xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /*
41  * structure owned by writepages passed to individual writepage calls
42  */
43 struct xfs_writepage_ctx {
44 	struct xfs_bmbt_irec    imap;
45 	bool			imap_valid;
46 	unsigned int		io_type;
47 	struct xfs_ioend	*ioend;
48 	sector_t		last_block;
49 };
50 
51 void
52 xfs_count_page_state(
53 	struct page		*page,
54 	int			*delalloc,
55 	int			*unwritten)
56 {
57 	struct buffer_head	*bh, *head;
58 
59 	*delalloc = *unwritten = 0;
60 
61 	bh = head = page_buffers(page);
62 	do {
63 		if (buffer_unwritten(bh))
64 			(*unwritten) = 1;
65 		else if (buffer_delay(bh))
66 			(*delalloc) = 1;
67 	} while ((bh = bh->b_this_page) != head);
68 }
69 
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 	struct inode		*inode)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 	struct xfs_mount	*mp = ip->i_mount;
76 
77 	if (XFS_IS_REALTIME_INODE(ip))
78 		return mp->m_rtdev_targp->bt_bdev;
79 	else
80 		return mp->m_ddev_targp->bt_bdev;
81 }
82 
83 struct dax_device *
84 xfs_find_daxdev_for_inode(
85 	struct inode		*inode)
86 {
87 	struct xfs_inode	*ip = XFS_I(inode);
88 	struct xfs_mount	*mp = ip->i_mount;
89 
90 	if (XFS_IS_REALTIME_INODE(ip))
91 		return mp->m_rtdev_targp->bt_daxdev;
92 	else
93 		return mp->m_ddev_targp->bt_daxdev;
94 }
95 
96 /*
97  * We're now finished for good with this page.  Update the page state via the
98  * associated buffer_heads, paying attention to the start and end offsets that
99  * we need to process on the page.
100  *
101  * Note that we open code the action in end_buffer_async_write here so that we
102  * only have to iterate over the buffers attached to the page once.  This is not
103  * only more efficient, but also ensures that we only calls end_page_writeback
104  * at the end of the iteration, and thus avoids the pitfall of having the page
105  * and buffers potentially freed after every call to end_buffer_async_write.
106  */
107 static void
108 xfs_finish_page_writeback(
109 	struct inode		*inode,
110 	struct bio_vec		*bvec,
111 	int			error)
112 {
113 	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
114 	bool			busy = false;
115 	unsigned int		off = 0;
116 	unsigned long		flags;
117 
118 	ASSERT(bvec->bv_offset < PAGE_SIZE);
119 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122 
123 	local_irq_save(flags);
124 	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 	do {
126 		if (off >= bvec->bv_offset &&
127 		    off < bvec->bv_offset + bvec->bv_len) {
128 			ASSERT(buffer_async_write(bh));
129 			ASSERT(bh->b_end_io == NULL);
130 
131 			if (error) {
132 				mark_buffer_write_io_error(bh);
133 				clear_buffer_uptodate(bh);
134 				SetPageError(bvec->bv_page);
135 			} else {
136 				set_buffer_uptodate(bh);
137 			}
138 			clear_buffer_async_write(bh);
139 			unlock_buffer(bh);
140 		} else if (buffer_async_write(bh)) {
141 			ASSERT(buffer_locked(bh));
142 			busy = true;
143 		}
144 		off += bh->b_size;
145 	} while ((bh = bh->b_this_page) != head);
146 	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 	local_irq_restore(flags);
148 
149 	if (!busy)
150 		end_page_writeback(bvec->bv_page);
151 }
152 
153 /*
154  * We're now finished for good with this ioend structure.  Update the page
155  * state, release holds on bios, and finally free up memory.  Do not use the
156  * ioend after this.
157  */
158 STATIC void
159 xfs_destroy_ioend(
160 	struct xfs_ioend	*ioend,
161 	int			error)
162 {
163 	struct inode		*inode = ioend->io_inode;
164 	struct bio		*bio = &ioend->io_inline_bio;
165 	struct bio		*last = ioend->io_bio, *next;
166 	u64			start = bio->bi_iter.bi_sector;
167 	bool			quiet = bio_flagged(bio, BIO_QUIET);
168 
169 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 		struct bio_vec	*bvec;
171 		int		i;
172 
173 		/*
174 		 * For the last bio, bi_private points to the ioend, so we
175 		 * need to explicitly end the iteration here.
176 		 */
177 		if (bio == last)
178 			next = NULL;
179 		else
180 			next = bio->bi_private;
181 
182 		/* walk each page on bio, ending page IO on them */
183 		bio_for_each_segment_all(bvec, bio, i)
184 			xfs_finish_page_writeback(inode, bvec, error);
185 
186 		bio_put(bio);
187 	}
188 
189 	if (unlikely(error && !quiet)) {
190 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 			"writeback error on sector %llu", start);
192 	}
193 }
194 
195 /*
196  * Fast and loose check if this write could update the on-disk inode size.
197  */
198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199 {
200 	return ioend->io_offset + ioend->io_size >
201 		XFS_I(ioend->io_inode)->i_d.di_size;
202 }
203 
204 STATIC int
205 xfs_setfilesize_trans_alloc(
206 	struct xfs_ioend	*ioend)
207 {
208 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
209 	struct xfs_trans	*tp;
210 	int			error;
211 
212 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
213 	if (error)
214 		return error;
215 
216 	ioend->io_append_trans = tp;
217 
218 	/*
219 	 * We may pass freeze protection with a transaction.  So tell lockdep
220 	 * we released it.
221 	 */
222 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
223 	/*
224 	 * We hand off the transaction to the completion thread now, so
225 	 * clear the flag here.
226 	 */
227 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
228 	return 0;
229 }
230 
231 /*
232  * Update on-disk file size now that data has been written to disk.
233  */
234 STATIC int
235 __xfs_setfilesize(
236 	struct xfs_inode	*ip,
237 	struct xfs_trans	*tp,
238 	xfs_off_t		offset,
239 	size_t			size)
240 {
241 	xfs_fsize_t		isize;
242 
243 	xfs_ilock(ip, XFS_ILOCK_EXCL);
244 	isize = xfs_new_eof(ip, offset + size);
245 	if (!isize) {
246 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
247 		xfs_trans_cancel(tp);
248 		return 0;
249 	}
250 
251 	trace_xfs_setfilesize(ip, offset, size);
252 
253 	ip->i_d.di_size = isize;
254 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
255 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
256 
257 	return xfs_trans_commit(tp);
258 }
259 
260 int
261 xfs_setfilesize(
262 	struct xfs_inode	*ip,
263 	xfs_off_t		offset,
264 	size_t			size)
265 {
266 	struct xfs_mount	*mp = ip->i_mount;
267 	struct xfs_trans	*tp;
268 	int			error;
269 
270 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
271 	if (error)
272 		return error;
273 
274 	return __xfs_setfilesize(ip, tp, offset, size);
275 }
276 
277 STATIC int
278 xfs_setfilesize_ioend(
279 	struct xfs_ioend	*ioend,
280 	int			error)
281 {
282 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
283 	struct xfs_trans	*tp = ioend->io_append_trans;
284 
285 	/*
286 	 * The transaction may have been allocated in the I/O submission thread,
287 	 * thus we need to mark ourselves as being in a transaction manually.
288 	 * Similarly for freeze protection.
289 	 */
290 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
291 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
292 
293 	/* we abort the update if there was an IO error */
294 	if (error) {
295 		xfs_trans_cancel(tp);
296 		return error;
297 	}
298 
299 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
300 }
301 
302 /*
303  * IO write completion.
304  */
305 STATIC void
306 xfs_end_io(
307 	struct work_struct *work)
308 {
309 	struct xfs_ioend	*ioend =
310 		container_of(work, struct xfs_ioend, io_work);
311 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
312 	xfs_off_t		offset = ioend->io_offset;
313 	size_t			size = ioend->io_size;
314 	int			error;
315 
316 	/*
317 	 * Just clean up the in-memory strutures if the fs has been shut down.
318 	 */
319 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
320 		error = -EIO;
321 		goto done;
322 	}
323 
324 	/*
325 	 * Clean up any COW blocks on an I/O error.
326 	 */
327 	error = blk_status_to_errno(ioend->io_bio->bi_status);
328 	if (unlikely(error)) {
329 		switch (ioend->io_type) {
330 		case XFS_IO_COW:
331 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
332 			break;
333 		}
334 
335 		goto done;
336 	}
337 
338 	/*
339 	 * Success:  commit the COW or unwritten blocks if needed.
340 	 */
341 	switch (ioend->io_type) {
342 	case XFS_IO_COW:
343 		error = xfs_reflink_end_cow(ip, offset, size);
344 		break;
345 	case XFS_IO_UNWRITTEN:
346 		/* writeback should never update isize */
347 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
348 		break;
349 	default:
350 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
351 		break;
352 	}
353 
354 done:
355 	if (ioend->io_append_trans)
356 		error = xfs_setfilesize_ioend(ioend, error);
357 	xfs_destroy_ioend(ioend, error);
358 }
359 
360 STATIC void
361 xfs_end_bio(
362 	struct bio		*bio)
363 {
364 	struct xfs_ioend	*ioend = bio->bi_private;
365 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
366 
367 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
368 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
369 	else if (ioend->io_append_trans)
370 		queue_work(mp->m_data_workqueue, &ioend->io_work);
371 	else
372 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
373 }
374 
375 STATIC int
376 xfs_map_blocks(
377 	struct inode		*inode,
378 	loff_t			offset,
379 	struct xfs_bmbt_irec	*imap,
380 	int			type)
381 {
382 	struct xfs_inode	*ip = XFS_I(inode);
383 	struct xfs_mount	*mp = ip->i_mount;
384 	ssize_t			count = i_blocksize(inode);
385 	xfs_fileoff_t		offset_fsb, end_fsb;
386 	int			error = 0;
387 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
388 	int			nimaps = 1;
389 
390 	if (XFS_FORCED_SHUTDOWN(mp))
391 		return -EIO;
392 
393 	ASSERT(type != XFS_IO_COW);
394 	if (type == XFS_IO_UNWRITTEN)
395 		bmapi_flags |= XFS_BMAPI_IGSTATE;
396 
397 	xfs_ilock(ip, XFS_ILOCK_SHARED);
398 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
399 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
400 	ASSERT(offset <= mp->m_super->s_maxbytes);
401 
402 	if ((xfs_ufsize_t)offset + count > mp->m_super->s_maxbytes)
403 		count = mp->m_super->s_maxbytes - offset;
404 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
405 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
406 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
407 				imap, &nimaps, bmapi_flags);
408 	/*
409 	 * Truncate an overwrite extent if there's a pending CoW
410 	 * reservation before the end of this extent.  This forces us
411 	 * to come back to writepage to take care of the CoW.
412 	 */
413 	if (nimaps && type == XFS_IO_OVERWRITE)
414 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
415 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
416 
417 	if (error)
418 		return error;
419 
420 	if (type == XFS_IO_DELALLOC &&
421 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
422 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
423 				imap);
424 		if (!error)
425 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
426 		return error;
427 	}
428 
429 #ifdef DEBUG
430 	if (type == XFS_IO_UNWRITTEN) {
431 		ASSERT(nimaps);
432 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
433 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
434 	}
435 #endif
436 	if (nimaps)
437 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
438 	return 0;
439 }
440 
441 STATIC bool
442 xfs_imap_valid(
443 	struct inode		*inode,
444 	struct xfs_bmbt_irec	*imap,
445 	xfs_off_t		offset)
446 {
447 	offset >>= inode->i_blkbits;
448 
449 	/*
450 	 * We have to make sure the cached mapping is within EOF to protect
451 	 * against eofblocks trimming on file release leaving us with a stale
452 	 * mapping. Otherwise, a page for a subsequent file extending buffered
453 	 * write could get picked up by this writeback cycle and written to the
454 	 * wrong blocks.
455 	 *
456 	 * Note that what we really want here is a generic mapping invalidation
457 	 * mechanism to protect us from arbitrary extent modifying contexts, not
458 	 * just eofblocks.
459 	 */
460 	xfs_trim_extent_eof(imap, XFS_I(inode));
461 
462 	return offset >= imap->br_startoff &&
463 		offset < imap->br_startoff + imap->br_blockcount;
464 }
465 
466 STATIC void
467 xfs_start_buffer_writeback(
468 	struct buffer_head	*bh)
469 {
470 	ASSERT(buffer_mapped(bh));
471 	ASSERT(buffer_locked(bh));
472 	ASSERT(!buffer_delay(bh));
473 	ASSERT(!buffer_unwritten(bh));
474 
475 	bh->b_end_io = NULL;
476 	set_buffer_async_write(bh);
477 	set_buffer_uptodate(bh);
478 	clear_buffer_dirty(bh);
479 }
480 
481 STATIC void
482 xfs_start_page_writeback(
483 	struct page		*page,
484 	int			clear_dirty)
485 {
486 	ASSERT(PageLocked(page));
487 	ASSERT(!PageWriteback(page));
488 
489 	/*
490 	 * if the page was not fully cleaned, we need to ensure that the higher
491 	 * layers come back to it correctly. That means we need to keep the page
492 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
493 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
494 	 * write this page in this writeback sweep will be made.
495 	 */
496 	if (clear_dirty) {
497 		clear_page_dirty_for_io(page);
498 		set_page_writeback(page);
499 	} else
500 		set_page_writeback_keepwrite(page);
501 
502 	unlock_page(page);
503 }
504 
505 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
506 {
507 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
508 }
509 
510 /*
511  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
512  * it, and we submit that bio. The ioend may be used for multiple bio
513  * submissions, so we only want to allocate an append transaction for the ioend
514  * once. In the case of multiple bio submission, each bio will take an IO
515  * reference to the ioend to ensure that the ioend completion is only done once
516  * all bios have been submitted and the ioend is really done.
517  *
518  * If @fail is non-zero, it means that we have a situation where some part of
519  * the submission process has failed after we have marked paged for writeback
520  * and unlocked them. In this situation, we need to fail the bio and ioend
521  * rather than submit it to IO. This typically only happens on a filesystem
522  * shutdown.
523  */
524 STATIC int
525 xfs_submit_ioend(
526 	struct writeback_control *wbc,
527 	struct xfs_ioend	*ioend,
528 	int			status)
529 {
530 	/* Convert CoW extents to regular */
531 	if (!status && ioend->io_type == XFS_IO_COW) {
532 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
533 				ioend->io_offset, ioend->io_size);
534 	}
535 
536 	/* Reserve log space if we might write beyond the on-disk inode size. */
537 	if (!status &&
538 	    ioend->io_type != XFS_IO_UNWRITTEN &&
539 	    xfs_ioend_is_append(ioend) &&
540 	    !ioend->io_append_trans)
541 		status = xfs_setfilesize_trans_alloc(ioend);
542 
543 	ioend->io_bio->bi_private = ioend;
544 	ioend->io_bio->bi_end_io = xfs_end_bio;
545 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
546 
547 	/*
548 	 * If we are failing the IO now, just mark the ioend with an
549 	 * error and finish it. This will run IO completion immediately
550 	 * as there is only one reference to the ioend at this point in
551 	 * time.
552 	 */
553 	if (status) {
554 		ioend->io_bio->bi_status = errno_to_blk_status(status);
555 		bio_endio(ioend->io_bio);
556 		return status;
557 	}
558 
559 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
560 	submit_bio(ioend->io_bio);
561 	return 0;
562 }
563 
564 static void
565 xfs_init_bio_from_bh(
566 	struct bio		*bio,
567 	struct buffer_head	*bh)
568 {
569 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
570 	bio_set_dev(bio, bh->b_bdev);
571 }
572 
573 static struct xfs_ioend *
574 xfs_alloc_ioend(
575 	struct inode		*inode,
576 	unsigned int		type,
577 	xfs_off_t		offset,
578 	struct buffer_head	*bh)
579 {
580 	struct xfs_ioend	*ioend;
581 	struct bio		*bio;
582 
583 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
584 	xfs_init_bio_from_bh(bio, bh);
585 
586 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
587 	INIT_LIST_HEAD(&ioend->io_list);
588 	ioend->io_type = type;
589 	ioend->io_inode = inode;
590 	ioend->io_size = 0;
591 	ioend->io_offset = offset;
592 	INIT_WORK(&ioend->io_work, xfs_end_io);
593 	ioend->io_append_trans = NULL;
594 	ioend->io_bio = bio;
595 	return ioend;
596 }
597 
598 /*
599  * Allocate a new bio, and chain the old bio to the new one.
600  *
601  * Note that we have to do perform the chaining in this unintuitive order
602  * so that the bi_private linkage is set up in the right direction for the
603  * traversal in xfs_destroy_ioend().
604  */
605 static void
606 xfs_chain_bio(
607 	struct xfs_ioend	*ioend,
608 	struct writeback_control *wbc,
609 	struct buffer_head	*bh)
610 {
611 	struct bio *new;
612 
613 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
614 	xfs_init_bio_from_bh(new, bh);
615 
616 	bio_chain(ioend->io_bio, new);
617 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
618 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
619 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
620 	submit_bio(ioend->io_bio);
621 	ioend->io_bio = new;
622 }
623 
624 /*
625  * Test to see if we've been building up a completion structure for
626  * earlier buffers -- if so, we try to append to this ioend if we
627  * can, otherwise we finish off any current ioend and start another.
628  * Return the ioend we finished off so that the caller can submit it
629  * once it has finished processing the dirty page.
630  */
631 STATIC void
632 xfs_add_to_ioend(
633 	struct inode		*inode,
634 	struct buffer_head	*bh,
635 	xfs_off_t		offset,
636 	struct xfs_writepage_ctx *wpc,
637 	struct writeback_control *wbc,
638 	struct list_head	*iolist)
639 {
640 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
641 	    bh->b_blocknr != wpc->last_block + 1 ||
642 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
643 		if (wpc->ioend)
644 			list_add(&wpc->ioend->io_list, iolist);
645 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
646 	}
647 
648 	/*
649 	 * If the buffer doesn't fit into the bio we need to allocate a new
650 	 * one.  This shouldn't happen more than once for a given buffer.
651 	 */
652 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
653 		xfs_chain_bio(wpc->ioend, wbc, bh);
654 
655 	wpc->ioend->io_size += bh->b_size;
656 	wpc->last_block = bh->b_blocknr;
657 	xfs_start_buffer_writeback(bh);
658 }
659 
660 STATIC void
661 xfs_map_buffer(
662 	struct inode		*inode,
663 	struct buffer_head	*bh,
664 	struct xfs_bmbt_irec	*imap,
665 	xfs_off_t		offset)
666 {
667 	sector_t		bn;
668 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
669 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
670 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
671 
672 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
673 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
674 
675 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
676 	      ((offset - iomap_offset) >> inode->i_blkbits);
677 
678 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
679 
680 	bh->b_blocknr = bn;
681 	set_buffer_mapped(bh);
682 }
683 
684 STATIC void
685 xfs_map_at_offset(
686 	struct inode		*inode,
687 	struct buffer_head	*bh,
688 	struct xfs_bmbt_irec	*imap,
689 	xfs_off_t		offset)
690 {
691 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
692 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
693 
694 	xfs_map_buffer(inode, bh, imap, offset);
695 	set_buffer_mapped(bh);
696 	clear_buffer_delay(bh);
697 	clear_buffer_unwritten(bh);
698 }
699 
700 /*
701  * Test if a given page contains at least one buffer of a given @type.
702  * If @check_all_buffers is true, then we walk all the buffers in the page to
703  * try to find one of the type passed in. If it is not set, then the caller only
704  * needs to check the first buffer on the page for a match.
705  */
706 STATIC bool
707 xfs_check_page_type(
708 	struct page		*page,
709 	unsigned int		type,
710 	bool			check_all_buffers)
711 {
712 	struct buffer_head	*bh;
713 	struct buffer_head	*head;
714 
715 	if (PageWriteback(page))
716 		return false;
717 	if (!page->mapping)
718 		return false;
719 	if (!page_has_buffers(page))
720 		return false;
721 
722 	bh = head = page_buffers(page);
723 	do {
724 		if (buffer_unwritten(bh)) {
725 			if (type == XFS_IO_UNWRITTEN)
726 				return true;
727 		} else if (buffer_delay(bh)) {
728 			if (type == XFS_IO_DELALLOC)
729 				return true;
730 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
731 			if (type == XFS_IO_OVERWRITE)
732 				return true;
733 		}
734 
735 		/* If we are only checking the first buffer, we are done now. */
736 		if (!check_all_buffers)
737 			break;
738 	} while ((bh = bh->b_this_page) != head);
739 
740 	return false;
741 }
742 
743 STATIC void
744 xfs_vm_invalidatepage(
745 	struct page		*page,
746 	unsigned int		offset,
747 	unsigned int		length)
748 {
749 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
750 				 length);
751 
752 	/*
753 	 * If we are invalidating the entire page, clear the dirty state from it
754 	 * so that we can check for attempts to release dirty cached pages in
755 	 * xfs_vm_releasepage().
756 	 */
757 	if (offset == 0 && length >= PAGE_SIZE)
758 		cancel_dirty_page(page);
759 	block_invalidatepage(page, offset, length);
760 }
761 
762 /*
763  * If the page has delalloc buffers on it, we need to punch them out before we
764  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
765  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
766  * is done on that same region - the delalloc extent is returned when none is
767  * supposed to be there.
768  *
769  * We prevent this by truncating away the delalloc regions on the page before
770  * invalidating it. Because they are delalloc, we can do this without needing a
771  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
772  * truncation without a transaction as there is no space left for block
773  * reservation (typically why we see a ENOSPC in writeback).
774  *
775  * This is not a performance critical path, so for now just do the punching a
776  * buffer head at a time.
777  */
778 STATIC void
779 xfs_aops_discard_page(
780 	struct page		*page)
781 {
782 	struct inode		*inode = page->mapping->host;
783 	struct xfs_inode	*ip = XFS_I(inode);
784 	struct buffer_head	*bh, *head;
785 	loff_t			offset = page_offset(page);
786 
787 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
788 		goto out_invalidate;
789 
790 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
791 		goto out_invalidate;
792 
793 	xfs_alert(ip->i_mount,
794 		"page discard on page %p, inode 0x%llx, offset %llu.",
795 			page, ip->i_ino, offset);
796 
797 	xfs_ilock(ip, XFS_ILOCK_EXCL);
798 	bh = head = page_buffers(page);
799 	do {
800 		int		error;
801 		xfs_fileoff_t	start_fsb;
802 
803 		if (!buffer_delay(bh))
804 			goto next_buffer;
805 
806 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
807 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
808 		if (error) {
809 			/* something screwed, just bail */
810 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
811 				xfs_alert(ip->i_mount,
812 			"page discard unable to remove delalloc mapping.");
813 			}
814 			break;
815 		}
816 next_buffer:
817 		offset += i_blocksize(inode);
818 
819 	} while ((bh = bh->b_this_page) != head);
820 
821 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
822 out_invalidate:
823 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
824 	return;
825 }
826 
827 static int
828 xfs_map_cow(
829 	struct xfs_writepage_ctx *wpc,
830 	struct inode		*inode,
831 	loff_t			offset,
832 	unsigned int		*new_type)
833 {
834 	struct xfs_inode	*ip = XFS_I(inode);
835 	struct xfs_bmbt_irec	imap;
836 	bool			is_cow = false;
837 	int			error;
838 
839 	/*
840 	 * If we already have a valid COW mapping keep using it.
841 	 */
842 	if (wpc->io_type == XFS_IO_COW) {
843 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
844 		if (wpc->imap_valid) {
845 			*new_type = XFS_IO_COW;
846 			return 0;
847 		}
848 	}
849 
850 	/*
851 	 * Else we need to check if there is a COW mapping at this offset.
852 	 */
853 	xfs_ilock(ip, XFS_ILOCK_SHARED);
854 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
855 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
856 
857 	if (!is_cow)
858 		return 0;
859 
860 	/*
861 	 * And if the COW mapping has a delayed extent here we need to
862 	 * allocate real space for it now.
863 	 */
864 	if (isnullstartblock(imap.br_startblock)) {
865 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
866 				&imap);
867 		if (error)
868 			return error;
869 	}
870 
871 	wpc->io_type = *new_type = XFS_IO_COW;
872 	wpc->imap_valid = true;
873 	wpc->imap = imap;
874 	return 0;
875 }
876 
877 /*
878  * We implement an immediate ioend submission policy here to avoid needing to
879  * chain multiple ioends and hence nest mempool allocations which can violate
880  * forward progress guarantees we need to provide. The current ioend we are
881  * adding buffers to is cached on the writepage context, and if the new buffer
882  * does not append to the cached ioend it will create a new ioend and cache that
883  * instead.
884  *
885  * If a new ioend is created and cached, the old ioend is returned and queued
886  * locally for submission once the entire page is processed or an error has been
887  * detected.  While ioends are submitted immediately after they are completed,
888  * batching optimisations are provided by higher level block plugging.
889  *
890  * At the end of a writeback pass, there will be a cached ioend remaining on the
891  * writepage context that the caller will need to submit.
892  */
893 static int
894 xfs_writepage_map(
895 	struct xfs_writepage_ctx *wpc,
896 	struct writeback_control *wbc,
897 	struct inode		*inode,
898 	struct page		*page,
899 	uint64_t		end_offset)
900 {
901 	LIST_HEAD(submit_list);
902 	struct xfs_ioend	*ioend, *next;
903 	struct buffer_head	*bh, *head;
904 	ssize_t			len = i_blocksize(inode);
905 	uint64_t		offset;
906 	int			error = 0;
907 	int			count = 0;
908 	int			uptodate = 1;
909 	unsigned int		new_type;
910 
911 	bh = head = page_buffers(page);
912 	offset = page_offset(page);
913 	do {
914 		if (offset >= end_offset)
915 			break;
916 		if (!buffer_uptodate(bh))
917 			uptodate = 0;
918 
919 		/*
920 		 * set_page_dirty dirties all buffers in a page, independent
921 		 * of their state.  The dirty state however is entirely
922 		 * meaningless for holes (!mapped && uptodate), so skip
923 		 * buffers covering holes here.
924 		 */
925 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
926 			wpc->imap_valid = false;
927 			continue;
928 		}
929 
930 		if (buffer_unwritten(bh))
931 			new_type = XFS_IO_UNWRITTEN;
932 		else if (buffer_delay(bh))
933 			new_type = XFS_IO_DELALLOC;
934 		else if (buffer_uptodate(bh))
935 			new_type = XFS_IO_OVERWRITE;
936 		else {
937 			if (PageUptodate(page))
938 				ASSERT(buffer_mapped(bh));
939 			/*
940 			 * This buffer is not uptodate and will not be
941 			 * written to disk.  Ensure that we will put any
942 			 * subsequent writeable buffers into a new
943 			 * ioend.
944 			 */
945 			wpc->imap_valid = false;
946 			continue;
947 		}
948 
949 		if (xfs_is_reflink_inode(XFS_I(inode))) {
950 			error = xfs_map_cow(wpc, inode, offset, &new_type);
951 			if (error)
952 				goto out;
953 		}
954 
955 		if (wpc->io_type != new_type) {
956 			wpc->io_type = new_type;
957 			wpc->imap_valid = false;
958 		}
959 
960 		if (wpc->imap_valid)
961 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
962 							 offset);
963 		if (!wpc->imap_valid) {
964 			error = xfs_map_blocks(inode, offset, &wpc->imap,
965 					     wpc->io_type);
966 			if (error)
967 				goto out;
968 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
969 							 offset);
970 		}
971 		if (wpc->imap_valid) {
972 			lock_buffer(bh);
973 			if (wpc->io_type != XFS_IO_OVERWRITE)
974 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
975 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
976 			count++;
977 		}
978 
979 	} while (offset += len, ((bh = bh->b_this_page) != head));
980 
981 	if (uptodate && bh == head)
982 		SetPageUptodate(page);
983 
984 	ASSERT(wpc->ioend || list_empty(&submit_list));
985 
986 out:
987 	/*
988 	 * On error, we have to fail the ioend here because we have locked
989 	 * buffers in the ioend. If we don't do this, we'll deadlock
990 	 * invalidating the page as that tries to lock the buffers on the page.
991 	 * Also, because we may have set pages under writeback, we have to make
992 	 * sure we run IO completion to mark the error state of the IO
993 	 * appropriately, so we can't cancel the ioend directly here. That means
994 	 * we have to mark this page as under writeback if we included any
995 	 * buffers from it in the ioend chain so that completion treats it
996 	 * correctly.
997 	 *
998 	 * If we didn't include the page in the ioend, the on error we can
999 	 * simply discard and unlock it as there are no other users of the page
1000 	 * or it's buffers right now. The caller will still need to trigger
1001 	 * submission of outstanding ioends on the writepage context so they are
1002 	 * treated correctly on error.
1003 	 */
1004 	if (count) {
1005 		xfs_start_page_writeback(page, !error);
1006 
1007 		/*
1008 		 * Preserve the original error if there was one, otherwise catch
1009 		 * submission errors here and propagate into subsequent ioend
1010 		 * submissions.
1011 		 */
1012 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1013 			int error2;
1014 
1015 			list_del_init(&ioend->io_list);
1016 			error2 = xfs_submit_ioend(wbc, ioend, error);
1017 			if (error2 && !error)
1018 				error = error2;
1019 		}
1020 	} else if (error) {
1021 		xfs_aops_discard_page(page);
1022 		ClearPageUptodate(page);
1023 		unlock_page(page);
1024 	} else {
1025 		/*
1026 		 * We can end up here with no error and nothing to write if we
1027 		 * race with a partial page truncate on a sub-page block sized
1028 		 * filesystem. In that case we need to mark the page clean.
1029 		 */
1030 		xfs_start_page_writeback(page, 1);
1031 		end_page_writeback(page);
1032 	}
1033 
1034 	mapping_set_error(page->mapping, error);
1035 	return error;
1036 }
1037 
1038 /*
1039  * Write out a dirty page.
1040  *
1041  * For delalloc space on the page we need to allocate space and flush it.
1042  * For unwritten space on the page we need to start the conversion to
1043  * regular allocated space.
1044  * For any other dirty buffer heads on the page we should flush them.
1045  */
1046 STATIC int
1047 xfs_do_writepage(
1048 	struct page		*page,
1049 	struct writeback_control *wbc,
1050 	void			*data)
1051 {
1052 	struct xfs_writepage_ctx *wpc = data;
1053 	struct inode		*inode = page->mapping->host;
1054 	loff_t			offset;
1055 	uint64_t              end_offset;
1056 	pgoff_t                 end_index;
1057 
1058 	trace_xfs_writepage(inode, page, 0, 0);
1059 
1060 	ASSERT(page_has_buffers(page));
1061 
1062 	/*
1063 	 * Refuse to write the page out if we are called from reclaim context.
1064 	 *
1065 	 * This avoids stack overflows when called from deeply used stacks in
1066 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1067 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1068 	 *
1069 	 * This should never happen except in the case of a VM regression so
1070 	 * warn about it.
1071 	 */
1072 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1073 			PF_MEMALLOC))
1074 		goto redirty;
1075 
1076 	/*
1077 	 * Given that we do not allow direct reclaim to call us, we should
1078 	 * never be called while in a filesystem transaction.
1079 	 */
1080 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1081 		goto redirty;
1082 
1083 	/*
1084 	 * Is this page beyond the end of the file?
1085 	 *
1086 	 * The page index is less than the end_index, adjust the end_offset
1087 	 * to the highest offset that this page should represent.
1088 	 * -----------------------------------------------------
1089 	 * |			file mapping	       | <EOF> |
1090 	 * -----------------------------------------------------
1091 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1092 	 * ^--------------------------------^----------|--------
1093 	 * |     desired writeback range    |      see else    |
1094 	 * ---------------------------------^------------------|
1095 	 */
1096 	offset = i_size_read(inode);
1097 	end_index = offset >> PAGE_SHIFT;
1098 	if (page->index < end_index)
1099 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1100 	else {
1101 		/*
1102 		 * Check whether the page to write out is beyond or straddles
1103 		 * i_size or not.
1104 		 * -------------------------------------------------------
1105 		 * |		file mapping		        | <EOF>  |
1106 		 * -------------------------------------------------------
1107 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1108 		 * ^--------------------------------^-----------|---------
1109 		 * |				    |      Straddles     |
1110 		 * ---------------------------------^-----------|--------|
1111 		 */
1112 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1113 
1114 		/*
1115 		 * Skip the page if it is fully outside i_size, e.g. due to a
1116 		 * truncate operation that is in progress. We must redirty the
1117 		 * page so that reclaim stops reclaiming it. Otherwise
1118 		 * xfs_vm_releasepage() is called on it and gets confused.
1119 		 *
1120 		 * Note that the end_index is unsigned long, it would overflow
1121 		 * if the given offset is greater than 16TB on 32-bit system
1122 		 * and if we do check the page is fully outside i_size or not
1123 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1124 		 * will be evaluated to 0.  Hence this page will be redirtied
1125 		 * and be written out repeatedly which would result in an
1126 		 * infinite loop, the user program that perform this operation
1127 		 * will hang.  Instead, we can verify this situation by checking
1128 		 * if the page to write is totally beyond the i_size or if it's
1129 		 * offset is just equal to the EOF.
1130 		 */
1131 		if (page->index > end_index ||
1132 		    (page->index == end_index && offset_into_page == 0))
1133 			goto redirty;
1134 
1135 		/*
1136 		 * The page straddles i_size.  It must be zeroed out on each
1137 		 * and every writepage invocation because it may be mmapped.
1138 		 * "A file is mapped in multiples of the page size.  For a file
1139 		 * that is not a multiple of the page size, the remaining
1140 		 * memory is zeroed when mapped, and writes to that region are
1141 		 * not written out to the file."
1142 		 */
1143 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1144 
1145 		/* Adjust the end_offset to the end of file */
1146 		end_offset = offset;
1147 	}
1148 
1149 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1150 
1151 redirty:
1152 	redirty_page_for_writepage(wbc, page);
1153 	unlock_page(page);
1154 	return 0;
1155 }
1156 
1157 STATIC int
1158 xfs_vm_writepage(
1159 	struct page		*page,
1160 	struct writeback_control *wbc)
1161 {
1162 	struct xfs_writepage_ctx wpc = {
1163 		.io_type = XFS_IO_INVALID,
1164 	};
1165 	int			ret;
1166 
1167 	ret = xfs_do_writepage(page, wbc, &wpc);
1168 	if (wpc.ioend)
1169 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1170 	return ret;
1171 }
1172 
1173 STATIC int
1174 xfs_vm_writepages(
1175 	struct address_space	*mapping,
1176 	struct writeback_control *wbc)
1177 {
1178 	struct xfs_writepage_ctx wpc = {
1179 		.io_type = XFS_IO_INVALID,
1180 	};
1181 	int			ret;
1182 
1183 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1184 	if (dax_mapping(mapping))
1185 		return dax_writeback_mapping_range(mapping,
1186 				xfs_find_bdev_for_inode(mapping->host), wbc);
1187 
1188 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1189 	if (wpc.ioend)
1190 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Called to move a page into cleanable state - and from there
1196  * to be released. The page should already be clean. We always
1197  * have buffer heads in this call.
1198  *
1199  * Returns 1 if the page is ok to release, 0 otherwise.
1200  */
1201 STATIC int
1202 xfs_vm_releasepage(
1203 	struct page		*page,
1204 	gfp_t			gfp_mask)
1205 {
1206 	int			delalloc, unwritten;
1207 
1208 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1209 
1210 	/*
1211 	 * mm accommodates an old ext3 case where clean pages might not have had
1212 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1213 	 * ->releasepage() via shrink_active_list(). Conversely,
1214 	 * block_invalidatepage() can send pages that are still marked dirty but
1215 	 * otherwise have invalidated buffers.
1216 	 *
1217 	 * We want to release the latter to avoid unnecessary buildup of the
1218 	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1219 	 * that are entirely invalidated and need to be released.  Hence the
1220 	 * only time we should get dirty pages here is through
1221 	 * shrink_active_list() and so we can simply skip those now.
1222 	 *
1223 	 * warn if we've left any lingering delalloc/unwritten buffers on clean
1224 	 * or invalidated pages we are about to release.
1225 	 */
1226 	if (PageDirty(page))
1227 		return 0;
1228 
1229 	xfs_count_page_state(page, &delalloc, &unwritten);
1230 
1231 	if (WARN_ON_ONCE(delalloc))
1232 		return 0;
1233 	if (WARN_ON_ONCE(unwritten))
1234 		return 0;
1235 
1236 	return try_to_free_buffers(page);
1237 }
1238 
1239 /*
1240  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1241  * is, so that we can avoid repeated get_blocks calls.
1242  *
1243  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1244  * for blocks beyond EOF must be marked new so that sub block regions can be
1245  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1246  * was just allocated or is unwritten, otherwise the callers would overwrite
1247  * existing data with zeros. Hence we have to split the mapping into a range up
1248  * to and including EOF, and a second mapping for beyond EOF.
1249  */
1250 static void
1251 xfs_map_trim_size(
1252 	struct inode		*inode,
1253 	sector_t		iblock,
1254 	struct buffer_head	*bh_result,
1255 	struct xfs_bmbt_irec	*imap,
1256 	xfs_off_t		offset,
1257 	ssize_t			size)
1258 {
1259 	xfs_off_t		mapping_size;
1260 
1261 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1262 	mapping_size <<= inode->i_blkbits;
1263 
1264 	ASSERT(mapping_size > 0);
1265 	if (mapping_size > size)
1266 		mapping_size = size;
1267 	if (offset < i_size_read(inode) &&
1268 	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1269 		/* limit mapping to block that spans EOF */
1270 		mapping_size = roundup_64(i_size_read(inode) - offset,
1271 					  i_blocksize(inode));
1272 	}
1273 	if (mapping_size > LONG_MAX)
1274 		mapping_size = LONG_MAX;
1275 
1276 	bh_result->b_size = mapping_size;
1277 }
1278 
1279 static int
1280 xfs_get_blocks(
1281 	struct inode		*inode,
1282 	sector_t		iblock,
1283 	struct buffer_head	*bh_result,
1284 	int			create)
1285 {
1286 	struct xfs_inode	*ip = XFS_I(inode);
1287 	struct xfs_mount	*mp = ip->i_mount;
1288 	xfs_fileoff_t		offset_fsb, end_fsb;
1289 	int			error = 0;
1290 	int			lockmode = 0;
1291 	struct xfs_bmbt_irec	imap;
1292 	int			nimaps = 1;
1293 	xfs_off_t		offset;
1294 	ssize_t			size;
1295 
1296 	BUG_ON(create);
1297 
1298 	if (XFS_FORCED_SHUTDOWN(mp))
1299 		return -EIO;
1300 
1301 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1302 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1303 	size = bh_result->b_size;
1304 
1305 	if (offset >= i_size_read(inode))
1306 		return 0;
1307 
1308 	/*
1309 	 * Direct I/O is usually done on preallocated files, so try getting
1310 	 * a block mapping without an exclusive lock first.
1311 	 */
1312 	lockmode = xfs_ilock_data_map_shared(ip);
1313 
1314 	ASSERT(offset <= mp->m_super->s_maxbytes);
1315 	if ((xfs_ufsize_t)offset + size > mp->m_super->s_maxbytes)
1316 		size = mp->m_super->s_maxbytes - offset;
1317 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1318 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1319 
1320 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1321 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1322 	if (error)
1323 		goto out_unlock;
1324 
1325 	if (nimaps) {
1326 		trace_xfs_get_blocks_found(ip, offset, size,
1327 			imap.br_state == XFS_EXT_UNWRITTEN ?
1328 				XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1329 		xfs_iunlock(ip, lockmode);
1330 	} else {
1331 		trace_xfs_get_blocks_notfound(ip, offset, size);
1332 		goto out_unlock;
1333 	}
1334 
1335 	/* trim mapping down to size requested */
1336 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1337 
1338 	/*
1339 	 * For unwritten extents do not report a disk address in the buffered
1340 	 * read case (treat as if we're reading into a hole).
1341 	 */
1342 	if (xfs_bmap_is_real_extent(&imap))
1343 		xfs_map_buffer(inode, bh_result, &imap, offset);
1344 
1345 	/*
1346 	 * If this is a realtime file, data may be on a different device.
1347 	 * to that pointed to from the buffer_head b_bdev currently.
1348 	 */
1349 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1350 	return 0;
1351 
1352 out_unlock:
1353 	xfs_iunlock(ip, lockmode);
1354 	return error;
1355 }
1356 
1357 STATIC ssize_t
1358 xfs_vm_direct_IO(
1359 	struct kiocb		*iocb,
1360 	struct iov_iter		*iter)
1361 {
1362 	/*
1363 	 * We just need the method present so that open/fcntl allow direct I/O.
1364 	 */
1365 	return -EINVAL;
1366 }
1367 
1368 STATIC sector_t
1369 xfs_vm_bmap(
1370 	struct address_space	*mapping,
1371 	sector_t		block)
1372 {
1373 	struct inode		*inode = (struct inode *)mapping->host;
1374 	struct xfs_inode	*ip = XFS_I(inode);
1375 
1376 	trace_xfs_vm_bmap(XFS_I(inode));
1377 
1378 	/*
1379 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1380 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1381 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1382 	 * 0 is the magic code for a bmap error.
1383 	 *
1384 	 * Since we don't pass back blockdev info, we can't return bmap
1385 	 * information for rt files either.
1386 	 */
1387 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1388 		return 0;
1389 
1390 	filemap_write_and_wait(mapping);
1391 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1392 }
1393 
1394 STATIC int
1395 xfs_vm_readpage(
1396 	struct file		*unused,
1397 	struct page		*page)
1398 {
1399 	trace_xfs_vm_readpage(page->mapping->host, 1);
1400 	return mpage_readpage(page, xfs_get_blocks);
1401 }
1402 
1403 STATIC int
1404 xfs_vm_readpages(
1405 	struct file		*unused,
1406 	struct address_space	*mapping,
1407 	struct list_head	*pages,
1408 	unsigned		nr_pages)
1409 {
1410 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1411 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1412 }
1413 
1414 /*
1415  * This is basically a copy of __set_page_dirty_buffers() with one
1416  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1417  * dirty, we'll never be able to clean them because we don't write buffers
1418  * beyond EOF, and that means we can't invalidate pages that span EOF
1419  * that have been marked dirty. Further, the dirty state can leak into
1420  * the file interior if the file is extended, resulting in all sorts of
1421  * bad things happening as the state does not match the underlying data.
1422  *
1423  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1424  * this only exist because of bufferheads and how the generic code manages them.
1425  */
1426 STATIC int
1427 xfs_vm_set_page_dirty(
1428 	struct page		*page)
1429 {
1430 	struct address_space	*mapping = page->mapping;
1431 	struct inode		*inode = mapping->host;
1432 	loff_t			end_offset;
1433 	loff_t			offset;
1434 	int			newly_dirty;
1435 
1436 	if (unlikely(!mapping))
1437 		return !TestSetPageDirty(page);
1438 
1439 	end_offset = i_size_read(inode);
1440 	offset = page_offset(page);
1441 
1442 	spin_lock(&mapping->private_lock);
1443 	if (page_has_buffers(page)) {
1444 		struct buffer_head *head = page_buffers(page);
1445 		struct buffer_head *bh = head;
1446 
1447 		do {
1448 			if (offset < end_offset)
1449 				set_buffer_dirty(bh);
1450 			bh = bh->b_this_page;
1451 			offset += i_blocksize(inode);
1452 		} while (bh != head);
1453 	}
1454 	/*
1455 	 * Lock out page->mem_cgroup migration to keep PageDirty
1456 	 * synchronized with per-memcg dirty page counters.
1457 	 */
1458 	lock_page_memcg(page);
1459 	newly_dirty = !TestSetPageDirty(page);
1460 	spin_unlock(&mapping->private_lock);
1461 
1462 	if (newly_dirty) {
1463 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1464 		unsigned long flags;
1465 
1466 		spin_lock_irqsave(&mapping->tree_lock, flags);
1467 		if (page->mapping) {	/* Race with truncate? */
1468 			WARN_ON_ONCE(!PageUptodate(page));
1469 			account_page_dirtied(page, mapping);
1470 			radix_tree_tag_set(&mapping->page_tree,
1471 					page_index(page), PAGECACHE_TAG_DIRTY);
1472 		}
1473 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1474 	}
1475 	unlock_page_memcg(page);
1476 	if (newly_dirty)
1477 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1478 	return newly_dirty;
1479 }
1480 
1481 const struct address_space_operations xfs_address_space_operations = {
1482 	.readpage		= xfs_vm_readpage,
1483 	.readpages		= xfs_vm_readpages,
1484 	.writepage		= xfs_vm_writepage,
1485 	.writepages		= xfs_vm_writepages,
1486 	.set_page_dirty		= xfs_vm_set_page_dirty,
1487 	.releasepage		= xfs_vm_releasepage,
1488 	.invalidatepage		= xfs_vm_invalidatepage,
1489 	.bmap			= xfs_vm_bmap,
1490 	.direct_IO		= xfs_vm_direct_IO,
1491 	.migratepage		= buffer_migrate_page,
1492 	.is_partially_uptodate  = block_is_partially_uptodate,
1493 	.error_remove_page	= generic_error_remove_page,
1494 };
1495