1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 struct dax_device * 84 xfs_find_daxdev_for_inode( 85 struct inode *inode) 86 { 87 struct xfs_inode *ip = XFS_I(inode); 88 struct xfs_mount *mp = ip->i_mount; 89 90 if (XFS_IS_REALTIME_INODE(ip)) 91 return mp->m_rtdev_targp->bt_daxdev; 92 else 93 return mp->m_ddev_targp->bt_daxdev; 94 } 95 96 /* 97 * We're now finished for good with this page. Update the page state via the 98 * associated buffer_heads, paying attention to the start and end offsets that 99 * we need to process on the page. 100 * 101 * Note that we open code the action in end_buffer_async_write here so that we 102 * only have to iterate over the buffers attached to the page once. This is not 103 * only more efficient, but also ensures that we only calls end_page_writeback 104 * at the end of the iteration, and thus avoids the pitfall of having the page 105 * and buffers potentially freed after every call to end_buffer_async_write. 106 */ 107 static void 108 xfs_finish_page_writeback( 109 struct inode *inode, 110 struct bio_vec *bvec, 111 int error) 112 { 113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 114 bool busy = false; 115 unsigned int off = 0; 116 unsigned long flags; 117 118 ASSERT(bvec->bv_offset < PAGE_SIZE); 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 122 123 local_irq_save(flags); 124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 125 do { 126 if (off >= bvec->bv_offset && 127 off < bvec->bv_offset + bvec->bv_len) { 128 ASSERT(buffer_async_write(bh)); 129 ASSERT(bh->b_end_io == NULL); 130 131 if (error) { 132 mark_buffer_write_io_error(bh); 133 clear_buffer_uptodate(bh); 134 SetPageError(bvec->bv_page); 135 } else { 136 set_buffer_uptodate(bh); 137 } 138 clear_buffer_async_write(bh); 139 unlock_buffer(bh); 140 } else if (buffer_async_write(bh)) { 141 ASSERT(buffer_locked(bh)); 142 busy = true; 143 } 144 off += bh->b_size; 145 } while ((bh = bh->b_this_page) != head); 146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 147 local_irq_restore(flags); 148 149 if (!busy) 150 end_page_writeback(bvec->bv_page); 151 } 152 153 /* 154 * We're now finished for good with this ioend structure. Update the page 155 * state, release holds on bios, and finally free up memory. Do not use the 156 * ioend after this. 157 */ 158 STATIC void 159 xfs_destroy_ioend( 160 struct xfs_ioend *ioend, 161 int error) 162 { 163 struct inode *inode = ioend->io_inode; 164 struct bio *bio = &ioend->io_inline_bio; 165 struct bio *last = ioend->io_bio, *next; 166 u64 start = bio->bi_iter.bi_sector; 167 bool quiet = bio_flagged(bio, BIO_QUIET); 168 169 for (bio = &ioend->io_inline_bio; bio; bio = next) { 170 struct bio_vec *bvec; 171 int i; 172 173 /* 174 * For the last bio, bi_private points to the ioend, so we 175 * need to explicitly end the iteration here. 176 */ 177 if (bio == last) 178 next = NULL; 179 else 180 next = bio->bi_private; 181 182 /* walk each page on bio, ending page IO on them */ 183 bio_for_each_segment_all(bvec, bio, i) 184 xfs_finish_page_writeback(inode, bvec, error); 185 186 bio_put(bio); 187 } 188 189 if (unlikely(error && !quiet)) { 190 xfs_err_ratelimited(XFS_I(inode)->i_mount, 191 "writeback error on sector %llu", start); 192 } 193 } 194 195 /* 196 * Fast and loose check if this write could update the on-disk inode size. 197 */ 198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 199 { 200 return ioend->io_offset + ioend->io_size > 201 XFS_I(ioend->io_inode)->i_d.di_size; 202 } 203 204 STATIC int 205 xfs_setfilesize_trans_alloc( 206 struct xfs_ioend *ioend) 207 { 208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 209 struct xfs_trans *tp; 210 int error; 211 212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 213 XFS_TRANS_NOFS, &tp); 214 if (error) 215 return error; 216 217 ioend->io_append_trans = tp; 218 219 /* 220 * We may pass freeze protection with a transaction. So tell lockdep 221 * we released it. 222 */ 223 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 224 /* 225 * We hand off the transaction to the completion thread now, so 226 * clear the flag here. 227 */ 228 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 229 return 0; 230 } 231 232 /* 233 * Update on-disk file size now that data has been written to disk. 234 */ 235 STATIC int 236 __xfs_setfilesize( 237 struct xfs_inode *ip, 238 struct xfs_trans *tp, 239 xfs_off_t offset, 240 size_t size) 241 { 242 xfs_fsize_t isize; 243 244 xfs_ilock(ip, XFS_ILOCK_EXCL); 245 isize = xfs_new_eof(ip, offset + size); 246 if (!isize) { 247 xfs_iunlock(ip, XFS_ILOCK_EXCL); 248 xfs_trans_cancel(tp); 249 return 0; 250 } 251 252 trace_xfs_setfilesize(ip, offset, size); 253 254 ip->i_d.di_size = isize; 255 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 256 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 257 258 return xfs_trans_commit(tp); 259 } 260 261 int 262 xfs_setfilesize( 263 struct xfs_inode *ip, 264 xfs_off_t offset, 265 size_t size) 266 { 267 struct xfs_mount *mp = ip->i_mount; 268 struct xfs_trans *tp; 269 int error; 270 271 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 272 if (error) 273 return error; 274 275 return __xfs_setfilesize(ip, tp, offset, size); 276 } 277 278 STATIC int 279 xfs_setfilesize_ioend( 280 struct xfs_ioend *ioend, 281 int error) 282 { 283 struct xfs_inode *ip = XFS_I(ioend->io_inode); 284 struct xfs_trans *tp = ioend->io_append_trans; 285 286 /* 287 * The transaction may have been allocated in the I/O submission thread, 288 * thus we need to mark ourselves as being in a transaction manually. 289 * Similarly for freeze protection. 290 */ 291 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 292 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 293 294 /* we abort the update if there was an IO error */ 295 if (error) { 296 xfs_trans_cancel(tp); 297 return error; 298 } 299 300 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 301 } 302 303 /* 304 * IO write completion. 305 */ 306 STATIC void 307 xfs_end_io( 308 struct work_struct *work) 309 { 310 struct xfs_ioend *ioend = 311 container_of(work, struct xfs_ioend, io_work); 312 struct xfs_inode *ip = XFS_I(ioend->io_inode); 313 xfs_off_t offset = ioend->io_offset; 314 size_t size = ioend->io_size; 315 int error; 316 317 /* 318 * Just clean up the in-memory strutures if the fs has been shut down. 319 */ 320 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 321 error = -EIO; 322 goto done; 323 } 324 325 /* 326 * Clean up any COW blocks on an I/O error. 327 */ 328 error = blk_status_to_errno(ioend->io_bio->bi_status); 329 if (unlikely(error)) { 330 switch (ioend->io_type) { 331 case XFS_IO_COW: 332 xfs_reflink_cancel_cow_range(ip, offset, size, true); 333 break; 334 } 335 336 goto done; 337 } 338 339 /* 340 * Success: commit the COW or unwritten blocks if needed. 341 */ 342 switch (ioend->io_type) { 343 case XFS_IO_COW: 344 error = xfs_reflink_end_cow(ip, offset, size); 345 break; 346 case XFS_IO_UNWRITTEN: 347 /* writeback should never update isize */ 348 error = xfs_iomap_write_unwritten(ip, offset, size, false); 349 break; 350 default: 351 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 352 break; 353 } 354 355 done: 356 if (ioend->io_append_trans) 357 error = xfs_setfilesize_ioend(ioend, error); 358 xfs_destroy_ioend(ioend, error); 359 } 360 361 STATIC void 362 xfs_end_bio( 363 struct bio *bio) 364 { 365 struct xfs_ioend *ioend = bio->bi_private; 366 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 367 368 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 369 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 370 else if (ioend->io_append_trans) 371 queue_work(mp->m_data_workqueue, &ioend->io_work); 372 else 373 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 374 } 375 376 STATIC int 377 xfs_map_blocks( 378 struct inode *inode, 379 loff_t offset, 380 struct xfs_bmbt_irec *imap, 381 int type) 382 { 383 struct xfs_inode *ip = XFS_I(inode); 384 struct xfs_mount *mp = ip->i_mount; 385 ssize_t count = i_blocksize(inode); 386 xfs_fileoff_t offset_fsb, end_fsb; 387 int error = 0; 388 int bmapi_flags = XFS_BMAPI_ENTIRE; 389 int nimaps = 1; 390 391 if (XFS_FORCED_SHUTDOWN(mp)) 392 return -EIO; 393 394 /* 395 * Truncate can race with writeback since writeback doesn't take the 396 * iolock and truncate decreases the file size before it starts 397 * truncating the pages between new_size and old_size. Therefore, we 398 * can end up in the situation where writeback gets a CoW fork mapping 399 * but the truncate makes the mapping invalid and we end up in here 400 * trying to get a new mapping. Bail out here so that we simply never 401 * get a valid mapping and so we drop the write altogether. The page 402 * truncation will kill the contents anyway. 403 */ 404 if (type == XFS_IO_COW && offset > i_size_read(inode)) 405 return 0; 406 407 ASSERT(type != XFS_IO_COW); 408 if (type == XFS_IO_UNWRITTEN) 409 bmapi_flags |= XFS_BMAPI_IGSTATE; 410 411 xfs_ilock(ip, XFS_ILOCK_SHARED); 412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 413 (ip->i_df.if_flags & XFS_IFEXTENTS)); 414 ASSERT(offset <= mp->m_super->s_maxbytes); 415 416 if (offset > mp->m_super->s_maxbytes - count) 417 count = mp->m_super->s_maxbytes - offset; 418 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 419 offset_fsb = XFS_B_TO_FSBT(mp, offset); 420 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 421 imap, &nimaps, bmapi_flags); 422 /* 423 * Truncate an overwrite extent if there's a pending CoW 424 * reservation before the end of this extent. This forces us 425 * to come back to writepage to take care of the CoW. 426 */ 427 if (nimaps && type == XFS_IO_OVERWRITE) 428 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 429 xfs_iunlock(ip, XFS_ILOCK_SHARED); 430 431 if (error) 432 return error; 433 434 if (type == XFS_IO_DELALLOC && 435 (!nimaps || isnullstartblock(imap->br_startblock))) { 436 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 437 imap); 438 if (!error) 439 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 440 return error; 441 } 442 443 #ifdef DEBUG 444 if (type == XFS_IO_UNWRITTEN) { 445 ASSERT(nimaps); 446 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 447 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 448 } 449 #endif 450 if (nimaps) 451 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 452 return 0; 453 } 454 455 STATIC bool 456 xfs_imap_valid( 457 struct inode *inode, 458 struct xfs_bmbt_irec *imap, 459 xfs_off_t offset) 460 { 461 offset >>= inode->i_blkbits; 462 463 /* 464 * We have to make sure the cached mapping is within EOF to protect 465 * against eofblocks trimming on file release leaving us with a stale 466 * mapping. Otherwise, a page for a subsequent file extending buffered 467 * write could get picked up by this writeback cycle and written to the 468 * wrong blocks. 469 * 470 * Note that what we really want here is a generic mapping invalidation 471 * mechanism to protect us from arbitrary extent modifying contexts, not 472 * just eofblocks. 473 */ 474 xfs_trim_extent_eof(imap, XFS_I(inode)); 475 476 return offset >= imap->br_startoff && 477 offset < imap->br_startoff + imap->br_blockcount; 478 } 479 480 STATIC void 481 xfs_start_buffer_writeback( 482 struct buffer_head *bh) 483 { 484 ASSERT(buffer_mapped(bh)); 485 ASSERT(buffer_locked(bh)); 486 ASSERT(!buffer_delay(bh)); 487 ASSERT(!buffer_unwritten(bh)); 488 489 bh->b_end_io = NULL; 490 set_buffer_async_write(bh); 491 set_buffer_uptodate(bh); 492 clear_buffer_dirty(bh); 493 } 494 495 STATIC void 496 xfs_start_page_writeback( 497 struct page *page, 498 int clear_dirty) 499 { 500 ASSERT(PageLocked(page)); 501 ASSERT(!PageWriteback(page)); 502 503 /* 504 * if the page was not fully cleaned, we need to ensure that the higher 505 * layers come back to it correctly. That means we need to keep the page 506 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 507 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 508 * write this page in this writeback sweep will be made. 509 */ 510 if (clear_dirty) { 511 clear_page_dirty_for_io(page); 512 set_page_writeback(page); 513 } else 514 set_page_writeback_keepwrite(page); 515 516 unlock_page(page); 517 } 518 519 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 520 { 521 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 522 } 523 524 /* 525 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 526 * it, and we submit that bio. The ioend may be used for multiple bio 527 * submissions, so we only want to allocate an append transaction for the ioend 528 * once. In the case of multiple bio submission, each bio will take an IO 529 * reference to the ioend to ensure that the ioend completion is only done once 530 * all bios have been submitted and the ioend is really done. 531 * 532 * If @fail is non-zero, it means that we have a situation where some part of 533 * the submission process has failed after we have marked paged for writeback 534 * and unlocked them. In this situation, we need to fail the bio and ioend 535 * rather than submit it to IO. This typically only happens on a filesystem 536 * shutdown. 537 */ 538 STATIC int 539 xfs_submit_ioend( 540 struct writeback_control *wbc, 541 struct xfs_ioend *ioend, 542 int status) 543 { 544 /* Convert CoW extents to regular */ 545 if (!status && ioend->io_type == XFS_IO_COW) { 546 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 547 ioend->io_offset, ioend->io_size); 548 } 549 550 /* Reserve log space if we might write beyond the on-disk inode size. */ 551 if (!status && 552 ioend->io_type != XFS_IO_UNWRITTEN && 553 xfs_ioend_is_append(ioend) && 554 !ioend->io_append_trans) 555 status = xfs_setfilesize_trans_alloc(ioend); 556 557 ioend->io_bio->bi_private = ioend; 558 ioend->io_bio->bi_end_io = xfs_end_bio; 559 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 560 561 /* 562 * If we are failing the IO now, just mark the ioend with an 563 * error and finish it. This will run IO completion immediately 564 * as there is only one reference to the ioend at this point in 565 * time. 566 */ 567 if (status) { 568 ioend->io_bio->bi_status = errno_to_blk_status(status); 569 bio_endio(ioend->io_bio); 570 return status; 571 } 572 573 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 574 submit_bio(ioend->io_bio); 575 return 0; 576 } 577 578 static void 579 xfs_init_bio_from_bh( 580 struct bio *bio, 581 struct buffer_head *bh) 582 { 583 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 584 bio_set_dev(bio, bh->b_bdev); 585 } 586 587 static struct xfs_ioend * 588 xfs_alloc_ioend( 589 struct inode *inode, 590 unsigned int type, 591 xfs_off_t offset, 592 struct buffer_head *bh) 593 { 594 struct xfs_ioend *ioend; 595 struct bio *bio; 596 597 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 598 xfs_init_bio_from_bh(bio, bh); 599 600 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 601 INIT_LIST_HEAD(&ioend->io_list); 602 ioend->io_type = type; 603 ioend->io_inode = inode; 604 ioend->io_size = 0; 605 ioend->io_offset = offset; 606 INIT_WORK(&ioend->io_work, xfs_end_io); 607 ioend->io_append_trans = NULL; 608 ioend->io_bio = bio; 609 return ioend; 610 } 611 612 /* 613 * Allocate a new bio, and chain the old bio to the new one. 614 * 615 * Note that we have to do perform the chaining in this unintuitive order 616 * so that the bi_private linkage is set up in the right direction for the 617 * traversal in xfs_destroy_ioend(). 618 */ 619 static void 620 xfs_chain_bio( 621 struct xfs_ioend *ioend, 622 struct writeback_control *wbc, 623 struct buffer_head *bh) 624 { 625 struct bio *new; 626 627 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 628 xfs_init_bio_from_bh(new, bh); 629 630 bio_chain(ioend->io_bio, new); 631 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 632 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 633 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 634 submit_bio(ioend->io_bio); 635 ioend->io_bio = new; 636 } 637 638 /* 639 * Test to see if we've been building up a completion structure for 640 * earlier buffers -- if so, we try to append to this ioend if we 641 * can, otherwise we finish off any current ioend and start another. 642 * Return the ioend we finished off so that the caller can submit it 643 * once it has finished processing the dirty page. 644 */ 645 STATIC void 646 xfs_add_to_ioend( 647 struct inode *inode, 648 struct buffer_head *bh, 649 xfs_off_t offset, 650 struct xfs_writepage_ctx *wpc, 651 struct writeback_control *wbc, 652 struct list_head *iolist) 653 { 654 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 655 bh->b_blocknr != wpc->last_block + 1 || 656 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 657 if (wpc->ioend) 658 list_add(&wpc->ioend->io_list, iolist); 659 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 660 } 661 662 /* 663 * If the buffer doesn't fit into the bio we need to allocate a new 664 * one. This shouldn't happen more than once for a given buffer. 665 */ 666 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 667 xfs_chain_bio(wpc->ioend, wbc, bh); 668 669 wpc->ioend->io_size += bh->b_size; 670 wpc->last_block = bh->b_blocknr; 671 xfs_start_buffer_writeback(bh); 672 } 673 674 STATIC void 675 xfs_map_buffer( 676 struct inode *inode, 677 struct buffer_head *bh, 678 struct xfs_bmbt_irec *imap, 679 xfs_off_t offset) 680 { 681 sector_t bn; 682 struct xfs_mount *m = XFS_I(inode)->i_mount; 683 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 684 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 685 686 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 687 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 688 689 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 690 ((offset - iomap_offset) >> inode->i_blkbits); 691 692 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 693 694 bh->b_blocknr = bn; 695 set_buffer_mapped(bh); 696 } 697 698 STATIC void 699 xfs_map_at_offset( 700 struct inode *inode, 701 struct buffer_head *bh, 702 struct xfs_bmbt_irec *imap, 703 xfs_off_t offset) 704 { 705 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 706 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 707 708 xfs_map_buffer(inode, bh, imap, offset); 709 set_buffer_mapped(bh); 710 clear_buffer_delay(bh); 711 clear_buffer_unwritten(bh); 712 } 713 714 /* 715 * Test if a given page contains at least one buffer of a given @type. 716 * If @check_all_buffers is true, then we walk all the buffers in the page to 717 * try to find one of the type passed in. If it is not set, then the caller only 718 * needs to check the first buffer on the page for a match. 719 */ 720 STATIC bool 721 xfs_check_page_type( 722 struct page *page, 723 unsigned int type, 724 bool check_all_buffers) 725 { 726 struct buffer_head *bh; 727 struct buffer_head *head; 728 729 if (PageWriteback(page)) 730 return false; 731 if (!page->mapping) 732 return false; 733 if (!page_has_buffers(page)) 734 return false; 735 736 bh = head = page_buffers(page); 737 do { 738 if (buffer_unwritten(bh)) { 739 if (type == XFS_IO_UNWRITTEN) 740 return true; 741 } else if (buffer_delay(bh)) { 742 if (type == XFS_IO_DELALLOC) 743 return true; 744 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 745 if (type == XFS_IO_OVERWRITE) 746 return true; 747 } 748 749 /* If we are only checking the first buffer, we are done now. */ 750 if (!check_all_buffers) 751 break; 752 } while ((bh = bh->b_this_page) != head); 753 754 return false; 755 } 756 757 STATIC void 758 xfs_vm_invalidatepage( 759 struct page *page, 760 unsigned int offset, 761 unsigned int length) 762 { 763 trace_xfs_invalidatepage(page->mapping->host, page, offset, 764 length); 765 766 /* 767 * If we are invalidating the entire page, clear the dirty state from it 768 * so that we can check for attempts to release dirty cached pages in 769 * xfs_vm_releasepage(). 770 */ 771 if (offset == 0 && length >= PAGE_SIZE) 772 cancel_dirty_page(page); 773 block_invalidatepage(page, offset, length); 774 } 775 776 /* 777 * If the page has delalloc buffers on it, we need to punch them out before we 778 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 779 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 780 * is done on that same region - the delalloc extent is returned when none is 781 * supposed to be there. 782 * 783 * We prevent this by truncating away the delalloc regions on the page before 784 * invalidating it. Because they are delalloc, we can do this without needing a 785 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 786 * truncation without a transaction as there is no space left for block 787 * reservation (typically why we see a ENOSPC in writeback). 788 * 789 * This is not a performance critical path, so for now just do the punching a 790 * buffer head at a time. 791 */ 792 STATIC void 793 xfs_aops_discard_page( 794 struct page *page) 795 { 796 struct inode *inode = page->mapping->host; 797 struct xfs_inode *ip = XFS_I(inode); 798 struct buffer_head *bh, *head; 799 loff_t offset = page_offset(page); 800 801 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 802 goto out_invalidate; 803 804 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 805 goto out_invalidate; 806 807 xfs_alert(ip->i_mount, 808 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 809 page, ip->i_ino, offset); 810 811 xfs_ilock(ip, XFS_ILOCK_EXCL); 812 bh = head = page_buffers(page); 813 do { 814 int error; 815 xfs_fileoff_t start_fsb; 816 817 if (!buffer_delay(bh)) 818 goto next_buffer; 819 820 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 821 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 822 if (error) { 823 /* something screwed, just bail */ 824 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 825 xfs_alert(ip->i_mount, 826 "page discard unable to remove delalloc mapping."); 827 } 828 break; 829 } 830 next_buffer: 831 offset += i_blocksize(inode); 832 833 } while ((bh = bh->b_this_page) != head); 834 835 xfs_iunlock(ip, XFS_ILOCK_EXCL); 836 out_invalidate: 837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 838 return; 839 } 840 841 static int 842 xfs_map_cow( 843 struct xfs_writepage_ctx *wpc, 844 struct inode *inode, 845 loff_t offset, 846 unsigned int *new_type) 847 { 848 struct xfs_inode *ip = XFS_I(inode); 849 struct xfs_bmbt_irec imap; 850 bool is_cow = false; 851 int error; 852 853 /* 854 * If we already have a valid COW mapping keep using it. 855 */ 856 if (wpc->io_type == XFS_IO_COW) { 857 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 858 if (wpc->imap_valid) { 859 *new_type = XFS_IO_COW; 860 return 0; 861 } 862 } 863 864 /* 865 * Else we need to check if there is a COW mapping at this offset. 866 */ 867 xfs_ilock(ip, XFS_ILOCK_SHARED); 868 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 869 xfs_iunlock(ip, XFS_ILOCK_SHARED); 870 871 if (!is_cow) 872 return 0; 873 874 /* 875 * And if the COW mapping has a delayed extent here we need to 876 * allocate real space for it now. 877 */ 878 if (isnullstartblock(imap.br_startblock)) { 879 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 880 &imap); 881 if (error) 882 return error; 883 } 884 885 wpc->io_type = *new_type = XFS_IO_COW; 886 wpc->imap_valid = true; 887 wpc->imap = imap; 888 return 0; 889 } 890 891 /* 892 * We implement an immediate ioend submission policy here to avoid needing to 893 * chain multiple ioends and hence nest mempool allocations which can violate 894 * forward progress guarantees we need to provide. The current ioend we are 895 * adding buffers to is cached on the writepage context, and if the new buffer 896 * does not append to the cached ioend it will create a new ioend and cache that 897 * instead. 898 * 899 * If a new ioend is created and cached, the old ioend is returned and queued 900 * locally for submission once the entire page is processed or an error has been 901 * detected. While ioends are submitted immediately after they are completed, 902 * batching optimisations are provided by higher level block plugging. 903 * 904 * At the end of a writeback pass, there will be a cached ioend remaining on the 905 * writepage context that the caller will need to submit. 906 */ 907 static int 908 xfs_writepage_map( 909 struct xfs_writepage_ctx *wpc, 910 struct writeback_control *wbc, 911 struct inode *inode, 912 struct page *page, 913 uint64_t end_offset) 914 { 915 LIST_HEAD(submit_list); 916 struct xfs_ioend *ioend, *next; 917 struct buffer_head *bh, *head; 918 ssize_t len = i_blocksize(inode); 919 uint64_t offset; 920 int error = 0; 921 int count = 0; 922 int uptodate = 1; 923 unsigned int new_type; 924 925 bh = head = page_buffers(page); 926 offset = page_offset(page); 927 do { 928 if (offset >= end_offset) 929 break; 930 if (!buffer_uptodate(bh)) 931 uptodate = 0; 932 933 /* 934 * set_page_dirty dirties all buffers in a page, independent 935 * of their state. The dirty state however is entirely 936 * meaningless for holes (!mapped && uptodate), so skip 937 * buffers covering holes here. 938 */ 939 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 940 wpc->imap_valid = false; 941 continue; 942 } 943 944 if (buffer_unwritten(bh)) 945 new_type = XFS_IO_UNWRITTEN; 946 else if (buffer_delay(bh)) 947 new_type = XFS_IO_DELALLOC; 948 else if (buffer_uptodate(bh)) 949 new_type = XFS_IO_OVERWRITE; 950 else { 951 if (PageUptodate(page)) 952 ASSERT(buffer_mapped(bh)); 953 /* 954 * This buffer is not uptodate and will not be 955 * written to disk. Ensure that we will put any 956 * subsequent writeable buffers into a new 957 * ioend. 958 */ 959 wpc->imap_valid = false; 960 continue; 961 } 962 963 if (xfs_is_reflink_inode(XFS_I(inode))) { 964 error = xfs_map_cow(wpc, inode, offset, &new_type); 965 if (error) 966 goto out; 967 } 968 969 if (wpc->io_type != new_type) { 970 wpc->io_type = new_type; 971 wpc->imap_valid = false; 972 } 973 974 if (wpc->imap_valid) 975 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 976 offset); 977 if (!wpc->imap_valid) { 978 error = xfs_map_blocks(inode, offset, &wpc->imap, 979 wpc->io_type); 980 if (error) 981 goto out; 982 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 983 offset); 984 } 985 if (wpc->imap_valid) { 986 lock_buffer(bh); 987 if (wpc->io_type != XFS_IO_OVERWRITE) 988 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 989 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 990 count++; 991 } 992 993 } while (offset += len, ((bh = bh->b_this_page) != head)); 994 995 if (uptodate && bh == head) 996 SetPageUptodate(page); 997 998 ASSERT(wpc->ioend || list_empty(&submit_list)); 999 1000 out: 1001 /* 1002 * On error, we have to fail the ioend here because we have locked 1003 * buffers in the ioend. If we don't do this, we'll deadlock 1004 * invalidating the page as that tries to lock the buffers on the page. 1005 * Also, because we may have set pages under writeback, we have to make 1006 * sure we run IO completion to mark the error state of the IO 1007 * appropriately, so we can't cancel the ioend directly here. That means 1008 * we have to mark this page as under writeback if we included any 1009 * buffers from it in the ioend chain so that completion treats it 1010 * correctly. 1011 * 1012 * If we didn't include the page in the ioend, the on error we can 1013 * simply discard and unlock it as there are no other users of the page 1014 * or it's buffers right now. The caller will still need to trigger 1015 * submission of outstanding ioends on the writepage context so they are 1016 * treated correctly on error. 1017 */ 1018 if (count) { 1019 xfs_start_page_writeback(page, !error); 1020 1021 /* 1022 * Preserve the original error if there was one, otherwise catch 1023 * submission errors here and propagate into subsequent ioend 1024 * submissions. 1025 */ 1026 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1027 int error2; 1028 1029 list_del_init(&ioend->io_list); 1030 error2 = xfs_submit_ioend(wbc, ioend, error); 1031 if (error2 && !error) 1032 error = error2; 1033 } 1034 } else if (error) { 1035 xfs_aops_discard_page(page); 1036 ClearPageUptodate(page); 1037 unlock_page(page); 1038 } else { 1039 /* 1040 * We can end up here with no error and nothing to write if we 1041 * race with a partial page truncate on a sub-page block sized 1042 * filesystem. In that case we need to mark the page clean. 1043 */ 1044 xfs_start_page_writeback(page, 1); 1045 end_page_writeback(page); 1046 } 1047 1048 mapping_set_error(page->mapping, error); 1049 return error; 1050 } 1051 1052 /* 1053 * Write out a dirty page. 1054 * 1055 * For delalloc space on the page we need to allocate space and flush it. 1056 * For unwritten space on the page we need to start the conversion to 1057 * regular allocated space. 1058 * For any other dirty buffer heads on the page we should flush them. 1059 */ 1060 STATIC int 1061 xfs_do_writepage( 1062 struct page *page, 1063 struct writeback_control *wbc, 1064 void *data) 1065 { 1066 struct xfs_writepage_ctx *wpc = data; 1067 struct inode *inode = page->mapping->host; 1068 loff_t offset; 1069 uint64_t end_offset; 1070 pgoff_t end_index; 1071 1072 trace_xfs_writepage(inode, page, 0, 0); 1073 1074 ASSERT(page_has_buffers(page)); 1075 1076 /* 1077 * Refuse to write the page out if we are called from reclaim context. 1078 * 1079 * This avoids stack overflows when called from deeply used stacks in 1080 * random callers for direct reclaim or memcg reclaim. We explicitly 1081 * allow reclaim from kswapd as the stack usage there is relatively low. 1082 * 1083 * This should never happen except in the case of a VM regression so 1084 * warn about it. 1085 */ 1086 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1087 PF_MEMALLOC)) 1088 goto redirty; 1089 1090 /* 1091 * Given that we do not allow direct reclaim to call us, we should 1092 * never be called while in a filesystem transaction. 1093 */ 1094 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1095 goto redirty; 1096 1097 /* 1098 * Is this page beyond the end of the file? 1099 * 1100 * The page index is less than the end_index, adjust the end_offset 1101 * to the highest offset that this page should represent. 1102 * ----------------------------------------------------- 1103 * | file mapping | <EOF> | 1104 * ----------------------------------------------------- 1105 * | Page ... | Page N-2 | Page N-1 | Page N | | 1106 * ^--------------------------------^----------|-------- 1107 * | desired writeback range | see else | 1108 * ---------------------------------^------------------| 1109 */ 1110 offset = i_size_read(inode); 1111 end_index = offset >> PAGE_SHIFT; 1112 if (page->index < end_index) 1113 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1114 else { 1115 /* 1116 * Check whether the page to write out is beyond or straddles 1117 * i_size or not. 1118 * ------------------------------------------------------- 1119 * | file mapping | <EOF> | 1120 * ------------------------------------------------------- 1121 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1122 * ^--------------------------------^-----------|--------- 1123 * | | Straddles | 1124 * ---------------------------------^-----------|--------| 1125 */ 1126 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1127 1128 /* 1129 * Skip the page if it is fully outside i_size, e.g. due to a 1130 * truncate operation that is in progress. We must redirty the 1131 * page so that reclaim stops reclaiming it. Otherwise 1132 * xfs_vm_releasepage() is called on it and gets confused. 1133 * 1134 * Note that the end_index is unsigned long, it would overflow 1135 * if the given offset is greater than 16TB on 32-bit system 1136 * and if we do check the page is fully outside i_size or not 1137 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1138 * will be evaluated to 0. Hence this page will be redirtied 1139 * and be written out repeatedly which would result in an 1140 * infinite loop, the user program that perform this operation 1141 * will hang. Instead, we can verify this situation by checking 1142 * if the page to write is totally beyond the i_size or if it's 1143 * offset is just equal to the EOF. 1144 */ 1145 if (page->index > end_index || 1146 (page->index == end_index && offset_into_page == 0)) 1147 goto redirty; 1148 1149 /* 1150 * The page straddles i_size. It must be zeroed out on each 1151 * and every writepage invocation because it may be mmapped. 1152 * "A file is mapped in multiples of the page size. For a file 1153 * that is not a multiple of the page size, the remaining 1154 * memory is zeroed when mapped, and writes to that region are 1155 * not written out to the file." 1156 */ 1157 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1158 1159 /* Adjust the end_offset to the end of file */ 1160 end_offset = offset; 1161 } 1162 1163 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1164 1165 redirty: 1166 redirty_page_for_writepage(wbc, page); 1167 unlock_page(page); 1168 return 0; 1169 } 1170 1171 STATIC int 1172 xfs_vm_writepage( 1173 struct page *page, 1174 struct writeback_control *wbc) 1175 { 1176 struct xfs_writepage_ctx wpc = { 1177 .io_type = XFS_IO_INVALID, 1178 }; 1179 int ret; 1180 1181 ret = xfs_do_writepage(page, wbc, &wpc); 1182 if (wpc.ioend) 1183 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1184 return ret; 1185 } 1186 1187 STATIC int 1188 xfs_vm_writepages( 1189 struct address_space *mapping, 1190 struct writeback_control *wbc) 1191 { 1192 struct xfs_writepage_ctx wpc = { 1193 .io_type = XFS_IO_INVALID, 1194 }; 1195 int ret; 1196 1197 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1198 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1199 if (wpc.ioend) 1200 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1201 return ret; 1202 } 1203 1204 STATIC int 1205 xfs_dax_writepages( 1206 struct address_space *mapping, 1207 struct writeback_control *wbc) 1208 { 1209 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1210 return dax_writeback_mapping_range(mapping, 1211 xfs_find_bdev_for_inode(mapping->host), wbc); 1212 } 1213 1214 /* 1215 * Called to move a page into cleanable state - and from there 1216 * to be released. The page should already be clean. We always 1217 * have buffer heads in this call. 1218 * 1219 * Returns 1 if the page is ok to release, 0 otherwise. 1220 */ 1221 STATIC int 1222 xfs_vm_releasepage( 1223 struct page *page, 1224 gfp_t gfp_mask) 1225 { 1226 int delalloc, unwritten; 1227 1228 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1229 1230 /* 1231 * mm accommodates an old ext3 case where clean pages might not have had 1232 * the dirty bit cleared. Thus, it can send actual dirty pages to 1233 * ->releasepage() via shrink_active_list(). Conversely, 1234 * block_invalidatepage() can send pages that are still marked dirty but 1235 * otherwise have invalidated buffers. 1236 * 1237 * We want to release the latter to avoid unnecessary buildup of the 1238 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages 1239 * that are entirely invalidated and need to be released. Hence the 1240 * only time we should get dirty pages here is through 1241 * shrink_active_list() and so we can simply skip those now. 1242 * 1243 * warn if we've left any lingering delalloc/unwritten buffers on clean 1244 * or invalidated pages we are about to release. 1245 */ 1246 if (PageDirty(page)) 1247 return 0; 1248 1249 xfs_count_page_state(page, &delalloc, &unwritten); 1250 1251 if (WARN_ON_ONCE(delalloc)) 1252 return 0; 1253 if (WARN_ON_ONCE(unwritten)) 1254 return 0; 1255 1256 return try_to_free_buffers(page); 1257 } 1258 1259 /* 1260 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1261 * is, so that we can avoid repeated get_blocks calls. 1262 * 1263 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1264 * for blocks beyond EOF must be marked new so that sub block regions can be 1265 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1266 * was just allocated or is unwritten, otherwise the callers would overwrite 1267 * existing data with zeros. Hence we have to split the mapping into a range up 1268 * to and including EOF, and a second mapping for beyond EOF. 1269 */ 1270 static void 1271 xfs_map_trim_size( 1272 struct inode *inode, 1273 sector_t iblock, 1274 struct buffer_head *bh_result, 1275 struct xfs_bmbt_irec *imap, 1276 xfs_off_t offset, 1277 ssize_t size) 1278 { 1279 xfs_off_t mapping_size; 1280 1281 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1282 mapping_size <<= inode->i_blkbits; 1283 1284 ASSERT(mapping_size > 0); 1285 if (mapping_size > size) 1286 mapping_size = size; 1287 if (offset < i_size_read(inode) && 1288 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) { 1289 /* limit mapping to block that spans EOF */ 1290 mapping_size = roundup_64(i_size_read(inode) - offset, 1291 i_blocksize(inode)); 1292 } 1293 if (mapping_size > LONG_MAX) 1294 mapping_size = LONG_MAX; 1295 1296 bh_result->b_size = mapping_size; 1297 } 1298 1299 static int 1300 xfs_get_blocks( 1301 struct inode *inode, 1302 sector_t iblock, 1303 struct buffer_head *bh_result, 1304 int create) 1305 { 1306 struct xfs_inode *ip = XFS_I(inode); 1307 struct xfs_mount *mp = ip->i_mount; 1308 xfs_fileoff_t offset_fsb, end_fsb; 1309 int error = 0; 1310 int lockmode = 0; 1311 struct xfs_bmbt_irec imap; 1312 int nimaps = 1; 1313 xfs_off_t offset; 1314 ssize_t size; 1315 1316 BUG_ON(create); 1317 1318 if (XFS_FORCED_SHUTDOWN(mp)) 1319 return -EIO; 1320 1321 offset = (xfs_off_t)iblock << inode->i_blkbits; 1322 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1323 size = bh_result->b_size; 1324 1325 if (offset >= i_size_read(inode)) 1326 return 0; 1327 1328 /* 1329 * Direct I/O is usually done on preallocated files, so try getting 1330 * a block mapping without an exclusive lock first. 1331 */ 1332 lockmode = xfs_ilock_data_map_shared(ip); 1333 1334 ASSERT(offset <= mp->m_super->s_maxbytes); 1335 if (offset > mp->m_super->s_maxbytes - size) 1336 size = mp->m_super->s_maxbytes - offset; 1337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1338 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1339 1340 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1341 &nimaps, 0); 1342 if (error) 1343 goto out_unlock; 1344 if (!nimaps) { 1345 trace_xfs_get_blocks_notfound(ip, offset, size); 1346 goto out_unlock; 1347 } 1348 1349 trace_xfs_get_blocks_found(ip, offset, size, 1350 imap.br_state == XFS_EXT_UNWRITTEN ? 1351 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1352 xfs_iunlock(ip, lockmode); 1353 1354 /* trim mapping down to size requested */ 1355 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1356 1357 /* 1358 * For unwritten extents do not report a disk address in the buffered 1359 * read case (treat as if we're reading into a hole). 1360 */ 1361 if (xfs_bmap_is_real_extent(&imap)) 1362 xfs_map_buffer(inode, bh_result, &imap, offset); 1363 1364 /* 1365 * If this is a realtime file, data may be on a different device. 1366 * to that pointed to from the buffer_head b_bdev currently. 1367 */ 1368 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1369 return 0; 1370 1371 out_unlock: 1372 xfs_iunlock(ip, lockmode); 1373 return error; 1374 } 1375 1376 STATIC sector_t 1377 xfs_vm_bmap( 1378 struct address_space *mapping, 1379 sector_t block) 1380 { 1381 struct inode *inode = (struct inode *)mapping->host; 1382 struct xfs_inode *ip = XFS_I(inode); 1383 1384 trace_xfs_vm_bmap(XFS_I(inode)); 1385 1386 /* 1387 * The swap code (ab-)uses ->bmap to get a block mapping and then 1388 * bypasses the file system for actual I/O. We really can't allow 1389 * that on reflinks inodes, so we have to skip out here. And yes, 1390 * 0 is the magic code for a bmap error. 1391 * 1392 * Since we don't pass back blockdev info, we can't return bmap 1393 * information for rt files either. 1394 */ 1395 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1396 return 0; 1397 1398 filemap_write_and_wait(mapping); 1399 return generic_block_bmap(mapping, block, xfs_get_blocks); 1400 } 1401 1402 STATIC int 1403 xfs_vm_readpage( 1404 struct file *unused, 1405 struct page *page) 1406 { 1407 trace_xfs_vm_readpage(page->mapping->host, 1); 1408 return mpage_readpage(page, xfs_get_blocks); 1409 } 1410 1411 STATIC int 1412 xfs_vm_readpages( 1413 struct file *unused, 1414 struct address_space *mapping, 1415 struct list_head *pages, 1416 unsigned nr_pages) 1417 { 1418 trace_xfs_vm_readpages(mapping->host, nr_pages); 1419 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1420 } 1421 1422 /* 1423 * This is basically a copy of __set_page_dirty_buffers() with one 1424 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1425 * dirty, we'll never be able to clean them because we don't write buffers 1426 * beyond EOF, and that means we can't invalidate pages that span EOF 1427 * that have been marked dirty. Further, the dirty state can leak into 1428 * the file interior if the file is extended, resulting in all sorts of 1429 * bad things happening as the state does not match the underlying data. 1430 * 1431 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1432 * this only exist because of bufferheads and how the generic code manages them. 1433 */ 1434 STATIC int 1435 xfs_vm_set_page_dirty( 1436 struct page *page) 1437 { 1438 struct address_space *mapping = page->mapping; 1439 struct inode *inode = mapping->host; 1440 loff_t end_offset; 1441 loff_t offset; 1442 int newly_dirty; 1443 1444 if (unlikely(!mapping)) 1445 return !TestSetPageDirty(page); 1446 1447 end_offset = i_size_read(inode); 1448 offset = page_offset(page); 1449 1450 spin_lock(&mapping->private_lock); 1451 if (page_has_buffers(page)) { 1452 struct buffer_head *head = page_buffers(page); 1453 struct buffer_head *bh = head; 1454 1455 do { 1456 if (offset < end_offset) 1457 set_buffer_dirty(bh); 1458 bh = bh->b_this_page; 1459 offset += i_blocksize(inode); 1460 } while (bh != head); 1461 } 1462 /* 1463 * Lock out page->mem_cgroup migration to keep PageDirty 1464 * synchronized with per-memcg dirty page counters. 1465 */ 1466 lock_page_memcg(page); 1467 newly_dirty = !TestSetPageDirty(page); 1468 spin_unlock(&mapping->private_lock); 1469 1470 if (newly_dirty) 1471 __set_page_dirty(page, mapping, 1); 1472 unlock_page_memcg(page); 1473 if (newly_dirty) 1474 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1475 return newly_dirty; 1476 } 1477 1478 const struct address_space_operations xfs_address_space_operations = { 1479 .readpage = xfs_vm_readpage, 1480 .readpages = xfs_vm_readpages, 1481 .writepage = xfs_vm_writepage, 1482 .writepages = xfs_vm_writepages, 1483 .set_page_dirty = xfs_vm_set_page_dirty, 1484 .releasepage = xfs_vm_releasepage, 1485 .invalidatepage = xfs_vm_invalidatepage, 1486 .bmap = xfs_vm_bmap, 1487 .direct_IO = noop_direct_IO, 1488 .migratepage = buffer_migrate_page, 1489 .is_partially_uptodate = block_is_partially_uptodate, 1490 .error_remove_page = generic_error_remove_page, 1491 }; 1492 1493 const struct address_space_operations xfs_dax_aops = { 1494 .writepages = xfs_dax_writepages, 1495 .direct_IO = noop_direct_IO, 1496 .set_page_dirty = noop_set_page_dirty, 1497 .invalidatepage = noop_invalidatepage, 1498 }; 1499