap, type,
1133 					     nonblocking);
1134 			if (err)
1135 				goto error;
1136 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1137 		}
1138 		if (imap_valid) {
1139 			lock_buffer(bh);
1140 			if (type != XFS_IO_OVERWRITE)
1141 				xfs_map_at_offset(inode, bh, &imap, offset);
1142 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1143 					 new_ioend);
1144 			count++;
1145 		}
1146 
1147 		if (!iohead)
1148 			iohead = ioend;
1149 
1150 	} while (offset += len, ((bh = bh->b_this_page) != head));
1151 
1152 	if (uptodate && bh == head)
1153 		SetPageUptodate(page);
1154 
1155 	xfs_start_page_writeback(page, 1, count);
1156 
1157 	/* if there is no IO to be submitted for this page, we are done */
1158 	if (!ioend)
1159 		return 0;
1160 
1161 	ASSERT(iohead);
1162 
1163 	/*
1164 	 * Any errors from this point onwards need tobe reported through the IO
1165 	 * completion path as we have marked the initial page as under writeback
1166 	 * and unlocked it.
1167 	 */
1168 	if (imap_valid) {
1169 		xfs_off_t		end_index;
1170 
1171 		end_index = imap.br_startoff + imap.br_blockcount;
1172 
1173 		/* to bytes */
1174 		end_index <<= inode->i_blkbits;
1175 
1176 		/* to pages */
1177 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1178 
1179 		/* check against file size */
1180 		if (end_index > last_index)
1181 			end_index = last_index;
1182 
1183 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1184 				  wbc, end_index);
1185 	}
1186 
1187 
1188 	/*
1189 	 * Reserve log space if we might write beyond the on-disk inode size.
1190 	 */
1191 	err = 0;
1192 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1193 		err = xfs_setfilesize_trans_alloc(ioend);
1194 
1195 	xfs_submit_ioend(wbc, iohead, err);
1196 
1197 	return 0;
1198 
1199 error:
1200 	if (iohead)
1201 		xfs_cancel_ioend(iohead);
1202 
1203 	if (err == -EAGAIN)
1204 		goto redirty;
1205 
1206 	xfs_aops_discard_page(page);
1207 	ClearPageUptodate(page);
1208 	unlock_page(page);
1209 	return err;
1210 
1211 redirty:
1212 	redirty_page_for_writepage(wbc, page);
1213 	unlock_page(page);
1214 	return 0;
1215 }
1216 
1217 STATIC int
1218 xfs_vm_writepages(
1219 	struct address_space	*mapping,
1220 	struct writeback_control *wbc)
1221 {
1222 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1223 	return generic_writepages(mapping, wbc);
1224 }
1225 
1226 /*
1227  * Called to move a page into cleanable state - and from there
1228  * to be released. The page should already be clean. We always
1229  * have buffer heads in this call.
1230  *
1231  * Returns 1 if the page is ok to release, 0 otherwise.
1232  */
1233 STATIC int
1234 xfs_vm_releasepage(
1235 	struct page		*page,
1236 	gfp_t			gfp_mask)
1237 {
1238 	int			delalloc, unwritten;
1239 
1240 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1241 
1242 	xfs_count_page_state(page, &delalloc, &unwritten);
1243 
1244 	if (WARN_ON_ONCE(delalloc))
1245 		return 0;
1246 	if (WARN_ON_ONCE(unwritten))
1247 		return 0;
1248 
1249 	return try_to_free_buffers(page);
1250 }
1251 
1252 STATIC int
1253 __xfs_get_blocks(
1254 	struct inode		*inode,
1255 	sector_t		iblock,
1256 	struct buffer_head	*bh_result,
1257 	int			create,
1258 	int			direct)
1259 {
1260 	struct xfs_inode	*ip = XFS_I(inode);
1261 	struct xfs_mount	*mp = ip->i_mount;
1262 	xfs_fileoff_t		offset_fsb, end_fsb;
1263 	int			error = 0;
1264 	int			lockmode = 0;
1265 	struct xfs_bmbt_irec	imap;
1266 	int			nimaps = 1;
1267 	xfs_off_t		offset;
1268 	ssize_t			size;
1269 	int			new = 0;
1270 
1271 	if (XFS_FORCED_SHUTDOWN(mp))
1272 		return -EIO;
1273 
1274 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1275 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1276 	size = bh_result->b_size;
1277 
1278 	if (!create && direct && offset >= i_size_read(inode))
1279 		return 0;
1280 
1281 	/*
1282 	 * Direct I/O is usually done on preallocated files, so try getting
1283 	 * a block mapping without an exclusive lock first.  For buffered
1284 	 * writes we already have the exclusive iolock anyway, so avoiding
1285 	 * a lock roundtrip here by taking the ilock exclusive from the
1286 	 * beginning is a useful micro optimization.
1287 	 */
1288 	if (create && !direct) {
1289 		lockmode = XFS_ILOCK_EXCL;
1290 		xfs_ilock(ip, lockmode);
1291 	} else {
1292 		lockmode = xfs_ilock_data_map_shared(ip);
1293 	}
1294 
1295 	ASSERT(offset <= mp->m_super->s_maxbytes);
1296 	if (offset + size > mp->m_super->s_maxbytes)
1297 		size = mp->m_super->s_maxbytes - offset;
1298 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1299 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1300 
1301 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1302 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1303 	if (error)
1304 		goto out_unlock;
1305 
1306 	if (create &&
1307 	    (!nimaps ||
1308 	     (imap.br_startblock == HOLESTARTBLOCK ||
1309 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1310 		if (direct || xfs_get_extsz_hint(ip)) {
1311 			/*
1312 			 * Drop the ilock in preparation for starting the block
1313 			 * allocation transaction.  It will be retaken
1314 			 * exclusively inside xfs_iomap_write_direct for the
1315 			 * actual allocation.
1316 			 */
1317 			xfs_iunlock(ip, lockmode);
1318 			error = xfs_iomap_write_direct(ip, offset, size,
1319 						       &imap, nimaps);
1320 			if (error)
1321 				return error;
1322 			new = 1;
1323 		} else {
1324 			/*
1325 			 * Delalloc reservations do not require a transaction,
1326 			 * we can go on without dropping the lock here. If we
1327 			 * are allocating a new delalloc block, make sure that
1328 			 * we set the new flag so that we mark the buffer new so
1329 			 * that we know that it is newly allocated if the write
1330 			 * fails.
1331 			 */
1332 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1333 				new = 1;
1334 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1335 			if (error)
1336 				goto out_unlock;
1337 
1338 			xfs_iunlock(ip, lockmode);
1339 		}
1340 
1341 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1342 	} else if (nimaps) {
1343 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1344 		xfs_iunlock(ip, lockmode);
1345 	} else {
1346 		trace_xfs_get_blocks_notfound(ip, offset, size);
1347 		goto out_unlock;
1348 	}
1349 
1350 	if (imap.br_startblock != HOLESTARTBLOCK &&
1351 	    imap.br_startblock != DELAYSTARTBLOCK) {
1352 		/*
1353 		 * For unwritten extents do not report a disk address on
1354 		 * the read case (treat as if we're reading into a hole).
1355 		 */
1356 		if (create || !ISUNWRITTEN(&imap))
1357 			xfs_map_buffer(inode, bh_result, &imap, offset);
1358 		if (create && ISUNWRITTEN(&imap)) {
1359 			if (direct) {
1360 				bh_result->b_private = inode;
1361 				set_buffer_defer_completion(bh_result);
1362 			}
1363 			set_buffer_unwritten(bh_result);
1364 		}
1365 	}
1366 
1367 	/*
1368 	 * If this is a realtime file, data may be on a different device.
1369 	 * to that pointed to from the buffer_head b_bdev currently.
1370 	 */
1371 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1372 
1373 	/*
1374 	 * If we previously allocated a block out beyond eof and we are now
1375 	 * coming back to use it then we will need to flag it as new even if it
1376 	 * has a disk address.
1377 	 *
1378 	 * With sub-block writes into unwritten extents we also need to mark
1379 	 * the buffer as new so that the unwritten parts of the buffer gets
1380 	 * correctly zeroed.
1381 	 */
1382 	if (create &&
1383 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1384 	     (offset >= i_size_read(inode)) ||
1385 	     (new || ISUNWRITTEN(&imap))))
1386 		set_buffer_new(bh_result);
1387 
1388 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1389 		BUG_ON(direct);
1390 		if (create) {
1391 			set_buffer_uptodate(bh_result);
1392 			set_buffer_mapped(bh_result);
1393 			set_buffer_delay(bh_result);
1394 		}
1395 	}
1396 
1397 	/*
1398 	 * If this is O_DIRECT or the mpage code calling tell them how large
1399 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1400 	 *
1401 	 * If the mapping spans EOF, then we have to break the mapping up as the
1402 	 * mapping for blocks beyond EOF must be marked new so that sub block
1403 	 * regions can be correctly zeroed. We can't do this for mappings within
1404 	 * EOF unless the mapping was just allocated or is unwritten, otherwise
1405 	 * the callers would overwrite existing data with zeros. Hence we have
1406 	 * to split the mapping into a range up to and including EOF, and a
1407 	 * second mapping for beyond EOF.
1408 	 */
1409 	if (direct || size > (1 << inode->i_blkbits)) {
1410 		xfs_off_t		mapping_size;
1411 
1412 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1413 		mapping_size <<= inode->i_blkbits;
1414 
1415 		ASSERT(mapping_size > 0);
1416 		if (mapping_size > size)
1417 			mapping_size = size;
1418 		if (offset < i_size_read(inode) &&
1419 		    offset + mapping_size >= i_size_read(inode)) {
1420 			/* limit mapping to block that spans EOF */
1421 			mapping_size = roundup_64(i_size_read(inode) - offset,
1422 						  1 << inode->i_blkbits);
1423 		}
1424 		if (mapping_size > LONG_MAX)
1425 			mapping_size = LONG_MAX;
1426 
1427 		bh_result->b_size = mapping_size;
1428 	}
1429 
1430 	return 0;
1431 
1432 out_unlock:
1433 	xfs_iunlock(ip, lockmode);
1434 	return error;
1435 }
1436 
1437 int
1438 xfs_get_blocks(
1439 	struct inode		*inode,
1440 	sector_t		iblock,
1441 	struct buffer_head	*bh_result,
1442 	int			create)
1443 {
1444 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1445 }
1446 
1447 STATIC int
1448 xfs_get_blocks_direct(
1449 	struct inode		*inode,
1450 	sector_t		iblock,
1451 	struct buffer_head	*bh_result,
1452 	int			create)
1453 {
1454 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1455 }
1456 
1457 /*
1458  * Complete a direct I/O write request.
1459  *
1460  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1461  * need to issue a transaction to convert the range from unwritten to written
1462  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1463  * to do this and we are done.  But in case this was a successful AIO
1464  * request this handler is called from interrupt context, from which we
1465  * can't start transactions.  In that case offload the I/O completion to
1466  * the workqueues we also use for buffered I/O completion.
1467  */
1468 STATIC void
1469 xfs_end_io_direct_write(
1470 	struct kiocb		*iocb,
1471 	loff_t			offset,
1472 	ssize_t			size,
1473 	void			*private)
1474 {
1475 	struct xfs_ioend	*ioend = iocb->private;
1476 
1477 	/*
1478 	 * While the generic direct I/O code updates the inode size, it does
1479 	 * so only after the end_io handler is called, which means our
1480 	 * end_io handler thinks the on-disk size is outside the in-core
1481 	 * size.  To prevent this just update it a little bit earlier here.
1482 	 */
1483 	if (offset + size > i_size_read(ioend->io_inode))
1484 		i_size_write(ioend->io_inode, offset + size);
1485 
1486 	/*
1487 	 * blockdev_direct_IO can return an error even after the I/O
1488 	 * completion handler was called.  Thus we need to protect
1489 	 * against double-freeing.
1490 	 */
1491 	iocb->private = NULL;
1492 
1493 	ioend->io_offset = offset;
1494 	ioend->io_size = size;
1495 	if (private && size > 0)
1496 		ioend->io_type = XFS_IO_UNWRITTEN;
1497 
1498 	xfs_finish_ioend_sync(ioend);
1499 }
1500 
1501 STATIC ssize_t
1502 xfs_vm_direct_IO(
1503 	int			rw,
1504 	struct kiocb		*iocb,
1505 	struct iov_iter		*iter,
1506 	loff_t			offset)
1507 {
1508 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1509 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1510 	struct xfs_ioend	*ioend = NULL;
1511 	ssize_t			ret;
1512 
1513 	if (rw & WRITE) {
1514 		size_t size = iov_iter_count(iter);
1515 
1516 		/*
1517 		 * We cannot preallocate a size update transaction here as we
1518 		 * don't know whether allocation is necessary or not. Hence we
1519 		 * can only tell IO completion that one is necessary if we are
1520 		 * not doing unwritten extent conversion.
1521 		 */
1522 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1523 		if (offset + size > XFS_I(inode)->i_d.di_size)
1524 			ioend->io_isdirect = 1;
1525 
1526 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1527 					    offset, xfs_get_blocks_direct,
1528 					    xfs_end_io_direct_write, NULL,
1529 					    DIO_ASYNC_EXTEND);
1530 		if (ret != -EIOCBQUEUED && iocb->private)
1531 			goto out_destroy_ioend;
1532 	} else {
1533 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter,
1534 					    offset, xfs_get_blocks_direct,
1535 					    NULL, NULL, 0);
1536 	}
1537 
1538 	return ret;
1539 
1540 out_destroy_ioend:
1541 	xfs_destroy_ioend(ioend);
1542 	return ret;
1543 }
1544 
1545 /*
1546  * Punch out the delalloc blocks we have already allocated.
1547  *
1548  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1549  * as the page is still locked at this point.
1550  */
1551 STATIC void
1552 xfs_vm_kill_delalloc_range(
1553 	struct inode		*inode,
1554 	loff_t			start,
1555 	loff_t			end)
1556 {
1557 	struct xfs_inode	*ip = XFS_I(inode);
1558 	xfs_fileoff_t		start_fsb;
1559 	xfs_fileoff_t		end_fsb;
1560 	int			error;
1561 
1562 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1563 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1564 	if (end_fsb <= start_fsb)
1565 		return;
1566 
1567 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1568 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1569 						end_fsb - start_fsb);
1570 	if (error) {
1571 		/* something screwed, just bail */
1572 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1573 			xfs_alert(ip->i_mount,
1574 		"xfs_vm_write_failed: unable to clean up ino %lld",
1575 					ip->i_ino);
1576 		}
1577 	}
1578 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1579 }
1580 
1581 STATIC void
1582 xfs_vm_write_failed(
1583 	struct inode		*inode,
1584 	struct page		*page,
1585 	loff_t			pos,
1586 	unsigned		len)
1587 {
1588 	loff_t			block_offset;
1589 	loff_t			block_start;
1590 	loff_t			block_end;
1591 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1592 	loff_t			to = from + len;
1593 	struct buffer_head	*bh, *head;
1594 
1595 	/*
1596 	 * The request pos offset might be 32 or 64 bit, this is all fine
1597 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1598 	 * platform, the high 32-bit will be masked off if we evaluate the
1599 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1600 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1601 	 * which could cause the following ASSERT failed in most cases.
1602 	 * In order to avoid this, we can evaluate the block_offset of the
1603 	 * start of the page by using shifts rather than masks the mismatch
1604 	 * problem.
1605 	 */
1606 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1607 
1608 	ASSERT(block_offset + from == pos);
1609 
1610 	head = page_buffers(page);
1611 	block_start = 0;
1612 	for (bh = head; bh != head || !block_start;
1613 	     bh = bh->b_this_page, block_start = block_end,
1614 				   block_offset += bh->b_size) {
1615 		block_end = block_start + bh->b_size;
1616 
1617 		/* skip buffers before the write */
1618 		if (block_end <= from)
1619 			continue;
1620 
1621 		/* if the buffer is after the write, we're done */
1622 		if (block_start >= to)
1623 			break;
1624 
1625 		if (!buffer_delay(bh))
1626 			continue;
1627 
1628 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1629 			continue;
1630 
1631 		xfs_vm_kill_delalloc_range(inode, block_offset,
1632 					   block_offset + bh->b_size);
1633 
1634 		/*
1635 		 * This buffer does not contain data anymore. make sure anyone
1636 		 * who finds it knows that for certain.
1637 		 */
1638 		clear_buffer_delay(bh);
1639 		clear_buffer_uptodate(bh);
1640 		clear_buffer_mapped(bh);
1641 		clear_buffer_new(bh);
1642 		clear_buffer_dirty(bh);
1643 	}
1644 
1645 }
1646 
1647 /*
1648  * This used to call block_write_begin(), but it unlocks and releases the page
1649  * on error, and we need that page to be able to punch stale delalloc blocks out
1650  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1651  * the appropriate point.
1652  */
1653 STATIC int
1654 xfs_vm_write_begin(
1655 	struct file		*file,
1656 	struct address_space	*mapping,
1657 	loff_t			pos,
1658 	unsigned		len,
1659 	unsigned		flags,
1660 	struct page		**pagep,
1661 	void			**fsdata)
1662 {
1663 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1664 	struct page		*page;
1665 	int			status;
1666 
1667 	ASSERT(len <= PAGE_CACHE_SIZE);
1668 
1669 	page = grab_cache_page_write_begin(mapping, index, flags);
1670 	if (!page)
1671 		return -ENOMEM;
1672 
1673 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1674 	if (unlikely(status)) {
1675 		struct inode	*inode = mapping->host;
1676 		size_t		isize = i_size_read(inode);
1677 
1678 		xfs_vm_write_failed(inode, page, pos, len);
1679 		unlock_page(page);
1680 
1681 		/*
1682 		 * If the write is beyond EOF, we only want to kill blocks
1683 		 * allocated in this write, not blocks that were previously
1684 		 * written successfully.
1685 		 */
1686 		if (pos + len > isize) {
1687 			ssize_t start = max_t(ssize_t, pos, isize);
1688 
1689 			truncate_pagecache_range(inode, start, pos + len);
1690 		}
1691 
1692 		page_cache_release(page);
1693 		page = NULL;
1694 	}
1695 
1696 	*pagep = page;
1697 	return status;
1698 }
1699 
1700 /*
1701  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1702  * this specific write because they will never be written. Previous writes
1703  * beyond EOF where block allocation succeeded do not need to be trashed, so
1704  * only new blocks from this write should be trashed. For blocks within
1705  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1706  * written with all the other valid data.
1707  */
1708 STATIC int
1709 xfs_vm_write_end(
1710 	struct file		*file,
1711 	struct address_space	*mapping,
1712 	loff_t			pos,
1713 	unsigned		len,
1714 	unsigned		copied,
1715 	struct page		*page,
1716 	void			*fsdata)
1717 {
1718 	int			ret;
1719 
1720 	ASSERT(len <= PAGE_CACHE_SIZE);
1721 
1722 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1723 	if (unlikely(ret < len)) {
1724 		struct inode	*inode = mapping->host;
1725 		size_t		isize = i_size_read(inode);
1726 		loff_t		to = pos + len;
1727 
1728 		if (to > isize) {
1729 			/* only kill blocks in this write beyond EOF */
1730 			if (pos > isize)
1731 				isize = pos;
1732 			xfs_vm_kill_delalloc_range(inode, isize, to);
1733 			truncate_pagecache_range(inode, isize, to);
1734 		}
1735 	}
1736 	return ret;
1737 }
1738 
1739 STATIC sector_t
1740 xfs_vm_bmap(
1741 	struct address_space	*mapping,
1742 	sector_t		block)
1743 {
1744 	struct inode		*inode = (struct inode *)mapping->host;
1745 	struct xfs_inode	*ip = XFS_I(inode);
1746 
1747 	trace_xfs_vm_bmap(XFS_I(inode));
1748 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1749 	filemap_write_and_wait(mapping);
1750 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1751 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1752 }
1753 
1754 STATIC int
1755 xfs_vm_readpage(
1756 	struct file		*unused,
1757 	struct page		*page)
1758 {
1759 	return mpage_readpage(page, xfs_get_blocks);
1760 }
1761 
1762 STATIC int
1763 xfs_vm_readpages(
1764 	struct file		*unused,
1765 	struct address_space	*mapping,
1766 	struct list_head	*pages,
1767 	unsigned		nr_pages)
1768 {
1769 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1770 }
1771 
1772 /*
1773  * This is basically a copy of __set_page_dirty_buffers() with one
1774  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1775  * dirty, we'll never be able to clean them because we don't write buffers
1776  * beyond EOF, and that means we can't invalidate pages that span EOF
1777  * that have been marked dirty. Further, the dirty state can leak into
1778  * the file interior if the file is extended, resulting in all sorts of
1779  * bad things happening as the state does not match the underlying data.
1780  *
1781  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1782  * this only exist because of bufferheads and how the generic code manages them.
1783  */
1784 STATIC int
1785 xfs_vm_set_page_dirty(
1786 	struct page		*page)
1787 {
1788 	struct address_space	*mapping = page->mapping;
1789 	struct inode		*inode = mapping->host;
1790 	loff_t			end_offset;
1791 	loff_t			offset;
1792 	int			newly_dirty;
1793 
1794 	if (unlikely(!mapping))
1795 		return !TestSetPageDirty(page);
1796 
1797 	end_offset = i_size_read(inode);
1798 	offset = page_offset(page);
1799 
1800 	spin_lock(&mapping->private_lock);
1801 	if (page_has_buffers(page)) {
1802 		struct buffer_head *head = page_buffers(page);
1803 		struct buffer_head *bh = head;
1804 
1805 		do {
1806 			if (offset < end_offset)
1807 				set_buffer_dirty(bh);
1808 			bh = bh->b_this_page;
1809 			offset += 1 << inode->i_blkbits;
1810 		} while (bh != head);
1811 	}
1812 	newly_dirty = !TestSetPageDirty(page);
1813 	spin_unlock(&mapping->private_lock);
1814 
1815 	if (newly_dirty) {
1816 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1817 		unsigned long flags;
1818 
1819 		spin_lock_irqsave(&mapping->tree_lock, flags);
1820 		if (page->mapping) {	/* Race with truncate? */
1821 			WARN_ON_ONCE(!PageUptodate(page));
1822 			account_page_dirtied(page, mapping);
1823 			radix_tree_tag_set(&mapping->page_tree,
1824 					page_index(page), PAGECACHE_TAG_DIRTY);
1825 		}
1826 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1827 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1828 	}
1829 	return newly_dirty;
1830 }
1831 
1832 const struct address_space_operations xfs_address_space_operations = {
1833 	.readpage		= xfs_vm_readpage,
1834 	.readpages		= xfs_vm_readpages,
1835 	.writepage		= xfs_vm_writepage,
1836 	.writepages		= xfs_vm_writepages,
1837 	.set_page_dirty		= xfs_vm_set_page_dirty,
1838 	.releasepage		= xfs_vm_releasepage,
1839 	.invalidatepage		= xfs_vm_invalidatepage,
1840 	.write_begin		= xfs_vm_write_begin,
1841 	.write_end		= xfs_vm_write_end,
1842 	.bmap			= xfs_vm_bmap,
1843 	.direct_IO		= xfs_vm_direct_IO,
1844 	.migratepage		= buffer_migrate_page,
1845 	.is_partially_uptodate  = block_is_partially_uptodate,
1846 	.error_remove_page	= generic_error_remove_page,
1847 };
1848