xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40 
41 
42 /*
43  * Prime number of hash buckets since address is used as the key.
44  */
45 #define NVSYNC		37
46 #define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48 
49 void __init
50 xfs_ioend_init(void)
51 {
52 	int i;
53 
54 	for (i = 0; i < NVSYNC; i++)
55 		init_waitqueue_head(&xfs_ioend_wq[i]);
56 }
57 
58 void
59 xfs_ioend_wait(
60 	xfs_inode_t	*ip)
61 {
62 	wait_queue_head_t *wq = to_ioend_wq(ip);
63 
64 	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65 }
66 
67 STATIC void
68 xfs_ioend_wake(
69 	xfs_inode_t	*ip)
70 {
71 	if (atomic_dec_and_test(&ip->i_iocount))
72 		wake_up(to_ioend_wq(ip));
73 }
74 
75 void
76 xfs_count_page_state(
77 	struct page		*page,
78 	int			*delalloc,
79 	int			*unwritten)
80 {
81 	struct buffer_head	*bh, *head;
82 
83 	*delalloc = *unwritten = 0;
84 
85 	bh = head = page_buffers(page);
86 	do {
87 		if (buffer_unwritten(bh))
88 			(*unwritten) = 1;
89 		else if (buffer_delay(bh))
90 			(*delalloc) = 1;
91 	} while ((bh = bh->b_this_page) != head);
92 }
93 
94 STATIC struct block_device *
95 xfs_find_bdev_for_inode(
96 	struct inode		*inode)
97 {
98 	struct xfs_inode	*ip = XFS_I(inode);
99 	struct xfs_mount	*mp = ip->i_mount;
100 
101 	if (XFS_IS_REALTIME_INODE(ip))
102 		return mp->m_rtdev_targp->bt_bdev;
103 	else
104 		return mp->m_ddev_targp->bt_bdev;
105 }
106 
107 /*
108  * We're now finished for good with this ioend structure.
109  * Update the page state via the associated buffer_heads,
110  * release holds on the inode and bio, and finally free
111  * up memory.  Do not use the ioend after this.
112  */
113 STATIC void
114 xfs_destroy_ioend(
115 	xfs_ioend_t		*ioend)
116 {
117 	struct buffer_head	*bh, *next;
118 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
119 
120 	for (bh = ioend->io_buffer_head; bh; bh = next) {
121 		next = bh->b_private;
122 		bh->b_end_io(bh, !ioend->io_error);
123 	}
124 
125 	/*
126 	 * Volume managers supporting multiple paths can send back ENODEV
127 	 * when the final path disappears.  In this case continuing to fill
128 	 * the page cache with dirty data which cannot be written out is
129 	 * evil, so prevent that.
130 	 */
131 	if (unlikely(ioend->io_error == -ENODEV)) {
132 		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 				      __FILE__, __LINE__);
134 	}
135 
136 	xfs_ioend_wake(ip);
137 	mempool_free(ioend, xfs_ioend_pool);
138 }
139 
140 /*
141  * If the end of the current ioend is beyond the current EOF,
142  * return the new EOF value, otherwise zero.
143  */
144 STATIC xfs_fsize_t
145 xfs_ioend_new_eof(
146 	xfs_ioend_t		*ioend)
147 {
148 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
149 	xfs_fsize_t		isize;
150 	xfs_fsize_t		bsize;
151 
152 	bsize = ioend->io_offset + ioend->io_size;
153 	isize = MAX(ip->i_size, ip->i_new_size);
154 	isize = MIN(isize, bsize);
155 	return isize > ip->i_d.di_size ? isize : 0;
156 }
157 
158 /*
159  * Update on-disk file size now that data has been written to disk.  The
160  * current in-memory file size is i_size.  If a write is beyond eof i_new_size
161  * will be the intended file size until i_size is updated.  If this write does
162  * not extend all the way to the valid file size then restrict this update to
163  * the end of the write.
164  *
165  * This function does not block as blocking on the inode lock in IO completion
166  * can lead to IO completion order dependency deadlocks.. If it can't get the
167  * inode ilock it will return EAGAIN. Callers must handle this.
168  */
169 STATIC int
170 xfs_setfilesize(
171 	xfs_ioend_t		*ioend)
172 {
173 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
174 	xfs_fsize_t		isize;
175 
176 	if (unlikely(ioend->io_error))
177 		return 0;
178 
179 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 		return EAGAIN;
181 
182 	isize = xfs_ioend_new_eof(ioend);
183 	if (isize) {
184 		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
185 		ip->i_d.di_size = isize;
186 		xfs_mark_inode_dirty(ip);
187 	}
188 
189 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
190 	return 0;
191 }
192 
193 /*
194  * Schedule IO completion handling on the final put of an ioend.
195  */
196 STATIC void
197 xfs_finish_ioend(
198 	struct xfs_ioend	*ioend)
199 {
200 	if (atomic_dec_and_test(&ioend->io_remaining)) {
201 		if (ioend->io_type == IO_UNWRITTEN)
202 			queue_work(xfsconvertd_workqueue, &ioend->io_work);
203 		else
204 			queue_work(xfsdatad_workqueue, &ioend->io_work);
205 	}
206 }
207 
208 /*
209  * IO write completion.
210  */
211 STATIC void
212 xfs_end_io(
213 	struct work_struct *work)
214 {
215 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
216 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
217 	int		error = 0;
218 
219 	/*
220 	 * For unwritten extents we need to issue transactions to convert a
221 	 * range to normal written extens after the data I/O has finished.
222 	 */
223 	if (ioend->io_type == IO_UNWRITTEN &&
224 	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
225 
226 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
227 						 ioend->io_size);
228 		if (error)
229 			ioend->io_error = error;
230 	}
231 
232 	/*
233 	 * We might have to update the on-disk file size after extending
234 	 * writes.
235 	 */
236 	error = xfs_setfilesize(ioend);
237 	ASSERT(!error || error == EAGAIN);
238 
239 	/*
240 	 * If we didn't complete processing of the ioend, requeue it to the
241 	 * tail of the workqueue for another attempt later. Otherwise destroy
242 	 * it.
243 	 */
244 	if (error == EAGAIN) {
245 		atomic_inc(&ioend->io_remaining);
246 		xfs_finish_ioend(ioend);
247 		/* ensure we don't spin on blocked ioends */
248 		delay(1);
249 	} else {
250 		if (ioend->io_iocb)
251 			aio_complete(ioend->io_iocb, ioend->io_result, 0);
252 		xfs_destroy_ioend(ioend);
253 	}
254 }
255 
256 /*
257  * Call IO completion handling in caller context on the final put of an ioend.
258  */
259 STATIC void
260 xfs_finish_ioend_sync(
261 	struct xfs_ioend	*ioend)
262 {
263 	if (atomic_dec_and_test(&ioend->io_remaining))
264 		xfs_end_io(&ioend->io_work);
265 }
266 
267 /*
268  * Allocate and initialise an IO completion structure.
269  * We need to track unwritten extent write completion here initially.
270  * We'll need to extend this for updating the ondisk inode size later
271  * (vs. incore size).
272  */
273 STATIC xfs_ioend_t *
274 xfs_alloc_ioend(
275 	struct inode		*inode,
276 	unsigned int		type)
277 {
278 	xfs_ioend_t		*ioend;
279 
280 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
281 
282 	/*
283 	 * Set the count to 1 initially, which will prevent an I/O
284 	 * completion callback from happening before we have started
285 	 * all the I/O from calling the completion routine too early.
286 	 */
287 	atomic_set(&ioend->io_remaining, 1);
288 	ioend->io_error = 0;
289 	ioend->io_list = NULL;
290 	ioend->io_type = type;
291 	ioend->io_inode = inode;
292 	ioend->io_buffer_head = NULL;
293 	ioend->io_buffer_tail = NULL;
294 	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
295 	ioend->io_offset = 0;
296 	ioend->io_size = 0;
297 	ioend->io_iocb = NULL;
298 	ioend->io_result = 0;
299 
300 	INIT_WORK(&ioend->io_work, xfs_end_io);
301 	return ioend;
302 }
303 
304 STATIC int
305 xfs_map_blocks(
306 	struct inode		*inode,
307 	loff_t			offset,
308 	struct xfs_bmbt_irec	*imap,
309 	int			type,
310 	int			nonblocking)
311 {
312 	struct xfs_inode	*ip = XFS_I(inode);
313 	struct xfs_mount	*mp = ip->i_mount;
314 	ssize_t			count = 1 << inode->i_blkbits;
315 	xfs_fileoff_t		offset_fsb, end_fsb;
316 	int			error = 0;
317 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
318 	int			nimaps = 1;
319 
320 	if (XFS_FORCED_SHUTDOWN(mp))
321 		return -XFS_ERROR(EIO);
322 
323 	if (type == IO_UNWRITTEN)
324 		bmapi_flags |= XFS_BMAPI_IGSTATE;
325 
326 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
327 		if (nonblocking)
328 			return -XFS_ERROR(EAGAIN);
329 		xfs_ilock(ip, XFS_ILOCK_SHARED);
330 	}
331 
332 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
333 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
334 	ASSERT(offset <= mp->m_maxioffset);
335 
336 	if (offset + count > mp->m_maxioffset)
337 		count = mp->m_maxioffset - offset;
338 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
339 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
340 	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
341 			  bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
342 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
343 
344 	if (error)
345 		return -XFS_ERROR(error);
346 
347 	if (type == IO_DELALLOC &&
348 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
349 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
350 		if (!error)
351 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
352 		return -XFS_ERROR(error);
353 	}
354 
355 #ifdef DEBUG
356 	if (type == IO_UNWRITTEN) {
357 		ASSERT(nimaps);
358 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
359 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
360 	}
361 #endif
362 	if (nimaps)
363 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
364 	return 0;
365 }
366 
367 STATIC int
368 xfs_imap_valid(
369 	struct inode		*inode,
370 	struct xfs_bmbt_irec	*imap,
371 	xfs_off_t		offset)
372 {
373 	offset >>= inode->i_blkbits;
374 
375 	return offset >= imap->br_startoff &&
376 		offset < imap->br_startoff + imap->br_blockcount;
377 }
378 
379 /*
380  * BIO completion handler for buffered IO.
381  */
382 STATIC void
383 xfs_end_bio(
384 	struct bio		*bio,
385 	int			error)
386 {
387 	xfs_ioend_t		*ioend = bio->bi_private;
388 
389 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
390 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
391 
392 	/* Toss bio and pass work off to an xfsdatad thread */
393 	bio->bi_private = NULL;
394 	bio->bi_end_io = NULL;
395 	bio_put(bio);
396 
397 	xfs_finish_ioend(ioend);
398 }
399 
400 STATIC void
401 xfs_submit_ioend_bio(
402 	struct writeback_control *wbc,
403 	xfs_ioend_t		*ioend,
404 	struct bio		*bio)
405 {
406 	atomic_inc(&ioend->io_remaining);
407 	bio->bi_private = ioend;
408 	bio->bi_end_io = xfs_end_bio;
409 
410 	/*
411 	 * If the I/O is beyond EOF we mark the inode dirty immediately
412 	 * but don't update the inode size until I/O completion.
413 	 */
414 	if (xfs_ioend_new_eof(ioend))
415 		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
416 
417 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
418 }
419 
420 STATIC struct bio *
421 xfs_alloc_ioend_bio(
422 	struct buffer_head	*bh)
423 {
424 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
425 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
426 
427 	ASSERT(bio->bi_private == NULL);
428 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
429 	bio->bi_bdev = bh->b_bdev;
430 	return bio;
431 }
432 
433 STATIC void
434 xfs_start_buffer_writeback(
435 	struct buffer_head	*bh)
436 {
437 	ASSERT(buffer_mapped(bh));
438 	ASSERT(buffer_locked(bh));
439 	ASSERT(!buffer_delay(bh));
440 	ASSERT(!buffer_unwritten(bh));
441 
442 	mark_buffer_async_write(bh);
443 	set_buffer_uptodate(bh);
444 	clear_buffer_dirty(bh);
445 }
446 
447 STATIC void
448 xfs_start_page_writeback(
449 	struct page		*page,
450 	int			clear_dirty,
451 	int			buffers)
452 {
453 	ASSERT(PageLocked(page));
454 	ASSERT(!PageWriteback(page));
455 	if (clear_dirty)
456 		clear_page_dirty_for_io(page);
457 	set_page_writeback(page);
458 	unlock_page(page);
459 	/* If no buffers on the page are to be written, finish it here */
460 	if (!buffers)
461 		end_page_writeback(page);
462 }
463 
464 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465 {
466 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467 }
468 
469 /*
470  * Submit all of the bios for all of the ioends we have saved up, covering the
471  * initial writepage page and also any probed pages.
472  *
473  * Because we may have multiple ioends spanning a page, we need to start
474  * writeback on all the buffers before we submit them for I/O. If we mark the
475  * buffers as we got, then we can end up with a page that only has buffers
476  * marked async write and I/O complete on can occur before we mark the other
477  * buffers async write.
478  *
479  * The end result of this is that we trip a bug in end_page_writeback() because
480  * we call it twice for the one page as the code in end_buffer_async_write()
481  * assumes that all buffers on the page are started at the same time.
482  *
483  * The fix is two passes across the ioend list - one to start writeback on the
484  * buffer_heads, and then submit them for I/O on the second pass.
485  */
486 STATIC void
487 xfs_submit_ioend(
488 	struct writeback_control *wbc,
489 	xfs_ioend_t		*ioend)
490 {
491 	xfs_ioend_t		*head = ioend;
492 	xfs_ioend_t		*next;
493 	struct buffer_head	*bh;
494 	struct bio		*bio;
495 	sector_t		lastblock = 0;
496 
497 	/* Pass 1 - start writeback */
498 	do {
499 		next = ioend->io_list;
500 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
501 			xfs_start_buffer_writeback(bh);
502 	} while ((ioend = next) != NULL);
503 
504 	/* Pass 2 - submit I/O */
505 	ioend = head;
506 	do {
507 		next = ioend->io_list;
508 		bio = NULL;
509 
510 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
511 
512 			if (!bio) {
513  retry:
514 				bio = xfs_alloc_ioend_bio(bh);
515 			} else if (bh->b_blocknr != lastblock + 1) {
516 				xfs_submit_ioend_bio(wbc, ioend, bio);
517 				goto retry;
518 			}
519 
520 			if (bio_add_buffer(bio, bh) != bh->b_size) {
521 				xfs_submit_ioend_bio(wbc, ioend, bio);
522 				goto retry;
523 			}
524 
525 			lastblock = bh->b_blocknr;
526 		}
527 		if (bio)
528 			xfs_submit_ioend_bio(wbc, ioend, bio);
529 		xfs_finish_ioend(ioend);
530 	} while ((ioend = next) != NULL);
531 }
532 
533 /*
534  * Cancel submission of all buffer_heads so far in this endio.
535  * Toss the endio too.  Only ever called for the initial page
536  * in a writepage request, so only ever one page.
537  */
538 STATIC void
539 xfs_cancel_ioend(
540 	xfs_ioend_t		*ioend)
541 {
542 	xfs_ioend_t		*next;
543 	struct buffer_head	*bh, *next_bh;
544 
545 	do {
546 		next = ioend->io_list;
547 		bh = ioend->io_buffer_head;
548 		do {
549 			next_bh = bh->b_private;
550 			clear_buffer_async_write(bh);
551 			unlock_buffer(bh);
552 		} while ((bh = next_bh) != NULL);
553 
554 		xfs_ioend_wake(XFS_I(ioend->io_inode));
555 		mempool_free(ioend, xfs_ioend_pool);
556 	} while ((ioend = next) != NULL);
557 }
558 
559 /*
560  * Test to see if we've been building up a completion structure for
561  * earlier buffers -- if so, we try to append to this ioend if we
562  * can, otherwise we finish off any current ioend and start another.
563  * Return true if we've finished the given ioend.
564  */
565 STATIC void
566 xfs_add_to_ioend(
567 	struct inode		*inode,
568 	struct buffer_head	*bh,
569 	xfs_off_t		offset,
570 	unsigned int		type,
571 	xfs_ioend_t		**result,
572 	int			need_ioend)
573 {
574 	xfs_ioend_t		*ioend = *result;
575 
576 	if (!ioend || need_ioend || type != ioend->io_type) {
577 		xfs_ioend_t	*previous = *result;
578 
579 		ioend = xfs_alloc_ioend(inode, type);
580 		ioend->io_offset = offset;
581 		ioend->io_buffer_head = bh;
582 		ioend->io_buffer_tail = bh;
583 		if (previous)
584 			previous->io_list = ioend;
585 		*result = ioend;
586 	} else {
587 		ioend->io_buffer_tail->b_private = bh;
588 		ioend->io_buffer_tail = bh;
589 	}
590 
591 	bh->b_private = NULL;
592 	ioend->io_size += bh->b_size;
593 }
594 
595 STATIC void
596 xfs_map_buffer(
597 	struct inode		*inode,
598 	struct buffer_head	*bh,
599 	struct xfs_bmbt_irec	*imap,
600 	xfs_off_t		offset)
601 {
602 	sector_t		bn;
603 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
604 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
605 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
606 
607 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
608 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
609 
610 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
611 	      ((offset - iomap_offset) >> inode->i_blkbits);
612 
613 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
614 
615 	bh->b_blocknr = bn;
616 	set_buffer_mapped(bh);
617 }
618 
619 STATIC void
620 xfs_map_at_offset(
621 	struct inode		*inode,
622 	struct buffer_head	*bh,
623 	struct xfs_bmbt_irec	*imap,
624 	xfs_off_t		offset)
625 {
626 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
627 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
628 
629 	xfs_map_buffer(inode, bh, imap, offset);
630 	set_buffer_mapped(bh);
631 	clear_buffer_delay(bh);
632 	clear_buffer_unwritten(bh);
633 }
634 
635 /*
636  * Test if a given page is suitable for writing as part of an unwritten
637  * or delayed allocate extent.
638  */
639 STATIC int
640 xfs_is_delayed_page(
641 	struct page		*page,
642 	unsigned int		type)
643 {
644 	if (PageWriteback(page))
645 		return 0;
646 
647 	if (page->mapping && page_has_buffers(page)) {
648 		struct buffer_head	*bh, *head;
649 		int			acceptable = 0;
650 
651 		bh = head = page_buffers(page);
652 		do {
653 			if (buffer_unwritten(bh))
654 				acceptable = (type == IO_UNWRITTEN);
655 			else if (buffer_delay(bh))
656 				acceptable = (type == IO_DELALLOC);
657 			else if (buffer_dirty(bh) && buffer_mapped(bh))
658 				acceptable = (type == IO_OVERWRITE);
659 			else
660 				break;
661 		} while ((bh = bh->b_this_page) != head);
662 
663 		if (acceptable)
664 			return 1;
665 	}
666 
667 	return 0;
668 }
669 
670 /*
671  * Allocate & map buffers for page given the extent map. Write it out.
672  * except for the original page of a writepage, this is called on
673  * delalloc/unwritten pages only, for the original page it is possible
674  * that the page has no mapping at all.
675  */
676 STATIC int
677 xfs_convert_page(
678 	struct inode		*inode,
679 	struct page		*page,
680 	loff_t			tindex,
681 	struct xfs_bmbt_irec	*imap,
682 	xfs_ioend_t		**ioendp,
683 	struct writeback_control *wbc)
684 {
685 	struct buffer_head	*bh, *head;
686 	xfs_off_t		end_offset;
687 	unsigned long		p_offset;
688 	unsigned int		type;
689 	int			len, page_dirty;
690 	int			count = 0, done = 0, uptodate = 1;
691  	xfs_off_t		offset = page_offset(page);
692 
693 	if (page->index != tindex)
694 		goto fail;
695 	if (!trylock_page(page))
696 		goto fail;
697 	if (PageWriteback(page))
698 		goto fail_unlock_page;
699 	if (page->mapping != inode->i_mapping)
700 		goto fail_unlock_page;
701 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
702 		goto fail_unlock_page;
703 
704 	/*
705 	 * page_dirty is initially a count of buffers on the page before
706 	 * EOF and is decremented as we move each into a cleanable state.
707 	 *
708 	 * Derivation:
709 	 *
710 	 * End offset is the highest offset that this page should represent.
711 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
712 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
713 	 * hence give us the correct page_dirty count. On any other page,
714 	 * it will be zero and in that case we need page_dirty to be the
715 	 * count of buffers on the page.
716 	 */
717 	end_offset = min_t(unsigned long long,
718 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
719 			i_size_read(inode));
720 
721 	len = 1 << inode->i_blkbits;
722 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
723 					PAGE_CACHE_SIZE);
724 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
725 	page_dirty = p_offset / len;
726 
727 	bh = head = page_buffers(page);
728 	do {
729 		if (offset >= end_offset)
730 			break;
731 		if (!buffer_uptodate(bh))
732 			uptodate = 0;
733 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
734 			done = 1;
735 			continue;
736 		}
737 
738 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
739 		    buffer_mapped(bh)) {
740 			if (buffer_unwritten(bh))
741 				type = IO_UNWRITTEN;
742 			else if (buffer_delay(bh))
743 				type = IO_DELALLOC;
744 			else
745 				type = IO_OVERWRITE;
746 
747 			if (!xfs_imap_valid(inode, imap, offset)) {
748 				done = 1;
749 				continue;
750 			}
751 
752 			lock_buffer(bh);
753 			if (type != IO_OVERWRITE)
754 				xfs_map_at_offset(inode, bh, imap, offset);
755 			xfs_add_to_ioend(inode, bh, offset, type,
756 					 ioendp, done);
757 
758 			page_dirty--;
759 			count++;
760 		} else {
761 			done = 1;
762 		}
763 	} while (offset += len, (bh = bh->b_this_page) != head);
764 
765 	if (uptodate && bh == head)
766 		SetPageUptodate(page);
767 
768 	if (count) {
769 		if (--wbc->nr_to_write <= 0 &&
770 		    wbc->sync_mode == WB_SYNC_NONE)
771 			done = 1;
772 	}
773 	xfs_start_page_writeback(page, !page_dirty, count);
774 
775 	return done;
776  fail_unlock_page:
777 	unlock_page(page);
778  fail:
779 	return 1;
780 }
781 
782 /*
783  * Convert & write out a cluster of pages in the same extent as defined
784  * by mp and following the start page.
785  */
786 STATIC void
787 xfs_cluster_write(
788 	struct inode		*inode,
789 	pgoff_t			tindex,
790 	struct xfs_bmbt_irec	*imap,
791 	xfs_ioend_t		**ioendp,
792 	struct writeback_control *wbc,
793 	pgoff_t			tlast)
794 {
795 	struct pagevec		pvec;
796 	int			done = 0, i;
797 
798 	pagevec_init(&pvec, 0);
799 	while (!done && tindex <= tlast) {
800 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
801 
802 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
803 			break;
804 
805 		for (i = 0; i < pagevec_count(&pvec); i++) {
806 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
807 					imap, ioendp, wbc);
808 			if (done)
809 				break;
810 		}
811 
812 		pagevec_release(&pvec);
813 		cond_resched();
814 	}
815 }
816 
817 STATIC void
818 xfs_vm_invalidatepage(
819 	struct page		*page,
820 	unsigned long		offset)
821 {
822 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
823 	block_invalidatepage(page, offset);
824 }
825 
826 /*
827  * If the page has delalloc buffers on it, we need to punch them out before we
828  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
829  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
830  * is done on that same region - the delalloc extent is returned when none is
831  * supposed to be there.
832  *
833  * We prevent this by truncating away the delalloc regions on the page before
834  * invalidating it. Because they are delalloc, we can do this without needing a
835  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
836  * truncation without a transaction as there is no space left for block
837  * reservation (typically why we see a ENOSPC in writeback).
838  *
839  * This is not a performance critical path, so for now just do the punching a
840  * buffer head at a time.
841  */
842 STATIC void
843 xfs_aops_discard_page(
844 	struct page		*page)
845 {
846 	struct inode		*inode = page->mapping->host;
847 	struct xfs_inode	*ip = XFS_I(inode);
848 	struct buffer_head	*bh, *head;
849 	loff_t			offset = page_offset(page);
850 
851 	if (!xfs_is_delayed_page(page, IO_DELALLOC))
852 		goto out_invalidate;
853 
854 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
855 		goto out_invalidate;
856 
857 	xfs_alert(ip->i_mount,
858 		"page discard on page %p, inode 0x%llx, offset %llu.",
859 			page, ip->i_ino, offset);
860 
861 	xfs_ilock(ip, XFS_ILOCK_EXCL);
862 	bh = head = page_buffers(page);
863 	do {
864 		int		error;
865 		xfs_fileoff_t	start_fsb;
866 
867 		if (!buffer_delay(bh))
868 			goto next_buffer;
869 
870 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
871 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
872 		if (error) {
873 			/* something screwed, just bail */
874 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
875 				xfs_alert(ip->i_mount,
876 			"page discard unable to remove delalloc mapping.");
877 			}
878 			break;
879 		}
880 next_buffer:
881 		offset += 1 << inode->i_blkbits;
882 
883 	} while ((bh = bh->b_this_page) != head);
884 
885 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
886 out_invalidate:
887 	xfs_vm_invalidatepage(page, 0);
888 	return;
889 }
890 
891 /*
892  * Write out a dirty page.
893  *
894  * For delalloc space on the page we need to allocate space and flush it.
895  * For unwritten space on the page we need to start the conversion to
896  * regular allocated space.
897  * For any other dirty buffer heads on the page we should flush them.
898  */
899 STATIC int
900 xfs_vm_writepage(
901 	struct page		*page,
902 	struct writeback_control *wbc)
903 {
904 	struct inode		*inode = page->mapping->host;
905 	struct buffer_head	*bh, *head;
906 	struct xfs_bmbt_irec	imap;
907 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
908 	loff_t			offset;
909 	unsigned int		type;
910 	__uint64_t              end_offset;
911 	pgoff_t                 end_index, last_index;
912 	ssize_t			len;
913 	int			err, imap_valid = 0, uptodate = 1;
914 	int			count = 0;
915 	int			nonblocking = 0;
916 
917 	trace_xfs_writepage(inode, page, 0);
918 
919 	ASSERT(page_has_buffers(page));
920 
921 	/*
922 	 * Refuse to write the page out if we are called from reclaim context.
923 	 *
924 	 * This avoids stack overflows when called from deeply used stacks in
925 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
926 	 * allow reclaim from kswapd as the stack usage there is relatively low.
927 	 *
928 	 * This should really be done by the core VM, but until that happens
929 	 * filesystems like XFS, btrfs and ext4 have to take care of this
930 	 * by themselves.
931 	 */
932 	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
933 		goto redirty;
934 
935 	/*
936 	 * Given that we do not allow direct reclaim to call us, we should
937 	 * never be called while in a filesystem transaction.
938 	 */
939 	if (WARN_ON(current->flags & PF_FSTRANS))
940 		goto redirty;
941 
942 	/* Is this page beyond the end of the file? */
943 	offset = i_size_read(inode);
944 	end_index = offset >> PAGE_CACHE_SHIFT;
945 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
946 	if (page->index >= end_index) {
947 		if ((page->index >= end_index + 1) ||
948 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
949 			unlock_page(page);
950 			return 0;
951 		}
952 	}
953 
954 	end_offset = min_t(unsigned long long,
955 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
956 			offset);
957 	len = 1 << inode->i_blkbits;
958 
959 	bh = head = page_buffers(page);
960 	offset = page_offset(page);
961 	type = IO_OVERWRITE;
962 
963 	if (wbc->sync_mode == WB_SYNC_NONE)
964 		nonblocking = 1;
965 
966 	do {
967 		int new_ioend = 0;
968 
969 		if (offset >= end_offset)
970 			break;
971 		if (!buffer_uptodate(bh))
972 			uptodate = 0;
973 
974 		/*
975 		 * set_page_dirty dirties all buffers in a page, independent
976 		 * of their state.  The dirty state however is entirely
977 		 * meaningless for holes (!mapped && uptodate), so skip
978 		 * buffers covering holes here.
979 		 */
980 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
981 			imap_valid = 0;
982 			continue;
983 		}
984 
985 		if (buffer_unwritten(bh)) {
986 			if (type != IO_UNWRITTEN) {
987 				type = IO_UNWRITTEN;
988 				imap_valid = 0;
989 			}
990 		} else if (buffer_delay(bh)) {
991 			if (type != IO_DELALLOC) {
992 				type = IO_DELALLOC;
993 				imap_valid = 0;
994 			}
995 		} else if (buffer_uptodate(bh)) {
996 			if (type != IO_OVERWRITE) {
997 				type = IO_OVERWRITE;
998 				imap_valid = 0;
999 			}
1000 		} else {
1001 			if (PageUptodate(page)) {
1002 				ASSERT(buffer_mapped(bh));
1003 				imap_valid = 0;
1004 			}
1005 			continue;
1006 		}
1007 
1008 		if (imap_valid)
1009 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1010 		if (!imap_valid) {
1011 			/*
1012 			 * If we didn't have a valid mapping then we need to
1013 			 * put the new mapping into a separate ioend structure.
1014 			 * This ensures non-contiguous extents always have
1015 			 * separate ioends, which is particularly important
1016 			 * for unwritten extent conversion at I/O completion
1017 			 * time.
1018 			 */
1019 			new_ioend = 1;
1020 			err = xfs_map_blocks(inode, offset, &imap, type,
1021 					     nonblocking);
1022 			if (err)
1023 				goto error;
1024 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1025 		}
1026 		if (imap_valid) {
1027 			lock_buffer(bh);
1028 			if (type != IO_OVERWRITE)
1029 				xfs_map_at_offset(inode, bh, &imap, offset);
1030 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031 					 new_ioend);
1032 			count++;
1033 		}
1034 
1035 		if (!iohead)
1036 			iohead = ioend;
1037 
1038 	} while (offset += len, ((bh = bh->b_this_page) != head));
1039 
1040 	if (uptodate && bh == head)
1041 		SetPageUptodate(page);
1042 
1043 	xfs_start_page_writeback(page, 1, count);
1044 
1045 	if (ioend && imap_valid) {
1046 		xfs_off_t		end_index;
1047 
1048 		end_index = imap.br_startoff + imap.br_blockcount;
1049 
1050 		/* to bytes */
1051 		end_index <<= inode->i_blkbits;
1052 
1053 		/* to pages */
1054 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1055 
1056 		/* check against file size */
1057 		if (end_index > last_index)
1058 			end_index = last_index;
1059 
1060 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061 				  wbc, end_index);
1062 	}
1063 
1064 	if (iohead)
1065 		xfs_submit_ioend(wbc, iohead);
1066 
1067 	return 0;
1068 
1069 error:
1070 	if (iohead)
1071 		xfs_cancel_ioend(iohead);
1072 
1073 	if (err == -EAGAIN)
1074 		goto redirty;
1075 
1076 	xfs_aops_discard_page(page);
1077 	ClearPageUptodate(page);
1078 	unlock_page(page);
1079 	return err;
1080 
1081 redirty:
1082 	redirty_page_for_writepage(wbc, page);
1083 	unlock_page(page);
1084 	return 0;
1085 }
1086 
1087 STATIC int
1088 xfs_vm_writepages(
1089 	struct address_space	*mapping,
1090 	struct writeback_control *wbc)
1091 {
1092 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093 	return generic_writepages(mapping, wbc);
1094 }
1095 
1096 /*
1097  * Called to move a page into cleanable state - and from there
1098  * to be released. The page should already be clean. We always
1099  * have buffer heads in this call.
1100  *
1101  * Returns 1 if the page is ok to release, 0 otherwise.
1102  */
1103 STATIC int
1104 xfs_vm_releasepage(
1105 	struct page		*page,
1106 	gfp_t			gfp_mask)
1107 {
1108 	int			delalloc, unwritten;
1109 
1110 	trace_xfs_releasepage(page->mapping->host, page, 0);
1111 
1112 	xfs_count_page_state(page, &delalloc, &unwritten);
1113 
1114 	if (WARN_ON(delalloc))
1115 		return 0;
1116 	if (WARN_ON(unwritten))
1117 		return 0;
1118 
1119 	return try_to_free_buffers(page);
1120 }
1121 
1122 STATIC int
1123 __xfs_get_blocks(
1124 	struct inode		*inode,
1125 	sector_t		iblock,
1126 	struct buffer_head	*bh_result,
1127 	int			create,
1128 	int			direct)
1129 {
1130 	struct xfs_inode	*ip = XFS_I(inode);
1131 	struct xfs_mount	*mp = ip->i_mount;
1132 	xfs_fileoff_t		offset_fsb, end_fsb;
1133 	int			error = 0;
1134 	int			lockmode = 0;
1135 	struct xfs_bmbt_irec	imap;
1136 	int			nimaps = 1;
1137 	xfs_off_t		offset;
1138 	ssize_t			size;
1139 	int			new = 0;
1140 
1141 	if (XFS_FORCED_SHUTDOWN(mp))
1142 		return -XFS_ERROR(EIO);
1143 
1144 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1145 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146 	size = bh_result->b_size;
1147 
1148 	if (!create && direct && offset >= i_size_read(inode))
1149 		return 0;
1150 
1151 	if (create) {
1152 		lockmode = XFS_ILOCK_EXCL;
1153 		xfs_ilock(ip, lockmode);
1154 	} else {
1155 		lockmode = xfs_ilock_map_shared(ip);
1156 	}
1157 
1158 	ASSERT(offset <= mp->m_maxioffset);
1159 	if (offset + size > mp->m_maxioffset)
1160 		size = mp->m_maxioffset - offset;
1161 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163 
1164 	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165 			  XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1166 	if (error)
1167 		goto out_unlock;
1168 
1169 	if (create &&
1170 	    (!nimaps ||
1171 	     (imap.br_startblock == HOLESTARTBLOCK ||
1172 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1173 		if (direct) {
1174 			error = xfs_iomap_write_direct(ip, offset, size,
1175 						       &imap, nimaps);
1176 		} else {
1177 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178 		}
1179 		if (error)
1180 			goto out_unlock;
1181 
1182 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183 	} else if (nimaps) {
1184 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185 	} else {
1186 		trace_xfs_get_blocks_notfound(ip, offset, size);
1187 		goto out_unlock;
1188 	}
1189 	xfs_iunlock(ip, lockmode);
1190 
1191 	if (imap.br_startblock != HOLESTARTBLOCK &&
1192 	    imap.br_startblock != DELAYSTARTBLOCK) {
1193 		/*
1194 		 * For unwritten extents do not report a disk address on
1195 		 * the read case (treat as if we're reading into a hole).
1196 		 */
1197 		if (create || !ISUNWRITTEN(&imap))
1198 			xfs_map_buffer(inode, bh_result, &imap, offset);
1199 		if (create && ISUNWRITTEN(&imap)) {
1200 			if (direct)
1201 				bh_result->b_private = inode;
1202 			set_buffer_unwritten(bh_result);
1203 		}
1204 	}
1205 
1206 	/*
1207 	 * If this is a realtime file, data may be on a different device.
1208 	 * to that pointed to from the buffer_head b_bdev currently.
1209 	 */
1210 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1211 
1212 	/*
1213 	 * If we previously allocated a block out beyond eof and we are now
1214 	 * coming back to use it then we will need to flag it as new even if it
1215 	 * has a disk address.
1216 	 *
1217 	 * With sub-block writes into unwritten extents we also need to mark
1218 	 * the buffer as new so that the unwritten parts of the buffer gets
1219 	 * correctly zeroed.
1220 	 */
1221 	if (create &&
1222 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223 	     (offset >= i_size_read(inode)) ||
1224 	     (new || ISUNWRITTEN(&imap))))
1225 		set_buffer_new(bh_result);
1226 
1227 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1228 		BUG_ON(direct);
1229 		if (create) {
1230 			set_buffer_uptodate(bh_result);
1231 			set_buffer_mapped(bh_result);
1232 			set_buffer_delay(bh_result);
1233 		}
1234 	}
1235 
1236 	/*
1237 	 * If this is O_DIRECT or the mpage code calling tell them how large
1238 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1239 	 */
1240 	if (direct || size > (1 << inode->i_blkbits)) {
1241 		xfs_off_t		mapping_size;
1242 
1243 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244 		mapping_size <<= inode->i_blkbits;
1245 
1246 		ASSERT(mapping_size > 0);
1247 		if (mapping_size > size)
1248 			mapping_size = size;
1249 		if (mapping_size > LONG_MAX)
1250 			mapping_size = LONG_MAX;
1251 
1252 		bh_result->b_size = mapping_size;
1253 	}
1254 
1255 	return 0;
1256 
1257 out_unlock:
1258 	xfs_iunlock(ip, lockmode);
1259 	return -error;
1260 }
1261 
1262 int
1263 xfs_get_blocks(
1264 	struct inode		*inode,
1265 	sector_t		iblock,
1266 	struct buffer_head	*bh_result,
1267 	int			create)
1268 {
1269 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270 }
1271 
1272 STATIC int
1273 xfs_get_blocks_direct(
1274 	struct inode		*inode,
1275 	sector_t		iblock,
1276 	struct buffer_head	*bh_result,
1277 	int			create)
1278 {
1279 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1280 }
1281 
1282 /*
1283  * Complete a direct I/O write request.
1284  *
1285  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286  * need to issue a transaction to convert the range from unwritten to written
1287  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1288  * to do this and we are done.  But in case this was a successful AIO
1289  * request this handler is called from interrupt context, from which we
1290  * can't start transactions.  In that case offload the I/O completion to
1291  * the workqueues we also use for buffered I/O completion.
1292  */
1293 STATIC void
1294 xfs_end_io_direct_write(
1295 	struct kiocb		*iocb,
1296 	loff_t			offset,
1297 	ssize_t			size,
1298 	void			*private,
1299 	int			ret,
1300 	bool			is_async)
1301 {
1302 	struct xfs_ioend	*ioend = iocb->private;
1303 	struct inode		*inode = ioend->io_inode;
1304 
1305 	/*
1306 	 * blockdev_direct_IO can return an error even after the I/O
1307 	 * completion handler was called.  Thus we need to protect
1308 	 * against double-freeing.
1309 	 */
1310 	iocb->private = NULL;
1311 
1312 	ioend->io_offset = offset;
1313 	ioend->io_size = size;
1314 	if (private && size > 0)
1315 		ioend->io_type = IO_UNWRITTEN;
1316 
1317 	if (is_async) {
1318 		/*
1319 		 * If we are converting an unwritten extent we need to delay
1320 		 * the AIO completion until after the unwrittent extent
1321 		 * conversion has completed, otherwise do it ASAP.
1322 		 */
1323 		if (ioend->io_type == IO_UNWRITTEN) {
1324 			ioend->io_iocb = iocb;
1325 			ioend->io_result = ret;
1326 		} else {
1327 			aio_complete(iocb, ret, 0);
1328 		}
1329 		xfs_finish_ioend(ioend);
1330 	} else {
1331 		xfs_finish_ioend_sync(ioend);
1332 	}
1333 
1334 	/* XXX: probably should move into the real I/O completion handler */
1335 	inode_dio_done(inode);
1336 }
1337 
1338 STATIC ssize_t
1339 xfs_vm_direct_IO(
1340 	int			rw,
1341 	struct kiocb		*iocb,
1342 	const struct iovec	*iov,
1343 	loff_t			offset,
1344 	unsigned long		nr_segs)
1345 {
1346 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1347 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1348 	ssize_t			ret;
1349 
1350 	if (rw & WRITE) {
1351 		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1352 
1353 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354 					    offset, nr_segs,
1355 					    xfs_get_blocks_direct,
1356 					    xfs_end_io_direct_write, NULL, 0);
1357 		if (ret != -EIOCBQUEUED && iocb->private)
1358 			xfs_destroy_ioend(iocb->private);
1359 	} else {
1360 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361 					    offset, nr_segs,
1362 					    xfs_get_blocks_direct,
1363 					    NULL, NULL, 0);
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 STATIC void
1370 xfs_vm_write_failed(
1371 	struct address_space	*mapping,
1372 	loff_t			to)
1373 {
1374 	struct inode		*inode = mapping->host;
1375 
1376 	if (to > inode->i_size) {
1377 		/*
1378 		 * punch out the delalloc blocks we have already allocated. We
1379 		 * don't call xfs_setattr() to do this as we may be in the
1380 		 * middle of a multi-iovec write and so the vfs inode->i_size
1381 		 * will not match the xfs ip->i_size and so it will zero too
1382 		 * much. Hence we jus truncate the page cache to zero what is
1383 		 * necessary and punch the delalloc blocks directly.
1384 		 */
1385 		struct xfs_inode	*ip = XFS_I(inode);
1386 		xfs_fileoff_t		start_fsb;
1387 		xfs_fileoff_t		end_fsb;
1388 		int			error;
1389 
1390 		truncate_pagecache(inode, to, inode->i_size);
1391 
1392 		/*
1393 		 * Check if there are any blocks that are outside of i_size
1394 		 * that need to be trimmed back.
1395 		 */
1396 		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397 		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398 		if (end_fsb <= start_fsb)
1399 			return;
1400 
1401 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1402 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403 							end_fsb - start_fsb);
1404 		if (error) {
1405 			/* something screwed, just bail */
1406 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407 				xfs_alert(ip->i_mount,
1408 			"xfs_vm_write_failed: unable to clean up ino %lld",
1409 						ip->i_ino);
1410 			}
1411 		}
1412 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413 	}
1414 }
1415 
1416 STATIC int
1417 xfs_vm_write_begin(
1418 	struct file		*file,
1419 	struct address_space	*mapping,
1420 	loff_t			pos,
1421 	unsigned		len,
1422 	unsigned		flags,
1423 	struct page		**pagep,
1424 	void			**fsdata)
1425 {
1426 	int			ret;
1427 
1428 	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429 				pagep, xfs_get_blocks);
1430 	if (unlikely(ret))
1431 		xfs_vm_write_failed(mapping, pos + len);
1432 	return ret;
1433 }
1434 
1435 STATIC int
1436 xfs_vm_write_end(
1437 	struct file		*file,
1438 	struct address_space	*mapping,
1439 	loff_t			pos,
1440 	unsigned		len,
1441 	unsigned		copied,
1442 	struct page		*page,
1443 	void			*fsdata)
1444 {
1445 	int			ret;
1446 
1447 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448 	if (unlikely(ret < len))
1449 		xfs_vm_write_failed(mapping, pos + len);
1450 	return ret;
1451 }
1452 
1453 STATIC sector_t
1454 xfs_vm_bmap(
1455 	struct address_space	*mapping,
1456 	sector_t		block)
1457 {
1458 	struct inode		*inode = (struct inode *)mapping->host;
1459 	struct xfs_inode	*ip = XFS_I(inode);
1460 
1461 	trace_xfs_vm_bmap(XFS_I(inode));
1462 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1465 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1466 }
1467 
1468 STATIC int
1469 xfs_vm_readpage(
1470 	struct file		*unused,
1471 	struct page		*page)
1472 {
1473 	return mpage_readpage(page, xfs_get_blocks);
1474 }
1475 
1476 STATIC int
1477 xfs_vm_readpages(
1478 	struct file		*unused,
1479 	struct address_space	*mapping,
1480 	struct list_head	*pages,
1481 	unsigned		nr_pages)
1482 {
1483 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1484 }
1485 
1486 const struct address_space_operations xfs_address_space_operations = {
1487 	.readpage		= xfs_vm_readpage,
1488 	.readpages		= xfs_vm_readpages,
1489 	.writepage		= xfs_vm_writepage,
1490 	.writepages		= xfs_vm_writepages,
1491 	.releasepage		= xfs_vm_releasepage,
1492 	.invalidatepage		= xfs_vm_invalidatepage,
1493 	.write_begin		= xfs_vm_write_begin,
1494 	.write_end		= xfs_vm_write_end,
1495 	.bmap			= xfs_vm_bmap,
1496 	.direct_IO		= xfs_vm_direct_IO,
1497 	.migratepage		= buffer_migrate_page,
1498 	.is_partially_uptodate  = block_is_partially_uptodate,
1499 	.error_remove_page	= generic_error_remove_page,
1500 };
1501