xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision aac5987a)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /*
41  * structure owned by writepages passed to individual writepage calls
42  */
43 struct xfs_writepage_ctx {
44 	struct xfs_bmbt_irec    imap;
45 	bool			imap_valid;
46 	unsigned int		io_type;
47 	struct xfs_ioend	*ioend;
48 	sector_t		last_block;
49 };
50 
51 void
52 xfs_count_page_state(
53 	struct page		*page,
54 	int			*delalloc,
55 	int			*unwritten)
56 {
57 	struct buffer_head	*bh, *head;
58 
59 	*delalloc = *unwritten = 0;
60 
61 	bh = head = page_buffers(page);
62 	do {
63 		if (buffer_unwritten(bh))
64 			(*unwritten) = 1;
65 		else if (buffer_delay(bh))
66 			(*delalloc) = 1;
67 	} while ((bh = bh->b_this_page) != head);
68 }
69 
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 	struct inode		*inode)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 	struct xfs_mount	*mp = ip->i_mount;
76 
77 	if (XFS_IS_REALTIME_INODE(ip))
78 		return mp->m_rtdev_targp->bt_bdev;
79 	else
80 		return mp->m_ddev_targp->bt_bdev;
81 }
82 
83 /*
84  * We're now finished for good with this page.  Update the page state via the
85  * associated buffer_heads, paying attention to the start and end offsets that
86  * we need to process on the page.
87  *
88  * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89  * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90  * the page at all, as we may be racing with memory reclaim and it can free both
91  * the bufferhead chain and the page as it will see the page as clean and
92  * unused.
93  */
94 static void
95 xfs_finish_page_writeback(
96 	struct inode		*inode,
97 	struct bio_vec		*bvec,
98 	int			error)
99 {
100 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
101 	struct buffer_head	*head, *bh, *next;
102 	unsigned int		off = 0;
103 	unsigned int		bsize;
104 
105 	ASSERT(bvec->bv_offset < PAGE_SIZE);
106 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
107 	ASSERT(end < PAGE_SIZE);
108 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
109 
110 	bh = head = page_buffers(bvec->bv_page);
111 
112 	bsize = bh->b_size;
113 	do {
114 		next = bh->b_this_page;
115 		if (off < bvec->bv_offset)
116 			goto next_bh;
117 		if (off > end)
118 			break;
119 		bh->b_end_io(bh, !error);
120 next_bh:
121 		off += bsize;
122 	} while ((bh = next) != head);
123 }
124 
125 /*
126  * We're now finished for good with this ioend structure.  Update the page
127  * state, release holds on bios, and finally free up memory.  Do not use the
128  * ioend after this.
129  */
130 STATIC void
131 xfs_destroy_ioend(
132 	struct xfs_ioend	*ioend,
133 	int			error)
134 {
135 	struct inode		*inode = ioend->io_inode;
136 	struct bio		*last = ioend->io_bio;
137 	struct bio		*bio, *next;
138 
139 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 		struct bio_vec	*bvec;
141 		int		i;
142 
143 		/*
144 		 * For the last bio, bi_private points to the ioend, so we
145 		 * need to explicitly end the iteration here.
146 		 */
147 		if (bio == last)
148 			next = NULL;
149 		else
150 			next = bio->bi_private;
151 
152 		/* walk each page on bio, ending page IO on them */
153 		bio_for_each_segment_all(bvec, bio, i)
154 			xfs_finish_page_writeback(inode, bvec, error);
155 
156 		bio_put(bio);
157 	}
158 }
159 
160 /*
161  * Fast and loose check if this write could update the on-disk inode size.
162  */
163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
164 {
165 	return ioend->io_offset + ioend->io_size >
166 		XFS_I(ioend->io_inode)->i_d.di_size;
167 }
168 
169 STATIC int
170 xfs_setfilesize_trans_alloc(
171 	struct xfs_ioend	*ioend)
172 {
173 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
174 	struct xfs_trans	*tp;
175 	int			error;
176 
177 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
178 	if (error)
179 		return error;
180 
181 	ioend->io_append_trans = tp;
182 
183 	/*
184 	 * We may pass freeze protection with a transaction.  So tell lockdep
185 	 * we released it.
186 	 */
187 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
188 	/*
189 	 * We hand off the transaction to the completion thread now, so
190 	 * clear the flag here.
191 	 */
192 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
193 	return 0;
194 }
195 
196 /*
197  * Update on-disk file size now that data has been written to disk.
198  */
199 STATIC int
200 __xfs_setfilesize(
201 	struct xfs_inode	*ip,
202 	struct xfs_trans	*tp,
203 	xfs_off_t		offset,
204 	size_t			size)
205 {
206 	xfs_fsize_t		isize;
207 
208 	xfs_ilock(ip, XFS_ILOCK_EXCL);
209 	isize = xfs_new_eof(ip, offset + size);
210 	if (!isize) {
211 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
212 		xfs_trans_cancel(tp);
213 		return 0;
214 	}
215 
216 	trace_xfs_setfilesize(ip, offset, size);
217 
218 	ip->i_d.di_size = isize;
219 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221 
222 	return xfs_trans_commit(tp);
223 }
224 
225 int
226 xfs_setfilesize(
227 	struct xfs_inode	*ip,
228 	xfs_off_t		offset,
229 	size_t			size)
230 {
231 	struct xfs_mount	*mp = ip->i_mount;
232 	struct xfs_trans	*tp;
233 	int			error;
234 
235 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
236 	if (error)
237 		return error;
238 
239 	return __xfs_setfilesize(ip, tp, offset, size);
240 }
241 
242 STATIC int
243 xfs_setfilesize_ioend(
244 	struct xfs_ioend	*ioend,
245 	int			error)
246 {
247 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
248 	struct xfs_trans	*tp = ioend->io_append_trans;
249 
250 	/*
251 	 * The transaction may have been allocated in the I/O submission thread,
252 	 * thus we need to mark ourselves as being in a transaction manually.
253 	 * Similarly for freeze protection.
254 	 */
255 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
256 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
257 
258 	/* we abort the update if there was an IO error */
259 	if (error) {
260 		xfs_trans_cancel(tp);
261 		return error;
262 	}
263 
264 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
265 }
266 
267 /*
268  * IO write completion.
269  */
270 STATIC void
271 xfs_end_io(
272 	struct work_struct *work)
273 {
274 	struct xfs_ioend	*ioend =
275 		container_of(work, struct xfs_ioend, io_work);
276 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
277 	int			error = ioend->io_bio->bi_error;
278 
279 	/*
280 	 * Set an error if the mount has shut down and proceed with end I/O
281 	 * processing so it can perform whatever cleanups are necessary.
282 	 */
283 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
284 		error = -EIO;
285 
286 	/*
287 	 * For a CoW extent, we need to move the mapping from the CoW fork
288 	 * to the data fork.  If instead an error happened, just dump the
289 	 * new blocks.
290 	 */
291 	if (ioend->io_type == XFS_IO_COW) {
292 		if (error)
293 			goto done;
294 		if (ioend->io_bio->bi_error) {
295 			error = xfs_reflink_cancel_cow_range(ip,
296 					ioend->io_offset, ioend->io_size);
297 			goto done;
298 		}
299 		error = xfs_reflink_end_cow(ip, ioend->io_offset,
300 				ioend->io_size);
301 		if (error)
302 			goto done;
303 	}
304 
305 	/*
306 	 * For unwritten extents we need to issue transactions to convert a
307 	 * range to normal written extens after the data I/O has finished.
308 	 * Detecting and handling completion IO errors is done individually
309 	 * for each case as different cleanup operations need to be performed
310 	 * on error.
311 	 */
312 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
313 		if (error)
314 			goto done;
315 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
316 						  ioend->io_size);
317 	} else if (ioend->io_append_trans) {
318 		error = xfs_setfilesize_ioend(ioend, error);
319 	} else {
320 		ASSERT(!xfs_ioend_is_append(ioend) ||
321 		       ioend->io_type == XFS_IO_COW);
322 	}
323 
324 done:
325 	xfs_destroy_ioend(ioend, error);
326 }
327 
328 STATIC void
329 xfs_end_bio(
330 	struct bio		*bio)
331 {
332 	struct xfs_ioend	*ioend = bio->bi_private;
333 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
334 
335 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
336 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
337 	else if (ioend->io_append_trans)
338 		queue_work(mp->m_data_workqueue, &ioend->io_work);
339 	else
340 		xfs_destroy_ioend(ioend, bio->bi_error);
341 }
342 
343 STATIC int
344 xfs_map_blocks(
345 	struct inode		*inode,
346 	loff_t			offset,
347 	struct xfs_bmbt_irec	*imap,
348 	int			type)
349 {
350 	struct xfs_inode	*ip = XFS_I(inode);
351 	struct xfs_mount	*mp = ip->i_mount;
352 	ssize_t			count = i_blocksize(inode);
353 	xfs_fileoff_t		offset_fsb, end_fsb;
354 	int			error = 0;
355 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
356 	int			nimaps = 1;
357 
358 	if (XFS_FORCED_SHUTDOWN(mp))
359 		return -EIO;
360 
361 	ASSERT(type != XFS_IO_COW);
362 	if (type == XFS_IO_UNWRITTEN)
363 		bmapi_flags |= XFS_BMAPI_IGSTATE;
364 
365 	xfs_ilock(ip, XFS_ILOCK_SHARED);
366 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
367 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
368 	ASSERT(offset <= mp->m_super->s_maxbytes);
369 
370 	if (offset + count > mp->m_super->s_maxbytes)
371 		count = mp->m_super->s_maxbytes - offset;
372 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
373 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
374 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
375 				imap, &nimaps, bmapi_flags);
376 	/*
377 	 * Truncate an overwrite extent if there's a pending CoW
378 	 * reservation before the end of this extent.  This forces us
379 	 * to come back to writepage to take care of the CoW.
380 	 */
381 	if (nimaps && type == XFS_IO_OVERWRITE)
382 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
383 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
384 
385 	if (error)
386 		return error;
387 
388 	if (type == XFS_IO_DELALLOC &&
389 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
390 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
391 				imap);
392 		if (!error)
393 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
394 		return error;
395 	}
396 
397 #ifdef DEBUG
398 	if (type == XFS_IO_UNWRITTEN) {
399 		ASSERT(nimaps);
400 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
401 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
402 	}
403 #endif
404 	if (nimaps)
405 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
406 	return 0;
407 }
408 
409 STATIC bool
410 xfs_imap_valid(
411 	struct inode		*inode,
412 	struct xfs_bmbt_irec	*imap,
413 	xfs_off_t		offset)
414 {
415 	offset >>= inode->i_blkbits;
416 
417 	return offset >= imap->br_startoff &&
418 		offset < imap->br_startoff + imap->br_blockcount;
419 }
420 
421 STATIC void
422 xfs_start_buffer_writeback(
423 	struct buffer_head	*bh)
424 {
425 	ASSERT(buffer_mapped(bh));
426 	ASSERT(buffer_locked(bh));
427 	ASSERT(!buffer_delay(bh));
428 	ASSERT(!buffer_unwritten(bh));
429 
430 	mark_buffer_async_write(bh);
431 	set_buffer_uptodate(bh);
432 	clear_buffer_dirty(bh);
433 }
434 
435 STATIC void
436 xfs_start_page_writeback(
437 	struct page		*page,
438 	int			clear_dirty)
439 {
440 	ASSERT(PageLocked(page));
441 	ASSERT(!PageWriteback(page));
442 
443 	/*
444 	 * if the page was not fully cleaned, we need to ensure that the higher
445 	 * layers come back to it correctly. That means we need to keep the page
446 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
447 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
448 	 * write this page in this writeback sweep will be made.
449 	 */
450 	if (clear_dirty) {
451 		clear_page_dirty_for_io(page);
452 		set_page_writeback(page);
453 	} else
454 		set_page_writeback_keepwrite(page);
455 
456 	unlock_page(page);
457 }
458 
459 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
460 {
461 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
462 }
463 
464 /*
465  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
466  * it, and we submit that bio. The ioend may be used for multiple bio
467  * submissions, so we only want to allocate an append transaction for the ioend
468  * once. In the case of multiple bio submission, each bio will take an IO
469  * reference to the ioend to ensure that the ioend completion is only done once
470  * all bios have been submitted and the ioend is really done.
471  *
472  * If @fail is non-zero, it means that we have a situation where some part of
473  * the submission process has failed after we have marked paged for writeback
474  * and unlocked them. In this situation, we need to fail the bio and ioend
475  * rather than submit it to IO. This typically only happens on a filesystem
476  * shutdown.
477  */
478 STATIC int
479 xfs_submit_ioend(
480 	struct writeback_control *wbc,
481 	struct xfs_ioend	*ioend,
482 	int			status)
483 {
484 	/* Convert CoW extents to regular */
485 	if (!status && ioend->io_type == XFS_IO_COW) {
486 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
487 				ioend->io_offset, ioend->io_size);
488 	}
489 
490 	/* Reserve log space if we might write beyond the on-disk inode size. */
491 	if (!status &&
492 	    ioend->io_type != XFS_IO_UNWRITTEN &&
493 	    xfs_ioend_is_append(ioend) &&
494 	    !ioend->io_append_trans)
495 		status = xfs_setfilesize_trans_alloc(ioend);
496 
497 	ioend->io_bio->bi_private = ioend;
498 	ioend->io_bio->bi_end_io = xfs_end_bio;
499 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
500 
501 	/*
502 	 * If we are failing the IO now, just mark the ioend with an
503 	 * error and finish it. This will run IO completion immediately
504 	 * as there is only one reference to the ioend at this point in
505 	 * time.
506 	 */
507 	if (status) {
508 		ioend->io_bio->bi_error = status;
509 		bio_endio(ioend->io_bio);
510 		return status;
511 	}
512 
513 	submit_bio(ioend->io_bio);
514 	return 0;
515 }
516 
517 static void
518 xfs_init_bio_from_bh(
519 	struct bio		*bio,
520 	struct buffer_head	*bh)
521 {
522 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
523 	bio->bi_bdev = bh->b_bdev;
524 }
525 
526 static struct xfs_ioend *
527 xfs_alloc_ioend(
528 	struct inode		*inode,
529 	unsigned int		type,
530 	xfs_off_t		offset,
531 	struct buffer_head	*bh)
532 {
533 	struct xfs_ioend	*ioend;
534 	struct bio		*bio;
535 
536 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
537 	xfs_init_bio_from_bh(bio, bh);
538 
539 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
540 	INIT_LIST_HEAD(&ioend->io_list);
541 	ioend->io_type = type;
542 	ioend->io_inode = inode;
543 	ioend->io_size = 0;
544 	ioend->io_offset = offset;
545 	INIT_WORK(&ioend->io_work, xfs_end_io);
546 	ioend->io_append_trans = NULL;
547 	ioend->io_bio = bio;
548 	return ioend;
549 }
550 
551 /*
552  * Allocate a new bio, and chain the old bio to the new one.
553  *
554  * Note that we have to do perform the chaining in this unintuitive order
555  * so that the bi_private linkage is set up in the right direction for the
556  * traversal in xfs_destroy_ioend().
557  */
558 static void
559 xfs_chain_bio(
560 	struct xfs_ioend	*ioend,
561 	struct writeback_control *wbc,
562 	struct buffer_head	*bh)
563 {
564 	struct bio *new;
565 
566 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
567 	xfs_init_bio_from_bh(new, bh);
568 
569 	bio_chain(ioend->io_bio, new);
570 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
571 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
572 	submit_bio(ioend->io_bio);
573 	ioend->io_bio = new;
574 }
575 
576 /*
577  * Test to see if we've been building up a completion structure for
578  * earlier buffers -- if so, we try to append to this ioend if we
579  * can, otherwise we finish off any current ioend and start another.
580  * Return the ioend we finished off so that the caller can submit it
581  * once it has finished processing the dirty page.
582  */
583 STATIC void
584 xfs_add_to_ioend(
585 	struct inode		*inode,
586 	struct buffer_head	*bh,
587 	xfs_off_t		offset,
588 	struct xfs_writepage_ctx *wpc,
589 	struct writeback_control *wbc,
590 	struct list_head	*iolist)
591 {
592 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
593 	    bh->b_blocknr != wpc->last_block + 1 ||
594 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
595 		if (wpc->ioend)
596 			list_add(&wpc->ioend->io_list, iolist);
597 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
598 	}
599 
600 	/*
601 	 * If the buffer doesn't fit into the bio we need to allocate a new
602 	 * one.  This shouldn't happen more than once for a given buffer.
603 	 */
604 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
605 		xfs_chain_bio(wpc->ioend, wbc, bh);
606 
607 	wpc->ioend->io_size += bh->b_size;
608 	wpc->last_block = bh->b_blocknr;
609 	xfs_start_buffer_writeback(bh);
610 }
611 
612 STATIC void
613 xfs_map_buffer(
614 	struct inode		*inode,
615 	struct buffer_head	*bh,
616 	struct xfs_bmbt_irec	*imap,
617 	xfs_off_t		offset)
618 {
619 	sector_t		bn;
620 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
621 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
622 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
623 
624 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626 
627 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
628 	      ((offset - iomap_offset) >> inode->i_blkbits);
629 
630 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
631 
632 	bh->b_blocknr = bn;
633 	set_buffer_mapped(bh);
634 }
635 
636 STATIC void
637 xfs_map_at_offset(
638 	struct inode		*inode,
639 	struct buffer_head	*bh,
640 	struct xfs_bmbt_irec	*imap,
641 	xfs_off_t		offset)
642 {
643 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
644 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
645 
646 	xfs_map_buffer(inode, bh, imap, offset);
647 	set_buffer_mapped(bh);
648 	clear_buffer_delay(bh);
649 	clear_buffer_unwritten(bh);
650 }
651 
652 /*
653  * Test if a given page contains at least one buffer of a given @type.
654  * If @check_all_buffers is true, then we walk all the buffers in the page to
655  * try to find one of the type passed in. If it is not set, then the caller only
656  * needs to check the first buffer on the page for a match.
657  */
658 STATIC bool
659 xfs_check_page_type(
660 	struct page		*page,
661 	unsigned int		type,
662 	bool			check_all_buffers)
663 {
664 	struct buffer_head	*bh;
665 	struct buffer_head	*head;
666 
667 	if (PageWriteback(page))
668 		return false;
669 	if (!page->mapping)
670 		return false;
671 	if (!page_has_buffers(page))
672 		return false;
673 
674 	bh = head = page_buffers(page);
675 	do {
676 		if (buffer_unwritten(bh)) {
677 			if (type == XFS_IO_UNWRITTEN)
678 				return true;
679 		} else if (buffer_delay(bh)) {
680 			if (type == XFS_IO_DELALLOC)
681 				return true;
682 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
683 			if (type == XFS_IO_OVERWRITE)
684 				return true;
685 		}
686 
687 		/* If we are only checking the first buffer, we are done now. */
688 		if (!check_all_buffers)
689 			break;
690 	} while ((bh = bh->b_this_page) != head);
691 
692 	return false;
693 }
694 
695 STATIC void
696 xfs_vm_invalidatepage(
697 	struct page		*page,
698 	unsigned int		offset,
699 	unsigned int		length)
700 {
701 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
702 				 length);
703 	block_invalidatepage(page, offset, length);
704 }
705 
706 /*
707  * If the page has delalloc buffers on it, we need to punch them out before we
708  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710  * is done on that same region - the delalloc extent is returned when none is
711  * supposed to be there.
712  *
713  * We prevent this by truncating away the delalloc regions on the page before
714  * invalidating it. Because they are delalloc, we can do this without needing a
715  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716  * truncation without a transaction as there is no space left for block
717  * reservation (typically why we see a ENOSPC in writeback).
718  *
719  * This is not a performance critical path, so for now just do the punching a
720  * buffer head at a time.
721  */
722 STATIC void
723 xfs_aops_discard_page(
724 	struct page		*page)
725 {
726 	struct inode		*inode = page->mapping->host;
727 	struct xfs_inode	*ip = XFS_I(inode);
728 	struct buffer_head	*bh, *head;
729 	loff_t			offset = page_offset(page);
730 
731 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
732 		goto out_invalidate;
733 
734 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
735 		goto out_invalidate;
736 
737 	xfs_alert(ip->i_mount,
738 		"page discard on page %p, inode 0x%llx, offset %llu.",
739 			page, ip->i_ino, offset);
740 
741 	xfs_ilock(ip, XFS_ILOCK_EXCL);
742 	bh = head = page_buffers(page);
743 	do {
744 		int		error;
745 		xfs_fileoff_t	start_fsb;
746 
747 		if (!buffer_delay(bh))
748 			goto next_buffer;
749 
750 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
751 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
752 		if (error) {
753 			/* something screwed, just bail */
754 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
755 				xfs_alert(ip->i_mount,
756 			"page discard unable to remove delalloc mapping.");
757 			}
758 			break;
759 		}
760 next_buffer:
761 		offset += i_blocksize(inode);
762 
763 	} while ((bh = bh->b_this_page) != head);
764 
765 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
766 out_invalidate:
767 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
768 	return;
769 }
770 
771 static int
772 xfs_map_cow(
773 	struct xfs_writepage_ctx *wpc,
774 	struct inode		*inode,
775 	loff_t			offset,
776 	unsigned int		*new_type)
777 {
778 	struct xfs_inode	*ip = XFS_I(inode);
779 	struct xfs_bmbt_irec	imap;
780 	bool			is_cow = false;
781 	int			error;
782 
783 	/*
784 	 * If we already have a valid COW mapping keep using it.
785 	 */
786 	if (wpc->io_type == XFS_IO_COW) {
787 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
788 		if (wpc->imap_valid) {
789 			*new_type = XFS_IO_COW;
790 			return 0;
791 		}
792 	}
793 
794 	/*
795 	 * Else we need to check if there is a COW mapping at this offset.
796 	 */
797 	xfs_ilock(ip, XFS_ILOCK_SHARED);
798 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
799 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
800 
801 	if (!is_cow)
802 		return 0;
803 
804 	/*
805 	 * And if the COW mapping has a delayed extent here we need to
806 	 * allocate real space for it now.
807 	 */
808 	if (isnullstartblock(imap.br_startblock)) {
809 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
810 				&imap);
811 		if (error)
812 			return error;
813 	}
814 
815 	wpc->io_type = *new_type = XFS_IO_COW;
816 	wpc->imap_valid = true;
817 	wpc->imap = imap;
818 	return 0;
819 }
820 
821 /*
822  * We implement an immediate ioend submission policy here to avoid needing to
823  * chain multiple ioends and hence nest mempool allocations which can violate
824  * forward progress guarantees we need to provide. The current ioend we are
825  * adding buffers to is cached on the writepage context, and if the new buffer
826  * does not append to the cached ioend it will create a new ioend and cache that
827  * instead.
828  *
829  * If a new ioend is created and cached, the old ioend is returned and queued
830  * locally for submission once the entire page is processed or an error has been
831  * detected.  While ioends are submitted immediately after they are completed,
832  * batching optimisations are provided by higher level block plugging.
833  *
834  * At the end of a writeback pass, there will be a cached ioend remaining on the
835  * writepage context that the caller will need to submit.
836  */
837 static int
838 xfs_writepage_map(
839 	struct xfs_writepage_ctx *wpc,
840 	struct writeback_control *wbc,
841 	struct inode		*inode,
842 	struct page		*page,
843 	loff_t			offset,
844 	__uint64_t              end_offset)
845 {
846 	LIST_HEAD(submit_list);
847 	struct xfs_ioend	*ioend, *next;
848 	struct buffer_head	*bh, *head;
849 	ssize_t			len = i_blocksize(inode);
850 	int			error = 0;
851 	int			count = 0;
852 	int			uptodate = 1;
853 	unsigned int		new_type;
854 
855 	bh = head = page_buffers(page);
856 	offset = page_offset(page);
857 	do {
858 		if (offset >= end_offset)
859 			break;
860 		if (!buffer_uptodate(bh))
861 			uptodate = 0;
862 
863 		/*
864 		 * set_page_dirty dirties all buffers in a page, independent
865 		 * of their state.  The dirty state however is entirely
866 		 * meaningless for holes (!mapped && uptodate), so skip
867 		 * buffers covering holes here.
868 		 */
869 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
870 			wpc->imap_valid = false;
871 			continue;
872 		}
873 
874 		if (buffer_unwritten(bh))
875 			new_type = XFS_IO_UNWRITTEN;
876 		else if (buffer_delay(bh))
877 			new_type = XFS_IO_DELALLOC;
878 		else if (buffer_uptodate(bh))
879 			new_type = XFS_IO_OVERWRITE;
880 		else {
881 			if (PageUptodate(page))
882 				ASSERT(buffer_mapped(bh));
883 			/*
884 			 * This buffer is not uptodate and will not be
885 			 * written to disk.  Ensure that we will put any
886 			 * subsequent writeable buffers into a new
887 			 * ioend.
888 			 */
889 			wpc->imap_valid = false;
890 			continue;
891 		}
892 
893 		if (xfs_is_reflink_inode(XFS_I(inode))) {
894 			error = xfs_map_cow(wpc, inode, offset, &new_type);
895 			if (error)
896 				goto out;
897 		}
898 
899 		if (wpc->io_type != new_type) {
900 			wpc->io_type = new_type;
901 			wpc->imap_valid = false;
902 		}
903 
904 		if (wpc->imap_valid)
905 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
906 							 offset);
907 		if (!wpc->imap_valid) {
908 			error = xfs_map_blocks(inode, offset, &wpc->imap,
909 					     wpc->io_type);
910 			if (error)
911 				goto out;
912 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
913 							 offset);
914 		}
915 		if (wpc->imap_valid) {
916 			lock_buffer(bh);
917 			if (wpc->io_type != XFS_IO_OVERWRITE)
918 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
919 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
920 			count++;
921 		}
922 
923 	} while (offset += len, ((bh = bh->b_this_page) != head));
924 
925 	if (uptodate && bh == head)
926 		SetPageUptodate(page);
927 
928 	ASSERT(wpc->ioend || list_empty(&submit_list));
929 
930 out:
931 	/*
932 	 * On error, we have to fail the ioend here because we have locked
933 	 * buffers in the ioend. If we don't do this, we'll deadlock
934 	 * invalidating the page as that tries to lock the buffers on the page.
935 	 * Also, because we may have set pages under writeback, we have to make
936 	 * sure we run IO completion to mark the error state of the IO
937 	 * appropriately, so we can't cancel the ioend directly here. That means
938 	 * we have to mark this page as under writeback if we included any
939 	 * buffers from it in the ioend chain so that completion treats it
940 	 * correctly.
941 	 *
942 	 * If we didn't include the page in the ioend, the on error we can
943 	 * simply discard and unlock it as there are no other users of the page
944 	 * or it's buffers right now. The caller will still need to trigger
945 	 * submission of outstanding ioends on the writepage context so they are
946 	 * treated correctly on error.
947 	 */
948 	if (count) {
949 		xfs_start_page_writeback(page, !error);
950 
951 		/*
952 		 * Preserve the original error if there was one, otherwise catch
953 		 * submission errors here and propagate into subsequent ioend
954 		 * submissions.
955 		 */
956 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
957 			int error2;
958 
959 			list_del_init(&ioend->io_list);
960 			error2 = xfs_submit_ioend(wbc, ioend, error);
961 			if (error2 && !error)
962 				error = error2;
963 		}
964 	} else if (error) {
965 		xfs_aops_discard_page(page);
966 		ClearPageUptodate(page);
967 		unlock_page(page);
968 	} else {
969 		/*
970 		 * We can end up here with no error and nothing to write if we
971 		 * race with a partial page truncate on a sub-page block sized
972 		 * filesystem. In that case we need to mark the page clean.
973 		 */
974 		xfs_start_page_writeback(page, 1);
975 		end_page_writeback(page);
976 	}
977 
978 	mapping_set_error(page->mapping, error);
979 	return error;
980 }
981 
982 /*
983  * Write out a dirty page.
984  *
985  * For delalloc space on the page we need to allocate space and flush it.
986  * For unwritten space on the page we need to start the conversion to
987  * regular allocated space.
988  * For any other dirty buffer heads on the page we should flush them.
989  */
990 STATIC int
991 xfs_do_writepage(
992 	struct page		*page,
993 	struct writeback_control *wbc,
994 	void			*data)
995 {
996 	struct xfs_writepage_ctx *wpc = data;
997 	struct inode		*inode = page->mapping->host;
998 	loff_t			offset;
999 	__uint64_t              end_offset;
1000 	pgoff_t                 end_index;
1001 
1002 	trace_xfs_writepage(inode, page, 0, 0);
1003 
1004 	ASSERT(page_has_buffers(page));
1005 
1006 	/*
1007 	 * Refuse to write the page out if we are called from reclaim context.
1008 	 *
1009 	 * This avoids stack overflows when called from deeply used stacks in
1010 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1011 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1012 	 *
1013 	 * This should never happen except in the case of a VM regression so
1014 	 * warn about it.
1015 	 */
1016 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 			PF_MEMALLOC))
1018 		goto redirty;
1019 
1020 	/*
1021 	 * Given that we do not allow direct reclaim to call us, we should
1022 	 * never be called while in a filesystem transaction.
1023 	 */
1024 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1025 		goto redirty;
1026 
1027 	/*
1028 	 * Is this page beyond the end of the file?
1029 	 *
1030 	 * The page index is less than the end_index, adjust the end_offset
1031 	 * to the highest offset that this page should represent.
1032 	 * -----------------------------------------------------
1033 	 * |			file mapping	       | <EOF> |
1034 	 * -----------------------------------------------------
1035 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1036 	 * ^--------------------------------^----------|--------
1037 	 * |     desired writeback range    |      see else    |
1038 	 * ---------------------------------^------------------|
1039 	 */
1040 	offset = i_size_read(inode);
1041 	end_index = offset >> PAGE_SHIFT;
1042 	if (page->index < end_index)
1043 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1044 	else {
1045 		/*
1046 		 * Check whether the page to write out is beyond or straddles
1047 		 * i_size or not.
1048 		 * -------------------------------------------------------
1049 		 * |		file mapping		        | <EOF>  |
1050 		 * -------------------------------------------------------
1051 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1052 		 * ^--------------------------------^-----------|---------
1053 		 * |				    |      Straddles     |
1054 		 * ---------------------------------^-----------|--------|
1055 		 */
1056 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1057 
1058 		/*
1059 		 * Skip the page if it is fully outside i_size, e.g. due to a
1060 		 * truncate operation that is in progress. We must redirty the
1061 		 * page so that reclaim stops reclaiming it. Otherwise
1062 		 * xfs_vm_releasepage() is called on it and gets confused.
1063 		 *
1064 		 * Note that the end_index is unsigned long, it would overflow
1065 		 * if the given offset is greater than 16TB on 32-bit system
1066 		 * and if we do check the page is fully outside i_size or not
1067 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 		 * will be evaluated to 0.  Hence this page will be redirtied
1069 		 * and be written out repeatedly which would result in an
1070 		 * infinite loop, the user program that perform this operation
1071 		 * will hang.  Instead, we can verify this situation by checking
1072 		 * if the page to write is totally beyond the i_size or if it's
1073 		 * offset is just equal to the EOF.
1074 		 */
1075 		if (page->index > end_index ||
1076 		    (page->index == end_index && offset_into_page == 0))
1077 			goto redirty;
1078 
1079 		/*
1080 		 * The page straddles i_size.  It must be zeroed out on each
1081 		 * and every writepage invocation because it may be mmapped.
1082 		 * "A file is mapped in multiples of the page size.  For a file
1083 		 * that is not a multiple of the page size, the remaining
1084 		 * memory is zeroed when mapped, and writes to that region are
1085 		 * not written out to the file."
1086 		 */
1087 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1088 
1089 		/* Adjust the end_offset to the end of file */
1090 		end_offset = offset;
1091 	}
1092 
1093 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1094 
1095 redirty:
1096 	redirty_page_for_writepage(wbc, page);
1097 	unlock_page(page);
1098 	return 0;
1099 }
1100 
1101 STATIC int
1102 xfs_vm_writepage(
1103 	struct page		*page,
1104 	struct writeback_control *wbc)
1105 {
1106 	struct xfs_writepage_ctx wpc = {
1107 		.io_type = XFS_IO_INVALID,
1108 	};
1109 	int			ret;
1110 
1111 	ret = xfs_do_writepage(page, wbc, &wpc);
1112 	if (wpc.ioend)
1113 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1114 	return ret;
1115 }
1116 
1117 STATIC int
1118 xfs_vm_writepages(
1119 	struct address_space	*mapping,
1120 	struct writeback_control *wbc)
1121 {
1122 	struct xfs_writepage_ctx wpc = {
1123 		.io_type = XFS_IO_INVALID,
1124 	};
1125 	int			ret;
1126 
1127 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1128 	if (dax_mapping(mapping))
1129 		return dax_writeback_mapping_range(mapping,
1130 				xfs_find_bdev_for_inode(mapping->host), wbc);
1131 
1132 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1133 	if (wpc.ioend)
1134 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 	return ret;
1136 }
1137 
1138 /*
1139  * Called to move a page into cleanable state - and from there
1140  * to be released. The page should already be clean. We always
1141  * have buffer heads in this call.
1142  *
1143  * Returns 1 if the page is ok to release, 0 otherwise.
1144  */
1145 STATIC int
1146 xfs_vm_releasepage(
1147 	struct page		*page,
1148 	gfp_t			gfp_mask)
1149 {
1150 	int			delalloc, unwritten;
1151 
1152 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1153 
1154 	/*
1155 	 * mm accommodates an old ext3 case where clean pages might not have had
1156 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 	 * ->releasepage() via shrink_active_list(). Conversely,
1158 	 * block_invalidatepage() can send pages that are still marked dirty
1159 	 * but otherwise have invalidated buffers.
1160 	 *
1161 	 * We want to release the latter to avoid unnecessary buildup of the
1162 	 * LRU, skip the former and warn if we've left any lingering
1163 	 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1164 	 * or unwritten buffers and warn if the page is not dirty. Otherwise
1165 	 * try to release the buffers.
1166 	 */
1167 	xfs_count_page_state(page, &delalloc, &unwritten);
1168 
1169 	if (delalloc) {
1170 		WARN_ON_ONCE(!PageDirty(page));
1171 		return 0;
1172 	}
1173 	if (unwritten) {
1174 		WARN_ON_ONCE(!PageDirty(page));
1175 		return 0;
1176 	}
1177 
1178 	return try_to_free_buffers(page);
1179 }
1180 
1181 /*
1182  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1183  * is, so that we can avoid repeated get_blocks calls.
1184  *
1185  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1186  * for blocks beyond EOF must be marked new so that sub block regions can be
1187  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1188  * was just allocated or is unwritten, otherwise the callers would overwrite
1189  * existing data with zeros. Hence we have to split the mapping into a range up
1190  * to and including EOF, and a second mapping for beyond EOF.
1191  */
1192 static void
1193 xfs_map_trim_size(
1194 	struct inode		*inode,
1195 	sector_t		iblock,
1196 	struct buffer_head	*bh_result,
1197 	struct xfs_bmbt_irec	*imap,
1198 	xfs_off_t		offset,
1199 	ssize_t			size)
1200 {
1201 	xfs_off_t		mapping_size;
1202 
1203 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1204 	mapping_size <<= inode->i_blkbits;
1205 
1206 	ASSERT(mapping_size > 0);
1207 	if (mapping_size > size)
1208 		mapping_size = size;
1209 	if (offset < i_size_read(inode) &&
1210 	    offset + mapping_size >= i_size_read(inode)) {
1211 		/* limit mapping to block that spans EOF */
1212 		mapping_size = roundup_64(i_size_read(inode) - offset,
1213 					  i_blocksize(inode));
1214 	}
1215 	if (mapping_size > LONG_MAX)
1216 		mapping_size = LONG_MAX;
1217 
1218 	bh_result->b_size = mapping_size;
1219 }
1220 
1221 static int
1222 xfs_get_blocks(
1223 	struct inode		*inode,
1224 	sector_t		iblock,
1225 	struct buffer_head	*bh_result,
1226 	int			create)
1227 {
1228 	struct xfs_inode	*ip = XFS_I(inode);
1229 	struct xfs_mount	*mp = ip->i_mount;
1230 	xfs_fileoff_t		offset_fsb, end_fsb;
1231 	int			error = 0;
1232 	int			lockmode = 0;
1233 	struct xfs_bmbt_irec	imap;
1234 	int			nimaps = 1;
1235 	xfs_off_t		offset;
1236 	ssize_t			size;
1237 
1238 	BUG_ON(create);
1239 
1240 	if (XFS_FORCED_SHUTDOWN(mp))
1241 		return -EIO;
1242 
1243 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1244 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1245 	size = bh_result->b_size;
1246 
1247 	if (offset >= i_size_read(inode))
1248 		return 0;
1249 
1250 	/*
1251 	 * Direct I/O is usually done on preallocated files, so try getting
1252 	 * a block mapping without an exclusive lock first.
1253 	 */
1254 	lockmode = xfs_ilock_data_map_shared(ip);
1255 
1256 	ASSERT(offset <= mp->m_super->s_maxbytes);
1257 	if (offset + size > mp->m_super->s_maxbytes)
1258 		size = mp->m_super->s_maxbytes - offset;
1259 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1260 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1261 
1262 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1263 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1264 	if (error)
1265 		goto out_unlock;
1266 
1267 	if (nimaps) {
1268 		trace_xfs_get_blocks_found(ip, offset, size,
1269 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1270 						   : XFS_IO_OVERWRITE, &imap);
1271 		xfs_iunlock(ip, lockmode);
1272 	} else {
1273 		trace_xfs_get_blocks_notfound(ip, offset, size);
1274 		goto out_unlock;
1275 	}
1276 
1277 	/* trim mapping down to size requested */
1278 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1279 
1280 	/*
1281 	 * For unwritten extents do not report a disk address in the buffered
1282 	 * read case (treat as if we're reading into a hole).
1283 	 */
1284 	if (imap.br_startblock != HOLESTARTBLOCK &&
1285 	    imap.br_startblock != DELAYSTARTBLOCK &&
1286 	    !ISUNWRITTEN(&imap))
1287 		xfs_map_buffer(inode, bh_result, &imap, offset);
1288 
1289 	/*
1290 	 * If this is a realtime file, data may be on a different device.
1291 	 * to that pointed to from the buffer_head b_bdev currently.
1292 	 */
1293 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1294 	return 0;
1295 
1296 out_unlock:
1297 	xfs_iunlock(ip, lockmode);
1298 	return error;
1299 }
1300 
1301 STATIC ssize_t
1302 xfs_vm_direct_IO(
1303 	struct kiocb		*iocb,
1304 	struct iov_iter		*iter)
1305 {
1306 	/*
1307 	 * We just need the method present so that open/fcntl allow direct I/O.
1308 	 */
1309 	return -EINVAL;
1310 }
1311 
1312 STATIC sector_t
1313 xfs_vm_bmap(
1314 	struct address_space	*mapping,
1315 	sector_t		block)
1316 {
1317 	struct inode		*inode = (struct inode *)mapping->host;
1318 	struct xfs_inode	*ip = XFS_I(inode);
1319 
1320 	trace_xfs_vm_bmap(XFS_I(inode));
1321 
1322 	/*
1323 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1324 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1325 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1326 	 * 0 is the magic code for a bmap error..
1327 	 */
1328 	if (xfs_is_reflink_inode(ip))
1329 		return 0;
1330 
1331 	filemap_write_and_wait(mapping);
1332 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1333 }
1334 
1335 STATIC int
1336 xfs_vm_readpage(
1337 	struct file		*unused,
1338 	struct page		*page)
1339 {
1340 	trace_xfs_vm_readpage(page->mapping->host, 1);
1341 	return mpage_readpage(page, xfs_get_blocks);
1342 }
1343 
1344 STATIC int
1345 xfs_vm_readpages(
1346 	struct file		*unused,
1347 	struct address_space	*mapping,
1348 	struct list_head	*pages,
1349 	unsigned		nr_pages)
1350 {
1351 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1352 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1353 }
1354 
1355 /*
1356  * This is basically a copy of __set_page_dirty_buffers() with one
1357  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1358  * dirty, we'll never be able to clean them because we don't write buffers
1359  * beyond EOF, and that means we can't invalidate pages that span EOF
1360  * that have been marked dirty. Further, the dirty state can leak into
1361  * the file interior if the file is extended, resulting in all sorts of
1362  * bad things happening as the state does not match the underlying data.
1363  *
1364  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1365  * this only exist because of bufferheads and how the generic code manages them.
1366  */
1367 STATIC int
1368 xfs_vm_set_page_dirty(
1369 	struct page		*page)
1370 {
1371 	struct address_space	*mapping = page->mapping;
1372 	struct inode		*inode = mapping->host;
1373 	loff_t			end_offset;
1374 	loff_t			offset;
1375 	int			newly_dirty;
1376 
1377 	if (unlikely(!mapping))
1378 		return !TestSetPageDirty(page);
1379 
1380 	end_offset = i_size_read(inode);
1381 	offset = page_offset(page);
1382 
1383 	spin_lock(&mapping->private_lock);
1384 	if (page_has_buffers(page)) {
1385 		struct buffer_head *head = page_buffers(page);
1386 		struct buffer_head *bh = head;
1387 
1388 		do {
1389 			if (offset < end_offset)
1390 				set_buffer_dirty(bh);
1391 			bh = bh->b_this_page;
1392 			offset += i_blocksize(inode);
1393 		} while (bh != head);
1394 	}
1395 	/*
1396 	 * Lock out page->mem_cgroup migration to keep PageDirty
1397 	 * synchronized with per-memcg dirty page counters.
1398 	 */
1399 	lock_page_memcg(page);
1400 	newly_dirty = !TestSetPageDirty(page);
1401 	spin_unlock(&mapping->private_lock);
1402 
1403 	if (newly_dirty) {
1404 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1405 		unsigned long flags;
1406 
1407 		spin_lock_irqsave(&mapping->tree_lock, flags);
1408 		if (page->mapping) {	/* Race with truncate? */
1409 			WARN_ON_ONCE(!PageUptodate(page));
1410 			account_page_dirtied(page, mapping);
1411 			radix_tree_tag_set(&mapping->page_tree,
1412 					page_index(page), PAGECACHE_TAG_DIRTY);
1413 		}
1414 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1415 	}
1416 	unlock_page_memcg(page);
1417 	if (newly_dirty)
1418 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1419 	return newly_dirty;
1420 }
1421 
1422 const struct address_space_operations xfs_address_space_operations = {
1423 	.readpage		= xfs_vm_readpage,
1424 	.readpages		= xfs_vm_readpages,
1425 	.writepage		= xfs_vm_writepage,
1426 	.writepages		= xfs_vm_writepages,
1427 	.set_page_dirty		= xfs_vm_set_page_dirty,
1428 	.releasepage		= xfs_vm_releasepage,
1429 	.invalidatepage		= xfs_vm_invalidatepage,
1430 	.bmap			= xfs_vm_bmap,
1431 	.direct_IO		= xfs_vm_direct_IO,
1432 	.migratepage		= buffer_migrate_page,
1433 	.is_partially_uptodate  = block_is_partially_uptodate,
1434 	.error_remove_page	= generic_error_remove_page,
1435 };
1436