1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 21 struct xfs_writepage_ctx { 22 struct iomap_writepage_ctx ctx; 23 unsigned int data_seq; 24 unsigned int cow_seq; 25 }; 26 27 static inline struct xfs_writepage_ctx * 28 XFS_WPC(struct iomap_writepage_ctx *ctx) 29 { 30 return container_of(ctx, struct xfs_writepage_ctx, ctx); 31 } 32 33 /* 34 * Fast and loose check if this write could update the on-disk inode size. 35 */ 36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 37 { 38 return ioend->io_offset + ioend->io_size > 39 XFS_I(ioend->io_inode)->i_d.di_size; 40 } 41 42 STATIC int 43 xfs_setfilesize_trans_alloc( 44 struct iomap_ioend *ioend) 45 { 46 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 47 struct xfs_trans *tp; 48 int error; 49 50 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 51 if (error) 52 return error; 53 54 ioend->io_private = tp; 55 56 /* 57 * We may pass freeze protection with a transaction. So tell lockdep 58 * we released it. 59 */ 60 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 61 /* 62 * We hand off the transaction to the completion thread now, so 63 * clear the flag here. 64 */ 65 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 66 return 0; 67 } 68 69 /* 70 * Update on-disk file size now that data has been written to disk. 71 */ 72 STATIC int 73 __xfs_setfilesize( 74 struct xfs_inode *ip, 75 struct xfs_trans *tp, 76 xfs_off_t offset, 77 size_t size) 78 { 79 xfs_fsize_t isize; 80 81 xfs_ilock(ip, XFS_ILOCK_EXCL); 82 isize = xfs_new_eof(ip, offset + size); 83 if (!isize) { 84 xfs_iunlock(ip, XFS_ILOCK_EXCL); 85 xfs_trans_cancel(tp); 86 return 0; 87 } 88 89 trace_xfs_setfilesize(ip, offset, size); 90 91 ip->i_d.di_size = isize; 92 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 93 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 94 95 return xfs_trans_commit(tp); 96 } 97 98 int 99 xfs_setfilesize( 100 struct xfs_inode *ip, 101 xfs_off_t offset, 102 size_t size) 103 { 104 struct xfs_mount *mp = ip->i_mount; 105 struct xfs_trans *tp; 106 int error; 107 108 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 109 if (error) 110 return error; 111 112 return __xfs_setfilesize(ip, tp, offset, size); 113 } 114 115 STATIC int 116 xfs_setfilesize_ioend( 117 struct iomap_ioend *ioend, 118 int error) 119 { 120 struct xfs_inode *ip = XFS_I(ioend->io_inode); 121 struct xfs_trans *tp = ioend->io_private; 122 123 /* 124 * The transaction may have been allocated in the I/O submission thread, 125 * thus we need to mark ourselves as being in a transaction manually. 126 * Similarly for freeze protection. 127 */ 128 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 129 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 130 131 /* we abort the update if there was an IO error */ 132 if (error) { 133 xfs_trans_cancel(tp); 134 return error; 135 } 136 137 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 138 } 139 140 /* 141 * IO write completion. 142 */ 143 STATIC void 144 xfs_end_ioend( 145 struct iomap_ioend *ioend) 146 { 147 struct xfs_inode *ip = XFS_I(ioend->io_inode); 148 xfs_off_t offset = ioend->io_offset; 149 size_t size = ioend->io_size; 150 unsigned int nofs_flag; 151 int error; 152 153 /* 154 * We can allocate memory here while doing writeback on behalf of 155 * memory reclaim. To avoid memory allocation deadlocks set the 156 * task-wide nofs context for the following operations. 157 */ 158 nofs_flag = memalloc_nofs_save(); 159 160 /* 161 * Just clean up the in-memory strutures if the fs has been shut down. 162 */ 163 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 164 error = -EIO; 165 goto done; 166 } 167 168 /* 169 * Clean up any COW blocks on an I/O error. 170 */ 171 error = blk_status_to_errno(ioend->io_bio->bi_status); 172 if (unlikely(error)) { 173 if (ioend->io_flags & IOMAP_F_SHARED) 174 xfs_reflink_cancel_cow_range(ip, offset, size, true); 175 goto done; 176 } 177 178 /* 179 * Success: commit the COW or unwritten blocks if needed. 180 */ 181 if (ioend->io_flags & IOMAP_F_SHARED) 182 error = xfs_reflink_end_cow(ip, offset, size); 183 else if (ioend->io_type == IOMAP_UNWRITTEN) 184 error = xfs_iomap_write_unwritten(ip, offset, size, false); 185 else 186 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private); 187 188 done: 189 if (ioend->io_private) 190 error = xfs_setfilesize_ioend(ioend, error); 191 iomap_finish_ioends(ioend, error); 192 memalloc_nofs_restore(nofs_flag); 193 } 194 195 /* 196 * If the to be merged ioend has a preallocated transaction for file 197 * size updates we need to ensure the ioend it is merged into also 198 * has one. If it already has one we can simply cancel the transaction 199 * as it is guaranteed to be clean. 200 */ 201 static void 202 xfs_ioend_merge_private( 203 struct iomap_ioend *ioend, 204 struct iomap_ioend *next) 205 { 206 if (!ioend->io_private) { 207 ioend->io_private = next->io_private; 208 next->io_private = NULL; 209 } else { 210 xfs_setfilesize_ioend(next, -ECANCELED); 211 } 212 } 213 214 /* Finish all pending io completions. */ 215 void 216 xfs_end_io( 217 struct work_struct *work) 218 { 219 struct xfs_inode *ip = 220 container_of(work, struct xfs_inode, i_ioend_work); 221 struct iomap_ioend *ioend; 222 struct list_head tmp; 223 unsigned long flags; 224 225 spin_lock_irqsave(&ip->i_ioend_lock, flags); 226 list_replace_init(&ip->i_ioend_list, &tmp); 227 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 228 229 iomap_sort_ioends(&tmp); 230 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 231 io_list))) { 232 list_del_init(&ioend->io_list); 233 iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private); 234 xfs_end_ioend(ioend); 235 } 236 } 237 238 static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend) 239 { 240 return ioend->io_private || 241 ioend->io_type == IOMAP_UNWRITTEN || 242 (ioend->io_flags & IOMAP_F_SHARED); 243 } 244 245 STATIC void 246 xfs_end_bio( 247 struct bio *bio) 248 { 249 struct iomap_ioend *ioend = bio->bi_private; 250 struct xfs_inode *ip = XFS_I(ioend->io_inode); 251 unsigned long flags; 252 253 ASSERT(xfs_ioend_needs_workqueue(ioend)); 254 255 spin_lock_irqsave(&ip->i_ioend_lock, flags); 256 if (list_empty(&ip->i_ioend_list)) 257 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 258 &ip->i_ioend_work)); 259 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 260 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 261 } 262 263 /* 264 * Fast revalidation of the cached writeback mapping. Return true if the current 265 * mapping is valid, false otherwise. 266 */ 267 static bool 268 xfs_imap_valid( 269 struct iomap_writepage_ctx *wpc, 270 struct xfs_inode *ip, 271 loff_t offset) 272 { 273 if (offset < wpc->iomap.offset || 274 offset >= wpc->iomap.offset + wpc->iomap.length) 275 return false; 276 /* 277 * If this is a COW mapping, it is sufficient to check that the mapping 278 * covers the offset. Be careful to check this first because the caller 279 * can revalidate a COW mapping without updating the data seqno. 280 */ 281 if (wpc->iomap.flags & IOMAP_F_SHARED) 282 return true; 283 284 /* 285 * This is not a COW mapping. Check the sequence number of the data fork 286 * because concurrent changes could have invalidated the extent. Check 287 * the COW fork because concurrent changes since the last time we 288 * checked (and found nothing at this offset) could have added 289 * overlapping blocks. 290 */ 291 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) 292 return false; 293 if (xfs_inode_has_cow_data(ip) && 294 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 295 return false; 296 return true; 297 } 298 299 /* 300 * Pass in a dellalloc extent and convert it to real extents, return the real 301 * extent that maps offset_fsb in wpc->iomap. 302 * 303 * The current page is held locked so nothing could have removed the block 304 * backing offset_fsb, although it could have moved from the COW to the data 305 * fork by another thread. 306 */ 307 static int 308 xfs_convert_blocks( 309 struct iomap_writepage_ctx *wpc, 310 struct xfs_inode *ip, 311 int whichfork, 312 loff_t offset) 313 { 314 int error; 315 unsigned *seq; 316 317 if (whichfork == XFS_COW_FORK) 318 seq = &XFS_WPC(wpc)->cow_seq; 319 else 320 seq = &XFS_WPC(wpc)->data_seq; 321 322 /* 323 * Attempt to allocate whatever delalloc extent currently backs offset 324 * and put the result into wpc->iomap. Allocate in a loop because it 325 * may take several attempts to allocate real blocks for a contiguous 326 * delalloc extent if free space is sufficiently fragmented. 327 */ 328 do { 329 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 330 &wpc->iomap, seq); 331 if (error) 332 return error; 333 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 334 335 return 0; 336 } 337 338 static int 339 xfs_map_blocks( 340 struct iomap_writepage_ctx *wpc, 341 struct inode *inode, 342 loff_t offset) 343 { 344 struct xfs_inode *ip = XFS_I(inode); 345 struct xfs_mount *mp = ip->i_mount; 346 ssize_t count = i_blocksize(inode); 347 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 348 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 349 xfs_fileoff_t cow_fsb = NULLFILEOFF; 350 int whichfork = XFS_DATA_FORK; 351 struct xfs_bmbt_irec imap; 352 struct xfs_iext_cursor icur; 353 int retries = 0; 354 int error = 0; 355 356 if (XFS_FORCED_SHUTDOWN(mp)) 357 return -EIO; 358 359 /* 360 * COW fork blocks can overlap data fork blocks even if the blocks 361 * aren't shared. COW I/O always takes precedent, so we must always 362 * check for overlap on reflink inodes unless the mapping is already a 363 * COW one, or the COW fork hasn't changed from the last time we looked 364 * at it. 365 * 366 * It's safe to check the COW fork if_seq here without the ILOCK because 367 * we've indirectly protected against concurrent updates: writeback has 368 * the page locked, which prevents concurrent invalidations by reflink 369 * and directio and prevents concurrent buffered writes to the same 370 * page. Changes to if_seq always happen under i_lock, which protects 371 * against concurrent updates and provides a memory barrier on the way 372 * out that ensures that we always see the current value. 373 */ 374 if (xfs_imap_valid(wpc, ip, offset)) 375 return 0; 376 377 /* 378 * If we don't have a valid map, now it's time to get a new one for this 379 * offset. This will convert delayed allocations (including COW ones) 380 * into real extents. If we return without a valid map, it means we 381 * landed in a hole and we skip the block. 382 */ 383 retry: 384 xfs_ilock(ip, XFS_ILOCK_SHARED); 385 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 386 (ip->i_df.if_flags & XFS_IFEXTENTS)); 387 388 /* 389 * Check if this is offset is covered by a COW extents, and if yes use 390 * it directly instead of looking up anything in the data fork. 391 */ 392 if (xfs_inode_has_cow_data(ip) && 393 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 394 cow_fsb = imap.br_startoff; 395 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 396 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 397 xfs_iunlock(ip, XFS_ILOCK_SHARED); 398 399 whichfork = XFS_COW_FORK; 400 goto allocate_blocks; 401 } 402 403 /* 404 * No COW extent overlap. Revalidate now that we may have updated 405 * ->cow_seq. If the data mapping is still valid, we're done. 406 */ 407 if (xfs_imap_valid(wpc, ip, offset)) { 408 xfs_iunlock(ip, XFS_ILOCK_SHARED); 409 return 0; 410 } 411 412 /* 413 * If we don't have a valid map, now it's time to get a new one for this 414 * offset. This will convert delayed allocations (including COW ones) 415 * into real extents. 416 */ 417 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 418 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 419 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 420 xfs_iunlock(ip, XFS_ILOCK_SHARED); 421 422 /* landed in a hole or beyond EOF? */ 423 if (imap.br_startoff > offset_fsb) { 424 imap.br_blockcount = imap.br_startoff - offset_fsb; 425 imap.br_startoff = offset_fsb; 426 imap.br_startblock = HOLESTARTBLOCK; 427 imap.br_state = XFS_EXT_NORM; 428 } 429 430 /* 431 * Truncate to the next COW extent if there is one. This is the only 432 * opportunity to do this because we can skip COW fork lookups for the 433 * subsequent blocks in the mapping; however, the requirement to treat 434 * the COW range separately remains. 435 */ 436 if (cow_fsb != NULLFILEOFF && 437 cow_fsb < imap.br_startoff + imap.br_blockcount) 438 imap.br_blockcount = cow_fsb - imap.br_startoff; 439 440 /* got a delalloc extent? */ 441 if (imap.br_startblock != HOLESTARTBLOCK && 442 isnullstartblock(imap.br_startblock)) 443 goto allocate_blocks; 444 445 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); 446 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 447 return 0; 448 allocate_blocks: 449 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 450 if (error) { 451 /* 452 * If we failed to find the extent in the COW fork we might have 453 * raced with a COW to data fork conversion or truncate. 454 * Restart the lookup to catch the extent in the data fork for 455 * the former case, but prevent additional retries to avoid 456 * looping forever for the latter case. 457 */ 458 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 459 goto retry; 460 ASSERT(error != -EAGAIN); 461 return error; 462 } 463 464 /* 465 * Due to merging the return real extent might be larger than the 466 * original delalloc one. Trim the return extent to the next COW 467 * boundary again to force a re-lookup. 468 */ 469 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 470 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 471 472 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 473 wpc->iomap.length = cow_offset - wpc->iomap.offset; 474 } 475 476 ASSERT(wpc->iomap.offset <= offset); 477 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 478 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 479 return 0; 480 } 481 482 static int 483 xfs_prepare_ioend( 484 struct iomap_ioend *ioend, 485 int status) 486 { 487 unsigned int nofs_flag; 488 489 /* 490 * We can allocate memory here while doing writeback on behalf of 491 * memory reclaim. To avoid memory allocation deadlocks set the 492 * task-wide nofs context for the following operations. 493 */ 494 nofs_flag = memalloc_nofs_save(); 495 496 /* Convert CoW extents to regular */ 497 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 498 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 499 ioend->io_offset, ioend->io_size); 500 } 501 502 /* Reserve log space if we might write beyond the on-disk inode size. */ 503 if (!status && 504 ((ioend->io_flags & IOMAP_F_SHARED) || 505 ioend->io_type != IOMAP_UNWRITTEN) && 506 xfs_ioend_is_append(ioend) && 507 !ioend->io_private) 508 status = xfs_setfilesize_trans_alloc(ioend); 509 510 memalloc_nofs_restore(nofs_flag); 511 512 if (xfs_ioend_needs_workqueue(ioend)) 513 ioend->io_bio->bi_end_io = xfs_end_bio; 514 return status; 515 } 516 517 /* 518 * If the page has delalloc blocks on it, we need to punch them out before we 519 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 520 * inode that can trip up a later direct I/O read operation on the same region. 521 * 522 * We prevent this by truncating away the delalloc regions on the page. Because 523 * they are delalloc, we can do this without needing a transaction. Indeed - if 524 * we get ENOSPC errors, we have to be able to do this truncation without a 525 * transaction as there is no space left for block reservation (typically why we 526 * see a ENOSPC in writeback). 527 */ 528 static void 529 xfs_discard_page( 530 struct page *page) 531 { 532 struct inode *inode = page->mapping->host; 533 struct xfs_inode *ip = XFS_I(inode); 534 struct xfs_mount *mp = ip->i_mount; 535 loff_t offset = page_offset(page); 536 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); 537 int error; 538 539 if (XFS_FORCED_SHUTDOWN(mp)) 540 goto out_invalidate; 541 542 xfs_alert_ratelimited(mp, 543 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 544 page, ip->i_ino, offset); 545 546 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 547 PAGE_SIZE / i_blocksize(inode)); 548 if (error && !XFS_FORCED_SHUTDOWN(mp)) 549 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 550 out_invalidate: 551 iomap_invalidatepage(page, 0, PAGE_SIZE); 552 } 553 554 static const struct iomap_writeback_ops xfs_writeback_ops = { 555 .map_blocks = xfs_map_blocks, 556 .prepare_ioend = xfs_prepare_ioend, 557 .discard_page = xfs_discard_page, 558 }; 559 560 STATIC int 561 xfs_vm_writepage( 562 struct page *page, 563 struct writeback_control *wbc) 564 { 565 struct xfs_writepage_ctx wpc = { }; 566 567 return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops); 568 } 569 570 STATIC int 571 xfs_vm_writepages( 572 struct address_space *mapping, 573 struct writeback_control *wbc) 574 { 575 struct xfs_writepage_ctx wpc = { }; 576 577 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 578 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 579 } 580 581 STATIC int 582 xfs_dax_writepages( 583 struct address_space *mapping, 584 struct writeback_control *wbc) 585 { 586 struct xfs_inode *ip = XFS_I(mapping->host); 587 588 xfs_iflags_clear(ip, XFS_ITRUNCATED); 589 return dax_writeback_mapping_range(mapping, 590 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 591 } 592 593 STATIC sector_t 594 xfs_vm_bmap( 595 struct address_space *mapping, 596 sector_t block) 597 { 598 struct xfs_inode *ip = XFS_I(mapping->host); 599 600 trace_xfs_vm_bmap(ip); 601 602 /* 603 * The swap code (ab-)uses ->bmap to get a block mapping and then 604 * bypasses the file system for actual I/O. We really can't allow 605 * that on reflinks inodes, so we have to skip out here. And yes, 606 * 0 is the magic code for a bmap error. 607 * 608 * Since we don't pass back blockdev info, we can't return bmap 609 * information for rt files either. 610 */ 611 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 612 return 0; 613 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 614 } 615 616 STATIC int 617 xfs_vm_readpage( 618 struct file *unused, 619 struct page *page) 620 { 621 return iomap_readpage(page, &xfs_read_iomap_ops); 622 } 623 624 STATIC int 625 xfs_vm_readpages( 626 struct file *unused, 627 struct address_space *mapping, 628 struct list_head *pages, 629 unsigned nr_pages) 630 { 631 return iomap_readpages(mapping, pages, nr_pages, &xfs_read_iomap_ops); 632 } 633 634 static int 635 xfs_iomap_swapfile_activate( 636 struct swap_info_struct *sis, 637 struct file *swap_file, 638 sector_t *span) 639 { 640 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 641 return iomap_swapfile_activate(sis, swap_file, span, 642 &xfs_read_iomap_ops); 643 } 644 645 const struct address_space_operations xfs_address_space_operations = { 646 .readpage = xfs_vm_readpage, 647 .readpages = xfs_vm_readpages, 648 .writepage = xfs_vm_writepage, 649 .writepages = xfs_vm_writepages, 650 .set_page_dirty = iomap_set_page_dirty, 651 .releasepage = iomap_releasepage, 652 .invalidatepage = iomap_invalidatepage, 653 .bmap = xfs_vm_bmap, 654 .direct_IO = noop_direct_IO, 655 .migratepage = iomap_migrate_page, 656 .is_partially_uptodate = iomap_is_partially_uptodate, 657 .error_remove_page = generic_error_remove_page, 658 .swap_activate = xfs_iomap_swapfile_activate, 659 }; 660 661 const struct address_space_operations xfs_dax_aops = { 662 .writepages = xfs_dax_writepages, 663 .direct_IO = noop_direct_IO, 664 .set_page_dirty = noop_set_page_dirty, 665 .invalidatepage = noop_invalidatepage, 666 .swap_activate = xfs_iomap_swapfile_activate, 667 }; 668