1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 /* 84 * We're now finished for good with this page. Update the page state via the 85 * associated buffer_heads, paying attention to the start and end offsets that 86 * we need to process on the page. 87 * 88 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last 89 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or 90 * the page at all, as we may be racing with memory reclaim and it can free both 91 * the bufferhead chain and the page as it will see the page as clean and 92 * unused. 93 */ 94 static void 95 xfs_finish_page_writeback( 96 struct inode *inode, 97 struct bio_vec *bvec, 98 int error) 99 { 100 unsigned int end = bvec->bv_offset + bvec->bv_len - 1; 101 struct buffer_head *head, *bh, *next; 102 unsigned int off = 0; 103 unsigned int bsize; 104 105 ASSERT(bvec->bv_offset < PAGE_SIZE); 106 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 107 ASSERT(end < PAGE_SIZE); 108 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 109 110 bh = head = page_buffers(bvec->bv_page); 111 112 bsize = bh->b_size; 113 do { 114 next = bh->b_this_page; 115 if (off < bvec->bv_offset) 116 goto next_bh; 117 if (off > end) 118 break; 119 bh->b_end_io(bh, !error); 120 next_bh: 121 off += bsize; 122 } while ((bh = next) != head); 123 } 124 125 /* 126 * We're now finished for good with this ioend structure. Update the page 127 * state, release holds on bios, and finally free up memory. Do not use the 128 * ioend after this. 129 */ 130 STATIC void 131 xfs_destroy_ioend( 132 struct xfs_ioend *ioend, 133 int error) 134 { 135 struct inode *inode = ioend->io_inode; 136 struct bio *last = ioend->io_bio; 137 struct bio *bio, *next; 138 139 for (bio = &ioend->io_inline_bio; bio; bio = next) { 140 struct bio_vec *bvec; 141 int i; 142 143 /* 144 * For the last bio, bi_private points to the ioend, so we 145 * need to explicitly end the iteration here. 146 */ 147 if (bio == last) 148 next = NULL; 149 else 150 next = bio->bi_private; 151 152 /* walk each page on bio, ending page IO on them */ 153 bio_for_each_segment_all(bvec, bio, i) 154 xfs_finish_page_writeback(inode, bvec, error); 155 156 bio_put(bio); 157 } 158 } 159 160 /* 161 * Fast and loose check if this write could update the on-disk inode size. 162 */ 163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 164 { 165 return ioend->io_offset + ioend->io_size > 166 XFS_I(ioend->io_inode)->i_d.di_size; 167 } 168 169 STATIC int 170 xfs_setfilesize_trans_alloc( 171 struct xfs_ioend *ioend) 172 { 173 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 174 struct xfs_trans *tp; 175 int error; 176 177 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 178 if (error) 179 return error; 180 181 ioend->io_append_trans = tp; 182 183 /* 184 * We may pass freeze protection with a transaction. So tell lockdep 185 * we released it. 186 */ 187 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 188 /* 189 * We hand off the transaction to the completion thread now, so 190 * clear the flag here. 191 */ 192 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 193 return 0; 194 } 195 196 /* 197 * Update on-disk file size now that data has been written to disk. 198 */ 199 STATIC int 200 __xfs_setfilesize( 201 struct xfs_inode *ip, 202 struct xfs_trans *tp, 203 xfs_off_t offset, 204 size_t size) 205 { 206 xfs_fsize_t isize; 207 208 xfs_ilock(ip, XFS_ILOCK_EXCL); 209 isize = xfs_new_eof(ip, offset + size); 210 if (!isize) { 211 xfs_iunlock(ip, XFS_ILOCK_EXCL); 212 xfs_trans_cancel(tp); 213 return 0; 214 } 215 216 trace_xfs_setfilesize(ip, offset, size); 217 218 ip->i_d.di_size = isize; 219 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 221 222 return xfs_trans_commit(tp); 223 } 224 225 int 226 xfs_setfilesize( 227 struct xfs_inode *ip, 228 xfs_off_t offset, 229 size_t size) 230 { 231 struct xfs_mount *mp = ip->i_mount; 232 struct xfs_trans *tp; 233 int error; 234 235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 236 if (error) 237 return error; 238 239 return __xfs_setfilesize(ip, tp, offset, size); 240 } 241 242 STATIC int 243 xfs_setfilesize_ioend( 244 struct xfs_ioend *ioend, 245 int error) 246 { 247 struct xfs_inode *ip = XFS_I(ioend->io_inode); 248 struct xfs_trans *tp = ioend->io_append_trans; 249 250 /* 251 * The transaction may have been allocated in the I/O submission thread, 252 * thus we need to mark ourselves as being in a transaction manually. 253 * Similarly for freeze protection. 254 */ 255 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 256 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 257 258 /* we abort the update if there was an IO error */ 259 if (error) { 260 xfs_trans_cancel(tp); 261 return error; 262 } 263 264 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 265 } 266 267 /* 268 * IO write completion. 269 */ 270 STATIC void 271 xfs_end_io( 272 struct work_struct *work) 273 { 274 struct xfs_ioend *ioend = 275 container_of(work, struct xfs_ioend, io_work); 276 struct xfs_inode *ip = XFS_I(ioend->io_inode); 277 int error = ioend->io_bio->bi_error; 278 279 /* 280 * Set an error if the mount has shut down and proceed with end I/O 281 * processing so it can perform whatever cleanups are necessary. 282 */ 283 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 284 error = -EIO; 285 286 /* 287 * For a CoW extent, we need to move the mapping from the CoW fork 288 * to the data fork. If instead an error happened, just dump the 289 * new blocks. 290 */ 291 if (ioend->io_type == XFS_IO_COW) { 292 if (error) 293 goto done; 294 if (ioend->io_bio->bi_error) { 295 error = xfs_reflink_cancel_cow_range(ip, 296 ioend->io_offset, ioend->io_size); 297 goto done; 298 } 299 error = xfs_reflink_end_cow(ip, ioend->io_offset, 300 ioend->io_size); 301 if (error) 302 goto done; 303 } 304 305 /* 306 * For unwritten extents we need to issue transactions to convert a 307 * range to normal written extens after the data I/O has finished. 308 * Detecting and handling completion IO errors is done individually 309 * for each case as different cleanup operations need to be performed 310 * on error. 311 */ 312 if (ioend->io_type == XFS_IO_UNWRITTEN) { 313 if (error) 314 goto done; 315 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 316 ioend->io_size); 317 } else if (ioend->io_append_trans) { 318 error = xfs_setfilesize_ioend(ioend, error); 319 } else { 320 ASSERT(!xfs_ioend_is_append(ioend) || 321 ioend->io_type == XFS_IO_COW); 322 } 323 324 done: 325 xfs_destroy_ioend(ioend, error); 326 } 327 328 STATIC void 329 xfs_end_bio( 330 struct bio *bio) 331 { 332 struct xfs_ioend *ioend = bio->bi_private; 333 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 334 335 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 336 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 337 else if (ioend->io_append_trans) 338 queue_work(mp->m_data_workqueue, &ioend->io_work); 339 else 340 xfs_destroy_ioend(ioend, bio->bi_error); 341 } 342 343 STATIC int 344 xfs_map_blocks( 345 struct inode *inode, 346 loff_t offset, 347 struct xfs_bmbt_irec *imap, 348 int type) 349 { 350 struct xfs_inode *ip = XFS_I(inode); 351 struct xfs_mount *mp = ip->i_mount; 352 ssize_t count = i_blocksize(inode); 353 xfs_fileoff_t offset_fsb, end_fsb; 354 int error = 0; 355 int bmapi_flags = XFS_BMAPI_ENTIRE; 356 int nimaps = 1; 357 358 if (XFS_FORCED_SHUTDOWN(mp)) 359 return -EIO; 360 361 ASSERT(type != XFS_IO_COW); 362 if (type == XFS_IO_UNWRITTEN) 363 bmapi_flags |= XFS_BMAPI_IGSTATE; 364 365 xfs_ilock(ip, XFS_ILOCK_SHARED); 366 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 367 (ip->i_df.if_flags & XFS_IFEXTENTS)); 368 ASSERT(offset <= mp->m_super->s_maxbytes); 369 370 if (offset + count > mp->m_super->s_maxbytes) 371 count = mp->m_super->s_maxbytes - offset; 372 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 373 offset_fsb = XFS_B_TO_FSBT(mp, offset); 374 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 375 imap, &nimaps, bmapi_flags); 376 /* 377 * Truncate an overwrite extent if there's a pending CoW 378 * reservation before the end of this extent. This forces us 379 * to come back to writepage to take care of the CoW. 380 */ 381 if (nimaps && type == XFS_IO_OVERWRITE) 382 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 383 xfs_iunlock(ip, XFS_ILOCK_SHARED); 384 385 if (error) 386 return error; 387 388 if (type == XFS_IO_DELALLOC && 389 (!nimaps || isnullstartblock(imap->br_startblock))) { 390 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 391 imap); 392 if (!error) 393 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 394 return error; 395 } 396 397 #ifdef DEBUG 398 if (type == XFS_IO_UNWRITTEN) { 399 ASSERT(nimaps); 400 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 401 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 402 } 403 #endif 404 if (nimaps) 405 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 406 return 0; 407 } 408 409 STATIC bool 410 xfs_imap_valid( 411 struct inode *inode, 412 struct xfs_bmbt_irec *imap, 413 xfs_off_t offset) 414 { 415 offset >>= inode->i_blkbits; 416 417 return offset >= imap->br_startoff && 418 offset < imap->br_startoff + imap->br_blockcount; 419 } 420 421 STATIC void 422 xfs_start_buffer_writeback( 423 struct buffer_head *bh) 424 { 425 ASSERT(buffer_mapped(bh)); 426 ASSERT(buffer_locked(bh)); 427 ASSERT(!buffer_delay(bh)); 428 ASSERT(!buffer_unwritten(bh)); 429 430 mark_buffer_async_write(bh); 431 set_buffer_uptodate(bh); 432 clear_buffer_dirty(bh); 433 } 434 435 STATIC void 436 xfs_start_page_writeback( 437 struct page *page, 438 int clear_dirty) 439 { 440 ASSERT(PageLocked(page)); 441 ASSERT(!PageWriteback(page)); 442 443 /* 444 * if the page was not fully cleaned, we need to ensure that the higher 445 * layers come back to it correctly. That means we need to keep the page 446 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 447 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 448 * write this page in this writeback sweep will be made. 449 */ 450 if (clear_dirty) { 451 clear_page_dirty_for_io(page); 452 set_page_writeback(page); 453 } else 454 set_page_writeback_keepwrite(page); 455 456 unlock_page(page); 457 } 458 459 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 460 { 461 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 462 } 463 464 /* 465 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 466 * it, and we submit that bio. The ioend may be used for multiple bio 467 * submissions, so we only want to allocate an append transaction for the ioend 468 * once. In the case of multiple bio submission, each bio will take an IO 469 * reference to the ioend to ensure that the ioend completion is only done once 470 * all bios have been submitted and the ioend is really done. 471 * 472 * If @fail is non-zero, it means that we have a situation where some part of 473 * the submission process has failed after we have marked paged for writeback 474 * and unlocked them. In this situation, we need to fail the bio and ioend 475 * rather than submit it to IO. This typically only happens on a filesystem 476 * shutdown. 477 */ 478 STATIC int 479 xfs_submit_ioend( 480 struct writeback_control *wbc, 481 struct xfs_ioend *ioend, 482 int status) 483 { 484 /* Convert CoW extents to regular */ 485 if (!status && ioend->io_type == XFS_IO_COW) { 486 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 487 ioend->io_offset, ioend->io_size); 488 } 489 490 /* Reserve log space if we might write beyond the on-disk inode size. */ 491 if (!status && 492 ioend->io_type != XFS_IO_UNWRITTEN && 493 xfs_ioend_is_append(ioend) && 494 !ioend->io_append_trans) 495 status = xfs_setfilesize_trans_alloc(ioend); 496 497 ioend->io_bio->bi_private = ioend; 498 ioend->io_bio->bi_end_io = xfs_end_bio; 499 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 500 501 /* 502 * If we are failing the IO now, just mark the ioend with an 503 * error and finish it. This will run IO completion immediately 504 * as there is only one reference to the ioend at this point in 505 * time. 506 */ 507 if (status) { 508 ioend->io_bio->bi_error = status; 509 bio_endio(ioend->io_bio); 510 return status; 511 } 512 513 submit_bio(ioend->io_bio); 514 return 0; 515 } 516 517 static void 518 xfs_init_bio_from_bh( 519 struct bio *bio, 520 struct buffer_head *bh) 521 { 522 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 523 bio->bi_bdev = bh->b_bdev; 524 } 525 526 static struct xfs_ioend * 527 xfs_alloc_ioend( 528 struct inode *inode, 529 unsigned int type, 530 xfs_off_t offset, 531 struct buffer_head *bh) 532 { 533 struct xfs_ioend *ioend; 534 struct bio *bio; 535 536 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 537 xfs_init_bio_from_bh(bio, bh); 538 539 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 540 INIT_LIST_HEAD(&ioend->io_list); 541 ioend->io_type = type; 542 ioend->io_inode = inode; 543 ioend->io_size = 0; 544 ioend->io_offset = offset; 545 INIT_WORK(&ioend->io_work, xfs_end_io); 546 ioend->io_append_trans = NULL; 547 ioend->io_bio = bio; 548 return ioend; 549 } 550 551 /* 552 * Allocate a new bio, and chain the old bio to the new one. 553 * 554 * Note that we have to do perform the chaining in this unintuitive order 555 * so that the bi_private linkage is set up in the right direction for the 556 * traversal in xfs_destroy_ioend(). 557 */ 558 static void 559 xfs_chain_bio( 560 struct xfs_ioend *ioend, 561 struct writeback_control *wbc, 562 struct buffer_head *bh) 563 { 564 struct bio *new; 565 566 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 567 xfs_init_bio_from_bh(new, bh); 568 569 bio_chain(ioend->io_bio, new); 570 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 571 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 572 submit_bio(ioend->io_bio); 573 ioend->io_bio = new; 574 } 575 576 /* 577 * Test to see if we've been building up a completion structure for 578 * earlier buffers -- if so, we try to append to this ioend if we 579 * can, otherwise we finish off any current ioend and start another. 580 * Return the ioend we finished off so that the caller can submit it 581 * once it has finished processing the dirty page. 582 */ 583 STATIC void 584 xfs_add_to_ioend( 585 struct inode *inode, 586 struct buffer_head *bh, 587 xfs_off_t offset, 588 struct xfs_writepage_ctx *wpc, 589 struct writeback_control *wbc, 590 struct list_head *iolist) 591 { 592 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 593 bh->b_blocknr != wpc->last_block + 1 || 594 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 595 if (wpc->ioend) 596 list_add(&wpc->ioend->io_list, iolist); 597 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 598 } 599 600 /* 601 * If the buffer doesn't fit into the bio we need to allocate a new 602 * one. This shouldn't happen more than once for a given buffer. 603 */ 604 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 605 xfs_chain_bio(wpc->ioend, wbc, bh); 606 607 wpc->ioend->io_size += bh->b_size; 608 wpc->last_block = bh->b_blocknr; 609 xfs_start_buffer_writeback(bh); 610 } 611 612 STATIC void 613 xfs_map_buffer( 614 struct inode *inode, 615 struct buffer_head *bh, 616 struct xfs_bmbt_irec *imap, 617 xfs_off_t offset) 618 { 619 sector_t bn; 620 struct xfs_mount *m = XFS_I(inode)->i_mount; 621 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 622 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 623 624 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 625 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 626 627 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 628 ((offset - iomap_offset) >> inode->i_blkbits); 629 630 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 631 632 bh->b_blocknr = bn; 633 set_buffer_mapped(bh); 634 } 635 636 STATIC void 637 xfs_map_at_offset( 638 struct inode *inode, 639 struct buffer_head *bh, 640 struct xfs_bmbt_irec *imap, 641 xfs_off_t offset) 642 { 643 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 644 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 645 646 xfs_map_buffer(inode, bh, imap, offset); 647 set_buffer_mapped(bh); 648 clear_buffer_delay(bh); 649 clear_buffer_unwritten(bh); 650 } 651 652 /* 653 * Test if a given page contains at least one buffer of a given @type. 654 * If @check_all_buffers is true, then we walk all the buffers in the page to 655 * try to find one of the type passed in. If it is not set, then the caller only 656 * needs to check the first buffer on the page for a match. 657 */ 658 STATIC bool 659 xfs_check_page_type( 660 struct page *page, 661 unsigned int type, 662 bool check_all_buffers) 663 { 664 struct buffer_head *bh; 665 struct buffer_head *head; 666 667 if (PageWriteback(page)) 668 return false; 669 if (!page->mapping) 670 return false; 671 if (!page_has_buffers(page)) 672 return false; 673 674 bh = head = page_buffers(page); 675 do { 676 if (buffer_unwritten(bh)) { 677 if (type == XFS_IO_UNWRITTEN) 678 return true; 679 } else if (buffer_delay(bh)) { 680 if (type == XFS_IO_DELALLOC) 681 return true; 682 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 683 if (type == XFS_IO_OVERWRITE) 684 return true; 685 } 686 687 /* If we are only checking the first buffer, we are done now. */ 688 if (!check_all_buffers) 689 break; 690 } while ((bh = bh->b_this_page) != head); 691 692 return false; 693 } 694 695 STATIC void 696 xfs_vm_invalidatepage( 697 struct page *page, 698 unsigned int offset, 699 unsigned int length) 700 { 701 trace_xfs_invalidatepage(page->mapping->host, page, offset, 702 length); 703 block_invalidatepage(page, offset, length); 704 } 705 706 /* 707 * If the page has delalloc buffers on it, we need to punch them out before we 708 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 709 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 710 * is done on that same region - the delalloc extent is returned when none is 711 * supposed to be there. 712 * 713 * We prevent this by truncating away the delalloc regions on the page before 714 * invalidating it. Because they are delalloc, we can do this without needing a 715 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 716 * truncation without a transaction as there is no space left for block 717 * reservation (typically why we see a ENOSPC in writeback). 718 * 719 * This is not a performance critical path, so for now just do the punching a 720 * buffer head at a time. 721 */ 722 STATIC void 723 xfs_aops_discard_page( 724 struct page *page) 725 { 726 struct inode *inode = page->mapping->host; 727 struct xfs_inode *ip = XFS_I(inode); 728 struct buffer_head *bh, *head; 729 loff_t offset = page_offset(page); 730 731 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 732 goto out_invalidate; 733 734 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 735 goto out_invalidate; 736 737 xfs_alert(ip->i_mount, 738 "page discard on page %p, inode 0x%llx, offset %llu.", 739 page, ip->i_ino, offset); 740 741 xfs_ilock(ip, XFS_ILOCK_EXCL); 742 bh = head = page_buffers(page); 743 do { 744 int error; 745 xfs_fileoff_t start_fsb; 746 747 if (!buffer_delay(bh)) 748 goto next_buffer; 749 750 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 751 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 752 if (error) { 753 /* something screwed, just bail */ 754 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 755 xfs_alert(ip->i_mount, 756 "page discard unable to remove delalloc mapping."); 757 } 758 break; 759 } 760 next_buffer: 761 offset += i_blocksize(inode); 762 763 } while ((bh = bh->b_this_page) != head); 764 765 xfs_iunlock(ip, XFS_ILOCK_EXCL); 766 out_invalidate: 767 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 768 return; 769 } 770 771 static int 772 xfs_map_cow( 773 struct xfs_writepage_ctx *wpc, 774 struct inode *inode, 775 loff_t offset, 776 unsigned int *new_type) 777 { 778 struct xfs_inode *ip = XFS_I(inode); 779 struct xfs_bmbt_irec imap; 780 bool is_cow = false; 781 int error; 782 783 /* 784 * If we already have a valid COW mapping keep using it. 785 */ 786 if (wpc->io_type == XFS_IO_COW) { 787 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 788 if (wpc->imap_valid) { 789 *new_type = XFS_IO_COW; 790 return 0; 791 } 792 } 793 794 /* 795 * Else we need to check if there is a COW mapping at this offset. 796 */ 797 xfs_ilock(ip, XFS_ILOCK_SHARED); 798 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 799 xfs_iunlock(ip, XFS_ILOCK_SHARED); 800 801 if (!is_cow) 802 return 0; 803 804 /* 805 * And if the COW mapping has a delayed extent here we need to 806 * allocate real space for it now. 807 */ 808 if (isnullstartblock(imap.br_startblock)) { 809 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 810 &imap); 811 if (error) 812 return error; 813 } 814 815 wpc->io_type = *new_type = XFS_IO_COW; 816 wpc->imap_valid = true; 817 wpc->imap = imap; 818 return 0; 819 } 820 821 /* 822 * We implement an immediate ioend submission policy here to avoid needing to 823 * chain multiple ioends and hence nest mempool allocations which can violate 824 * forward progress guarantees we need to provide. The current ioend we are 825 * adding buffers to is cached on the writepage context, and if the new buffer 826 * does not append to the cached ioend it will create a new ioend and cache that 827 * instead. 828 * 829 * If a new ioend is created and cached, the old ioend is returned and queued 830 * locally for submission once the entire page is processed or an error has been 831 * detected. While ioends are submitted immediately after they are completed, 832 * batching optimisations are provided by higher level block plugging. 833 * 834 * At the end of a writeback pass, there will be a cached ioend remaining on the 835 * writepage context that the caller will need to submit. 836 */ 837 static int 838 xfs_writepage_map( 839 struct xfs_writepage_ctx *wpc, 840 struct writeback_control *wbc, 841 struct inode *inode, 842 struct page *page, 843 loff_t offset, 844 __uint64_t end_offset) 845 { 846 LIST_HEAD(submit_list); 847 struct xfs_ioend *ioend, *next; 848 struct buffer_head *bh, *head; 849 ssize_t len = i_blocksize(inode); 850 int error = 0; 851 int count = 0; 852 int uptodate = 1; 853 unsigned int new_type; 854 855 bh = head = page_buffers(page); 856 offset = page_offset(page); 857 do { 858 if (offset >= end_offset) 859 break; 860 if (!buffer_uptodate(bh)) 861 uptodate = 0; 862 863 /* 864 * set_page_dirty dirties all buffers in a page, independent 865 * of their state. The dirty state however is entirely 866 * meaningless for holes (!mapped && uptodate), so skip 867 * buffers covering holes here. 868 */ 869 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 870 wpc->imap_valid = false; 871 continue; 872 } 873 874 if (buffer_unwritten(bh)) 875 new_type = XFS_IO_UNWRITTEN; 876 else if (buffer_delay(bh)) 877 new_type = XFS_IO_DELALLOC; 878 else if (buffer_uptodate(bh)) 879 new_type = XFS_IO_OVERWRITE; 880 else { 881 if (PageUptodate(page)) 882 ASSERT(buffer_mapped(bh)); 883 /* 884 * This buffer is not uptodate and will not be 885 * written to disk. Ensure that we will put any 886 * subsequent writeable buffers into a new 887 * ioend. 888 */ 889 wpc->imap_valid = false; 890 continue; 891 } 892 893 if (xfs_is_reflink_inode(XFS_I(inode))) { 894 error = xfs_map_cow(wpc, inode, offset, &new_type); 895 if (error) 896 goto out; 897 } 898 899 if (wpc->io_type != new_type) { 900 wpc->io_type = new_type; 901 wpc->imap_valid = false; 902 } 903 904 if (wpc->imap_valid) 905 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 906 offset); 907 if (!wpc->imap_valid) { 908 error = xfs_map_blocks(inode, offset, &wpc->imap, 909 wpc->io_type); 910 if (error) 911 goto out; 912 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 913 offset); 914 } 915 if (wpc->imap_valid) { 916 lock_buffer(bh); 917 if (wpc->io_type != XFS_IO_OVERWRITE) 918 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 919 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 920 count++; 921 } 922 923 } while (offset += len, ((bh = bh->b_this_page) != head)); 924 925 if (uptodate && bh == head) 926 SetPageUptodate(page); 927 928 ASSERT(wpc->ioend || list_empty(&submit_list)); 929 930 out: 931 /* 932 * On error, we have to fail the ioend here because we have locked 933 * buffers in the ioend. If we don't do this, we'll deadlock 934 * invalidating the page as that tries to lock the buffers on the page. 935 * Also, because we may have set pages under writeback, we have to make 936 * sure we run IO completion to mark the error state of the IO 937 * appropriately, so we can't cancel the ioend directly here. That means 938 * we have to mark this page as under writeback if we included any 939 * buffers from it in the ioend chain so that completion treats it 940 * correctly. 941 * 942 * If we didn't include the page in the ioend, the on error we can 943 * simply discard and unlock it as there are no other users of the page 944 * or it's buffers right now. The caller will still need to trigger 945 * submission of outstanding ioends on the writepage context so they are 946 * treated correctly on error. 947 */ 948 if (count) { 949 xfs_start_page_writeback(page, !error); 950 951 /* 952 * Preserve the original error if there was one, otherwise catch 953 * submission errors here and propagate into subsequent ioend 954 * submissions. 955 */ 956 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 957 int error2; 958 959 list_del_init(&ioend->io_list); 960 error2 = xfs_submit_ioend(wbc, ioend, error); 961 if (error2 && !error) 962 error = error2; 963 } 964 } else if (error) { 965 xfs_aops_discard_page(page); 966 ClearPageUptodate(page); 967 unlock_page(page); 968 } else { 969 /* 970 * We can end up here with no error and nothing to write if we 971 * race with a partial page truncate on a sub-page block sized 972 * filesystem. In that case we need to mark the page clean. 973 */ 974 xfs_start_page_writeback(page, 1); 975 end_page_writeback(page); 976 } 977 978 mapping_set_error(page->mapping, error); 979 return error; 980 } 981 982 /* 983 * Write out a dirty page. 984 * 985 * For delalloc space on the page we need to allocate space and flush it. 986 * For unwritten space on the page we need to start the conversion to 987 * regular allocated space. 988 * For any other dirty buffer heads on the page we should flush them. 989 */ 990 STATIC int 991 xfs_do_writepage( 992 struct page *page, 993 struct writeback_control *wbc, 994 void *data) 995 { 996 struct xfs_writepage_ctx *wpc = data; 997 struct inode *inode = page->mapping->host; 998 loff_t offset; 999 __uint64_t end_offset; 1000 pgoff_t end_index; 1001 1002 trace_xfs_writepage(inode, page, 0, 0); 1003 1004 ASSERT(page_has_buffers(page)); 1005 1006 /* 1007 * Refuse to write the page out if we are called from reclaim context. 1008 * 1009 * This avoids stack overflows when called from deeply used stacks in 1010 * random callers for direct reclaim or memcg reclaim. We explicitly 1011 * allow reclaim from kswapd as the stack usage there is relatively low. 1012 * 1013 * This should never happen except in the case of a VM regression so 1014 * warn about it. 1015 */ 1016 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1017 PF_MEMALLOC)) 1018 goto redirty; 1019 1020 /* 1021 * Given that we do not allow direct reclaim to call us, we should 1022 * never be called while in a filesystem transaction. 1023 */ 1024 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 1025 goto redirty; 1026 1027 /* 1028 * Is this page beyond the end of the file? 1029 * 1030 * The page index is less than the end_index, adjust the end_offset 1031 * to the highest offset that this page should represent. 1032 * ----------------------------------------------------- 1033 * | file mapping | <EOF> | 1034 * ----------------------------------------------------- 1035 * | Page ... | Page N-2 | Page N-1 | Page N | | 1036 * ^--------------------------------^----------|-------- 1037 * | desired writeback range | see else | 1038 * ---------------------------------^------------------| 1039 */ 1040 offset = i_size_read(inode); 1041 end_index = offset >> PAGE_SHIFT; 1042 if (page->index < end_index) 1043 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1044 else { 1045 /* 1046 * Check whether the page to write out is beyond or straddles 1047 * i_size or not. 1048 * ------------------------------------------------------- 1049 * | file mapping | <EOF> | 1050 * ------------------------------------------------------- 1051 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1052 * ^--------------------------------^-----------|--------- 1053 * | | Straddles | 1054 * ---------------------------------^-----------|--------| 1055 */ 1056 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1057 1058 /* 1059 * Skip the page if it is fully outside i_size, e.g. due to a 1060 * truncate operation that is in progress. We must redirty the 1061 * page so that reclaim stops reclaiming it. Otherwise 1062 * xfs_vm_releasepage() is called on it and gets confused. 1063 * 1064 * Note that the end_index is unsigned long, it would overflow 1065 * if the given offset is greater than 16TB on 32-bit system 1066 * and if we do check the page is fully outside i_size or not 1067 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1068 * will be evaluated to 0. Hence this page will be redirtied 1069 * and be written out repeatedly which would result in an 1070 * infinite loop, the user program that perform this operation 1071 * will hang. Instead, we can verify this situation by checking 1072 * if the page to write is totally beyond the i_size or if it's 1073 * offset is just equal to the EOF. 1074 */ 1075 if (page->index > end_index || 1076 (page->index == end_index && offset_into_page == 0)) 1077 goto redirty; 1078 1079 /* 1080 * The page straddles i_size. It must be zeroed out on each 1081 * and every writepage invocation because it may be mmapped. 1082 * "A file is mapped in multiples of the page size. For a file 1083 * that is not a multiple of the page size, the remaining 1084 * memory is zeroed when mapped, and writes to that region are 1085 * not written out to the file." 1086 */ 1087 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1088 1089 /* Adjust the end_offset to the end of file */ 1090 end_offset = offset; 1091 } 1092 1093 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 1094 1095 redirty: 1096 redirty_page_for_writepage(wbc, page); 1097 unlock_page(page); 1098 return 0; 1099 } 1100 1101 STATIC int 1102 xfs_vm_writepage( 1103 struct page *page, 1104 struct writeback_control *wbc) 1105 { 1106 struct xfs_writepage_ctx wpc = { 1107 .io_type = XFS_IO_INVALID, 1108 }; 1109 int ret; 1110 1111 ret = xfs_do_writepage(page, wbc, &wpc); 1112 if (wpc.ioend) 1113 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1114 return ret; 1115 } 1116 1117 STATIC int 1118 xfs_vm_writepages( 1119 struct address_space *mapping, 1120 struct writeback_control *wbc) 1121 { 1122 struct xfs_writepage_ctx wpc = { 1123 .io_type = XFS_IO_INVALID, 1124 }; 1125 int ret; 1126 1127 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1128 if (dax_mapping(mapping)) 1129 return dax_writeback_mapping_range(mapping, 1130 xfs_find_bdev_for_inode(mapping->host), wbc); 1131 1132 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1133 if (wpc.ioend) 1134 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1135 return ret; 1136 } 1137 1138 /* 1139 * Called to move a page into cleanable state - and from there 1140 * to be released. The page should already be clean. We always 1141 * have buffer heads in this call. 1142 * 1143 * Returns 1 if the page is ok to release, 0 otherwise. 1144 */ 1145 STATIC int 1146 xfs_vm_releasepage( 1147 struct page *page, 1148 gfp_t gfp_mask) 1149 { 1150 int delalloc, unwritten; 1151 1152 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1153 1154 /* 1155 * mm accommodates an old ext3 case where clean pages might not have had 1156 * the dirty bit cleared. Thus, it can send actual dirty pages to 1157 * ->releasepage() via shrink_active_list(). Conversely, 1158 * block_invalidatepage() can send pages that are still marked dirty 1159 * but otherwise have invalidated buffers. 1160 * 1161 * We want to release the latter to avoid unnecessary buildup of the 1162 * LRU, skip the former and warn if we've left any lingering 1163 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc 1164 * or unwritten buffers and warn if the page is not dirty. Otherwise 1165 * try to release the buffers. 1166 */ 1167 xfs_count_page_state(page, &delalloc, &unwritten); 1168 1169 if (delalloc) { 1170 WARN_ON_ONCE(!PageDirty(page)); 1171 return 0; 1172 } 1173 if (unwritten) { 1174 WARN_ON_ONCE(!PageDirty(page)); 1175 return 0; 1176 } 1177 1178 return try_to_free_buffers(page); 1179 } 1180 1181 /* 1182 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1183 * is, so that we can avoid repeated get_blocks calls. 1184 * 1185 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1186 * for blocks beyond EOF must be marked new so that sub block regions can be 1187 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1188 * was just allocated or is unwritten, otherwise the callers would overwrite 1189 * existing data with zeros. Hence we have to split the mapping into a range up 1190 * to and including EOF, and a second mapping for beyond EOF. 1191 */ 1192 static void 1193 xfs_map_trim_size( 1194 struct inode *inode, 1195 sector_t iblock, 1196 struct buffer_head *bh_result, 1197 struct xfs_bmbt_irec *imap, 1198 xfs_off_t offset, 1199 ssize_t size) 1200 { 1201 xfs_off_t mapping_size; 1202 1203 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1204 mapping_size <<= inode->i_blkbits; 1205 1206 ASSERT(mapping_size > 0); 1207 if (mapping_size > size) 1208 mapping_size = size; 1209 if (offset < i_size_read(inode) && 1210 offset + mapping_size >= i_size_read(inode)) { 1211 /* limit mapping to block that spans EOF */ 1212 mapping_size = roundup_64(i_size_read(inode) - offset, 1213 i_blocksize(inode)); 1214 } 1215 if (mapping_size > LONG_MAX) 1216 mapping_size = LONG_MAX; 1217 1218 bh_result->b_size = mapping_size; 1219 } 1220 1221 static int 1222 xfs_get_blocks( 1223 struct inode *inode, 1224 sector_t iblock, 1225 struct buffer_head *bh_result, 1226 int create) 1227 { 1228 struct xfs_inode *ip = XFS_I(inode); 1229 struct xfs_mount *mp = ip->i_mount; 1230 xfs_fileoff_t offset_fsb, end_fsb; 1231 int error = 0; 1232 int lockmode = 0; 1233 struct xfs_bmbt_irec imap; 1234 int nimaps = 1; 1235 xfs_off_t offset; 1236 ssize_t size; 1237 1238 BUG_ON(create); 1239 1240 if (XFS_FORCED_SHUTDOWN(mp)) 1241 return -EIO; 1242 1243 offset = (xfs_off_t)iblock << inode->i_blkbits; 1244 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1245 size = bh_result->b_size; 1246 1247 if (offset >= i_size_read(inode)) 1248 return 0; 1249 1250 /* 1251 * Direct I/O is usually done on preallocated files, so try getting 1252 * a block mapping without an exclusive lock first. 1253 */ 1254 lockmode = xfs_ilock_data_map_shared(ip); 1255 1256 ASSERT(offset <= mp->m_super->s_maxbytes); 1257 if (offset + size > mp->m_super->s_maxbytes) 1258 size = mp->m_super->s_maxbytes - offset; 1259 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1260 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1261 1262 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1263 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1264 if (error) 1265 goto out_unlock; 1266 1267 if (nimaps) { 1268 trace_xfs_get_blocks_found(ip, offset, size, 1269 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1270 : XFS_IO_OVERWRITE, &imap); 1271 xfs_iunlock(ip, lockmode); 1272 } else { 1273 trace_xfs_get_blocks_notfound(ip, offset, size); 1274 goto out_unlock; 1275 } 1276 1277 /* trim mapping down to size requested */ 1278 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1279 1280 /* 1281 * For unwritten extents do not report a disk address in the buffered 1282 * read case (treat as if we're reading into a hole). 1283 */ 1284 if (imap.br_startblock != HOLESTARTBLOCK && 1285 imap.br_startblock != DELAYSTARTBLOCK && 1286 !ISUNWRITTEN(&imap)) 1287 xfs_map_buffer(inode, bh_result, &imap, offset); 1288 1289 /* 1290 * If this is a realtime file, data may be on a different device. 1291 * to that pointed to from the buffer_head b_bdev currently. 1292 */ 1293 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1294 return 0; 1295 1296 out_unlock: 1297 xfs_iunlock(ip, lockmode); 1298 return error; 1299 } 1300 1301 STATIC ssize_t 1302 xfs_vm_direct_IO( 1303 struct kiocb *iocb, 1304 struct iov_iter *iter) 1305 { 1306 /* 1307 * We just need the method present so that open/fcntl allow direct I/O. 1308 */ 1309 return -EINVAL; 1310 } 1311 1312 STATIC sector_t 1313 xfs_vm_bmap( 1314 struct address_space *mapping, 1315 sector_t block) 1316 { 1317 struct inode *inode = (struct inode *)mapping->host; 1318 struct xfs_inode *ip = XFS_I(inode); 1319 1320 trace_xfs_vm_bmap(XFS_I(inode)); 1321 1322 /* 1323 * The swap code (ab-)uses ->bmap to get a block mapping and then 1324 * bypasseѕ the file system for actual I/O. We really can't allow 1325 * that on reflinks inodes, so we have to skip out here. And yes, 1326 * 0 is the magic code for a bmap error.. 1327 */ 1328 if (xfs_is_reflink_inode(ip)) 1329 return 0; 1330 1331 filemap_write_and_wait(mapping); 1332 return generic_block_bmap(mapping, block, xfs_get_blocks); 1333 } 1334 1335 STATIC int 1336 xfs_vm_readpage( 1337 struct file *unused, 1338 struct page *page) 1339 { 1340 trace_xfs_vm_readpage(page->mapping->host, 1); 1341 return mpage_readpage(page, xfs_get_blocks); 1342 } 1343 1344 STATIC int 1345 xfs_vm_readpages( 1346 struct file *unused, 1347 struct address_space *mapping, 1348 struct list_head *pages, 1349 unsigned nr_pages) 1350 { 1351 trace_xfs_vm_readpages(mapping->host, nr_pages); 1352 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1353 } 1354 1355 /* 1356 * This is basically a copy of __set_page_dirty_buffers() with one 1357 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1358 * dirty, we'll never be able to clean them because we don't write buffers 1359 * beyond EOF, and that means we can't invalidate pages that span EOF 1360 * that have been marked dirty. Further, the dirty state can leak into 1361 * the file interior if the file is extended, resulting in all sorts of 1362 * bad things happening as the state does not match the underlying data. 1363 * 1364 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1365 * this only exist because of bufferheads and how the generic code manages them. 1366 */ 1367 STATIC int 1368 xfs_vm_set_page_dirty( 1369 struct page *page) 1370 { 1371 struct address_space *mapping = page->mapping; 1372 struct inode *inode = mapping->host; 1373 loff_t end_offset; 1374 loff_t offset; 1375 int newly_dirty; 1376 1377 if (unlikely(!mapping)) 1378 return !TestSetPageDirty(page); 1379 1380 end_offset = i_size_read(inode); 1381 offset = page_offset(page); 1382 1383 spin_lock(&mapping->private_lock); 1384 if (page_has_buffers(page)) { 1385 struct buffer_head *head = page_buffers(page); 1386 struct buffer_head *bh = head; 1387 1388 do { 1389 if (offset < end_offset) 1390 set_buffer_dirty(bh); 1391 bh = bh->b_this_page; 1392 offset += i_blocksize(inode); 1393 } while (bh != head); 1394 } 1395 /* 1396 * Lock out page->mem_cgroup migration to keep PageDirty 1397 * synchronized with per-memcg dirty page counters. 1398 */ 1399 lock_page_memcg(page); 1400 newly_dirty = !TestSetPageDirty(page); 1401 spin_unlock(&mapping->private_lock); 1402 1403 if (newly_dirty) { 1404 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1405 unsigned long flags; 1406 1407 spin_lock_irqsave(&mapping->tree_lock, flags); 1408 if (page->mapping) { /* Race with truncate? */ 1409 WARN_ON_ONCE(!PageUptodate(page)); 1410 account_page_dirtied(page, mapping); 1411 radix_tree_tag_set(&mapping->page_tree, 1412 page_index(page), PAGECACHE_TAG_DIRTY); 1413 } 1414 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1415 } 1416 unlock_page_memcg(page); 1417 if (newly_dirty) 1418 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1419 return newly_dirty; 1420 } 1421 1422 const struct address_space_operations xfs_address_space_operations = { 1423 .readpage = xfs_vm_readpage, 1424 .readpages = xfs_vm_readpages, 1425 .writepage = xfs_vm_writepage, 1426 .writepages = xfs_vm_writepages, 1427 .set_page_dirty = xfs_vm_set_page_dirty, 1428 .releasepage = xfs_vm_releasepage, 1429 .invalidatepage = xfs_vm_invalidatepage, 1430 .bmap = xfs_vm_bmap, 1431 .direct_IO = xfs_vm_direct_IO, 1432 .migratepage = buffer_migrate_page, 1433 .is_partially_uptodate = block_is_partially_uptodate, 1434 .error_remove_page = generic_error_remove_page, 1435 }; 1436