1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_bit.h" 20 #include "xfs_log.h" 21 #include "xfs_inum.h" 22 #include "xfs_sb.h" 23 #include "xfs_ag.h" 24 #include "xfs_trans.h" 25 #include "xfs_mount.h" 26 #include "xfs_bmap_btree.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_alloc.h" 30 #include "xfs_error.h" 31 #include "xfs_rw.h" 32 #include "xfs_iomap.h" 33 #include "xfs_vnodeops.h" 34 #include "xfs_trace.h" 35 #include "xfs_bmap.h" 36 #include <linux/gfp.h> 37 #include <linux/mpage.h> 38 #include <linux/pagevec.h> 39 #include <linux/writeback.h> 40 41 42 /* 43 * Prime number of hash buckets since address is used as the key. 44 */ 45 #define NVSYNC 37 46 #define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC]) 47 static wait_queue_head_t xfs_ioend_wq[NVSYNC]; 48 49 void __init 50 xfs_ioend_init(void) 51 { 52 int i; 53 54 for (i = 0; i < NVSYNC; i++) 55 init_waitqueue_head(&xfs_ioend_wq[i]); 56 } 57 58 void 59 xfs_ioend_wait( 60 xfs_inode_t *ip) 61 { 62 wait_queue_head_t *wq = to_ioend_wq(ip); 63 64 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0)); 65 } 66 67 STATIC void 68 xfs_ioend_wake( 69 xfs_inode_t *ip) 70 { 71 if (atomic_dec_and_test(&ip->i_iocount)) 72 wake_up(to_ioend_wq(ip)); 73 } 74 75 void 76 xfs_count_page_state( 77 struct page *page, 78 int *delalloc, 79 int *unwritten) 80 { 81 struct buffer_head *bh, *head; 82 83 *delalloc = *unwritten = 0; 84 85 bh = head = page_buffers(page); 86 do { 87 if (buffer_unwritten(bh)) 88 (*unwritten) = 1; 89 else if (buffer_delay(bh)) 90 (*delalloc) = 1; 91 } while ((bh = bh->b_this_page) != head); 92 } 93 94 STATIC struct block_device * 95 xfs_find_bdev_for_inode( 96 struct inode *inode) 97 { 98 struct xfs_inode *ip = XFS_I(inode); 99 struct xfs_mount *mp = ip->i_mount; 100 101 if (XFS_IS_REALTIME_INODE(ip)) 102 return mp->m_rtdev_targp->bt_bdev; 103 else 104 return mp->m_ddev_targp->bt_bdev; 105 } 106 107 /* 108 * We're now finished for good with this ioend structure. 109 * Update the page state via the associated buffer_heads, 110 * release holds on the inode and bio, and finally free 111 * up memory. Do not use the ioend after this. 112 */ 113 STATIC void 114 xfs_destroy_ioend( 115 xfs_ioend_t *ioend) 116 { 117 struct buffer_head *bh, *next; 118 struct xfs_inode *ip = XFS_I(ioend->io_inode); 119 120 for (bh = ioend->io_buffer_head; bh; bh = next) { 121 next = bh->b_private; 122 bh->b_end_io(bh, !ioend->io_error); 123 } 124 125 /* 126 * Volume managers supporting multiple paths can send back ENODEV 127 * when the final path disappears. In this case continuing to fill 128 * the page cache with dirty data which cannot be written out is 129 * evil, so prevent that. 130 */ 131 if (unlikely(ioend->io_error == -ENODEV)) { 132 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ, 133 __FILE__, __LINE__); 134 } 135 136 xfs_ioend_wake(ip); 137 mempool_free(ioend, xfs_ioend_pool); 138 } 139 140 /* 141 * If the end of the current ioend is beyond the current EOF, 142 * return the new EOF value, otherwise zero. 143 */ 144 STATIC xfs_fsize_t 145 xfs_ioend_new_eof( 146 xfs_ioend_t *ioend) 147 { 148 xfs_inode_t *ip = XFS_I(ioend->io_inode); 149 xfs_fsize_t isize; 150 xfs_fsize_t bsize; 151 152 bsize = ioend->io_offset + ioend->io_size; 153 isize = MAX(ip->i_size, ip->i_new_size); 154 isize = MIN(isize, bsize); 155 return isize > ip->i_d.di_size ? isize : 0; 156 } 157 158 /* 159 * Update on-disk file size now that data has been written to disk. The 160 * current in-memory file size is i_size. If a write is beyond eof i_new_size 161 * will be the intended file size until i_size is updated. If this write does 162 * not extend all the way to the valid file size then restrict this update to 163 * the end of the write. 164 * 165 * This function does not block as blocking on the inode lock in IO completion 166 * can lead to IO completion order dependency deadlocks.. If it can't get the 167 * inode ilock it will return EAGAIN. Callers must handle this. 168 */ 169 STATIC int 170 xfs_setfilesize( 171 xfs_ioend_t *ioend) 172 { 173 xfs_inode_t *ip = XFS_I(ioend->io_inode); 174 xfs_fsize_t isize; 175 176 if (unlikely(ioend->io_error)) 177 return 0; 178 179 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) 180 return EAGAIN; 181 182 isize = xfs_ioend_new_eof(ioend); 183 if (isize) { 184 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 185 ip->i_d.di_size = isize; 186 xfs_mark_inode_dirty(ip); 187 } 188 189 xfs_iunlock(ip, XFS_ILOCK_EXCL); 190 return 0; 191 } 192 193 /* 194 * Schedule IO completion handling on the final put of an ioend. 195 */ 196 STATIC void 197 xfs_finish_ioend( 198 struct xfs_ioend *ioend) 199 { 200 if (atomic_dec_and_test(&ioend->io_remaining)) { 201 if (ioend->io_type == IO_UNWRITTEN) 202 queue_work(xfsconvertd_workqueue, &ioend->io_work); 203 else 204 queue_work(xfsdatad_workqueue, &ioend->io_work); 205 } 206 } 207 208 /* 209 * IO write completion. 210 */ 211 STATIC void 212 xfs_end_io( 213 struct work_struct *work) 214 { 215 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 216 struct xfs_inode *ip = XFS_I(ioend->io_inode); 217 int error = 0; 218 219 /* 220 * For unwritten extents we need to issue transactions to convert a 221 * range to normal written extens after the data I/O has finished. 222 */ 223 if (ioend->io_type == IO_UNWRITTEN && 224 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) { 225 226 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 227 ioend->io_size); 228 if (error) 229 ioend->io_error = error; 230 } 231 232 /* 233 * We might have to update the on-disk file size after extending 234 * writes. 235 */ 236 error = xfs_setfilesize(ioend); 237 ASSERT(!error || error == EAGAIN); 238 239 /* 240 * If we didn't complete processing of the ioend, requeue it to the 241 * tail of the workqueue for another attempt later. Otherwise destroy 242 * it. 243 */ 244 if (error == EAGAIN) { 245 atomic_inc(&ioend->io_remaining); 246 xfs_finish_ioend(ioend); 247 /* ensure we don't spin on blocked ioends */ 248 delay(1); 249 } else { 250 if (ioend->io_iocb) 251 aio_complete(ioend->io_iocb, ioend->io_result, 0); 252 xfs_destroy_ioend(ioend); 253 } 254 } 255 256 /* 257 * Call IO completion handling in caller context on the final put of an ioend. 258 */ 259 STATIC void 260 xfs_finish_ioend_sync( 261 struct xfs_ioend *ioend) 262 { 263 if (atomic_dec_and_test(&ioend->io_remaining)) 264 xfs_end_io(&ioend->io_work); 265 } 266 267 /* 268 * Allocate and initialise an IO completion structure. 269 * We need to track unwritten extent write completion here initially. 270 * We'll need to extend this for updating the ondisk inode size later 271 * (vs. incore size). 272 */ 273 STATIC xfs_ioend_t * 274 xfs_alloc_ioend( 275 struct inode *inode, 276 unsigned int type) 277 { 278 xfs_ioend_t *ioend; 279 280 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 281 282 /* 283 * Set the count to 1 initially, which will prevent an I/O 284 * completion callback from happening before we have started 285 * all the I/O from calling the completion routine too early. 286 */ 287 atomic_set(&ioend->io_remaining, 1); 288 ioend->io_error = 0; 289 ioend->io_list = NULL; 290 ioend->io_type = type; 291 ioend->io_inode = inode; 292 ioend->io_buffer_head = NULL; 293 ioend->io_buffer_tail = NULL; 294 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); 295 ioend->io_offset = 0; 296 ioend->io_size = 0; 297 ioend->io_iocb = NULL; 298 ioend->io_result = 0; 299 300 INIT_WORK(&ioend->io_work, xfs_end_io); 301 return ioend; 302 } 303 304 STATIC int 305 xfs_map_blocks( 306 struct inode *inode, 307 loff_t offset, 308 struct xfs_bmbt_irec *imap, 309 int type, 310 int nonblocking) 311 { 312 struct xfs_inode *ip = XFS_I(inode); 313 struct xfs_mount *mp = ip->i_mount; 314 ssize_t count = 1 << inode->i_blkbits; 315 xfs_fileoff_t offset_fsb, end_fsb; 316 int error = 0; 317 int bmapi_flags = XFS_BMAPI_ENTIRE; 318 int nimaps = 1; 319 320 if (XFS_FORCED_SHUTDOWN(mp)) 321 return -XFS_ERROR(EIO); 322 323 if (type == IO_UNWRITTEN) 324 bmapi_flags |= XFS_BMAPI_IGSTATE; 325 326 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 327 if (nonblocking) 328 return -XFS_ERROR(EAGAIN); 329 xfs_ilock(ip, XFS_ILOCK_SHARED); 330 } 331 332 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 333 (ip->i_df.if_flags & XFS_IFEXTENTS)); 334 ASSERT(offset <= mp->m_maxioffset); 335 336 if (offset + count > mp->m_maxioffset) 337 count = mp->m_maxioffset - offset; 338 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 339 offset_fsb = XFS_B_TO_FSBT(mp, offset); 340 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, 341 bmapi_flags, NULL, 0, imap, &nimaps, NULL); 342 xfs_iunlock(ip, XFS_ILOCK_SHARED); 343 344 if (error) 345 return -XFS_ERROR(error); 346 347 if (type == IO_DELALLOC && 348 (!nimaps || isnullstartblock(imap->br_startblock))) { 349 error = xfs_iomap_write_allocate(ip, offset, count, imap); 350 if (!error) 351 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 352 return -XFS_ERROR(error); 353 } 354 355 #ifdef DEBUG 356 if (type == IO_UNWRITTEN) { 357 ASSERT(nimaps); 358 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 359 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 360 } 361 #endif 362 if (nimaps) 363 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 364 return 0; 365 } 366 367 STATIC int 368 xfs_imap_valid( 369 struct inode *inode, 370 struct xfs_bmbt_irec *imap, 371 xfs_off_t offset) 372 { 373 offset >>= inode->i_blkbits; 374 375 return offset >= imap->br_startoff && 376 offset < imap->br_startoff + imap->br_blockcount; 377 } 378 379 /* 380 * BIO completion handler for buffered IO. 381 */ 382 STATIC void 383 xfs_end_bio( 384 struct bio *bio, 385 int error) 386 { 387 xfs_ioend_t *ioend = bio->bi_private; 388 389 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 390 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 391 392 /* Toss bio and pass work off to an xfsdatad thread */ 393 bio->bi_private = NULL; 394 bio->bi_end_io = NULL; 395 bio_put(bio); 396 397 xfs_finish_ioend(ioend); 398 } 399 400 STATIC void 401 xfs_submit_ioend_bio( 402 struct writeback_control *wbc, 403 xfs_ioend_t *ioend, 404 struct bio *bio) 405 { 406 atomic_inc(&ioend->io_remaining); 407 bio->bi_private = ioend; 408 bio->bi_end_io = xfs_end_bio; 409 410 /* 411 * If the I/O is beyond EOF we mark the inode dirty immediately 412 * but don't update the inode size until I/O completion. 413 */ 414 if (xfs_ioend_new_eof(ioend)) 415 xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); 416 417 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 418 } 419 420 STATIC struct bio * 421 xfs_alloc_ioend_bio( 422 struct buffer_head *bh) 423 { 424 int nvecs = bio_get_nr_vecs(bh->b_bdev); 425 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 426 427 ASSERT(bio->bi_private == NULL); 428 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 429 bio->bi_bdev = bh->b_bdev; 430 return bio; 431 } 432 433 STATIC void 434 xfs_start_buffer_writeback( 435 struct buffer_head *bh) 436 { 437 ASSERT(buffer_mapped(bh)); 438 ASSERT(buffer_locked(bh)); 439 ASSERT(!buffer_delay(bh)); 440 ASSERT(!buffer_unwritten(bh)); 441 442 mark_buffer_async_write(bh); 443 set_buffer_uptodate(bh); 444 clear_buffer_dirty(bh); 445 } 446 447 STATIC void 448 xfs_start_page_writeback( 449 struct page *page, 450 int clear_dirty, 451 int buffers) 452 { 453 ASSERT(PageLocked(page)); 454 ASSERT(!PageWriteback(page)); 455 if (clear_dirty) 456 clear_page_dirty_for_io(page); 457 set_page_writeback(page); 458 unlock_page(page); 459 /* If no buffers on the page are to be written, finish it here */ 460 if (!buffers) 461 end_page_writeback(page); 462 } 463 464 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) 465 { 466 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 467 } 468 469 /* 470 * Submit all of the bios for all of the ioends we have saved up, covering the 471 * initial writepage page and also any probed pages. 472 * 473 * Because we may have multiple ioends spanning a page, we need to start 474 * writeback on all the buffers before we submit them for I/O. If we mark the 475 * buffers as we got, then we can end up with a page that only has buffers 476 * marked async write and I/O complete on can occur before we mark the other 477 * buffers async write. 478 * 479 * The end result of this is that we trip a bug in end_page_writeback() because 480 * we call it twice for the one page as the code in end_buffer_async_write() 481 * assumes that all buffers on the page are started at the same time. 482 * 483 * The fix is two passes across the ioend list - one to start writeback on the 484 * buffer_heads, and then submit them for I/O on the second pass. 485 */ 486 STATIC void 487 xfs_submit_ioend( 488 struct writeback_control *wbc, 489 xfs_ioend_t *ioend) 490 { 491 xfs_ioend_t *head = ioend; 492 xfs_ioend_t *next; 493 struct buffer_head *bh; 494 struct bio *bio; 495 sector_t lastblock = 0; 496 497 /* Pass 1 - start writeback */ 498 do { 499 next = ioend->io_list; 500 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 501 xfs_start_buffer_writeback(bh); 502 } while ((ioend = next) != NULL); 503 504 /* Pass 2 - submit I/O */ 505 ioend = head; 506 do { 507 next = ioend->io_list; 508 bio = NULL; 509 510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 511 512 if (!bio) { 513 retry: 514 bio = xfs_alloc_ioend_bio(bh); 515 } else if (bh->b_blocknr != lastblock + 1) { 516 xfs_submit_ioend_bio(wbc, ioend, bio); 517 goto retry; 518 } 519 520 if (bio_add_buffer(bio, bh) != bh->b_size) { 521 xfs_submit_ioend_bio(wbc, ioend, bio); 522 goto retry; 523 } 524 525 lastblock = bh->b_blocknr; 526 } 527 if (bio) 528 xfs_submit_ioend_bio(wbc, ioend, bio); 529 xfs_finish_ioend(ioend); 530 } while ((ioend = next) != NULL); 531 } 532 533 /* 534 * Cancel submission of all buffer_heads so far in this endio. 535 * Toss the endio too. Only ever called for the initial page 536 * in a writepage request, so only ever one page. 537 */ 538 STATIC void 539 xfs_cancel_ioend( 540 xfs_ioend_t *ioend) 541 { 542 xfs_ioend_t *next; 543 struct buffer_head *bh, *next_bh; 544 545 do { 546 next = ioend->io_list; 547 bh = ioend->io_buffer_head; 548 do { 549 next_bh = bh->b_private; 550 clear_buffer_async_write(bh); 551 unlock_buffer(bh); 552 } while ((bh = next_bh) != NULL); 553 554 xfs_ioend_wake(XFS_I(ioend->io_inode)); 555 mempool_free(ioend, xfs_ioend_pool); 556 } while ((ioend = next) != NULL); 557 } 558 559 /* 560 * Test to see if we've been building up a completion structure for 561 * earlier buffers -- if so, we try to append to this ioend if we 562 * can, otherwise we finish off any current ioend and start another. 563 * Return true if we've finished the given ioend. 564 */ 565 STATIC void 566 xfs_add_to_ioend( 567 struct inode *inode, 568 struct buffer_head *bh, 569 xfs_off_t offset, 570 unsigned int type, 571 xfs_ioend_t **result, 572 int need_ioend) 573 { 574 xfs_ioend_t *ioend = *result; 575 576 if (!ioend || need_ioend || type != ioend->io_type) { 577 xfs_ioend_t *previous = *result; 578 579 ioend = xfs_alloc_ioend(inode, type); 580 ioend->io_offset = offset; 581 ioend->io_buffer_head = bh; 582 ioend->io_buffer_tail = bh; 583 if (previous) 584 previous->io_list = ioend; 585 *result = ioend; 586 } else { 587 ioend->io_buffer_tail->b_private = bh; 588 ioend->io_buffer_tail = bh; 589 } 590 591 bh->b_private = NULL; 592 ioend->io_size += bh->b_size; 593 } 594 595 STATIC void 596 xfs_map_buffer( 597 struct inode *inode, 598 struct buffer_head *bh, 599 struct xfs_bmbt_irec *imap, 600 xfs_off_t offset) 601 { 602 sector_t bn; 603 struct xfs_mount *m = XFS_I(inode)->i_mount; 604 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 605 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 606 607 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 608 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 609 610 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 611 ((offset - iomap_offset) >> inode->i_blkbits); 612 613 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 614 615 bh->b_blocknr = bn; 616 set_buffer_mapped(bh); 617 } 618 619 STATIC void 620 xfs_map_at_offset( 621 struct inode *inode, 622 struct buffer_head *bh, 623 struct xfs_bmbt_irec *imap, 624 xfs_off_t offset) 625 { 626 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 627 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 628 629 xfs_map_buffer(inode, bh, imap, offset); 630 set_buffer_mapped(bh); 631 clear_buffer_delay(bh); 632 clear_buffer_unwritten(bh); 633 } 634 635 /* 636 * Test if a given page is suitable for writing as part of an unwritten 637 * or delayed allocate extent. 638 */ 639 STATIC int 640 xfs_is_delayed_page( 641 struct page *page, 642 unsigned int type) 643 { 644 if (PageWriteback(page)) 645 return 0; 646 647 if (page->mapping && page_has_buffers(page)) { 648 struct buffer_head *bh, *head; 649 int acceptable = 0; 650 651 bh = head = page_buffers(page); 652 do { 653 if (buffer_unwritten(bh)) 654 acceptable = (type == IO_UNWRITTEN); 655 else if (buffer_delay(bh)) 656 acceptable = (type == IO_DELALLOC); 657 else if (buffer_dirty(bh) && buffer_mapped(bh)) 658 acceptable = (type == IO_OVERWRITE); 659 else 660 break; 661 } while ((bh = bh->b_this_page) != head); 662 663 if (acceptable) 664 return 1; 665 } 666 667 return 0; 668 } 669 670 /* 671 * Allocate & map buffers for page given the extent map. Write it out. 672 * except for the original page of a writepage, this is called on 673 * delalloc/unwritten pages only, for the original page it is possible 674 * that the page has no mapping at all. 675 */ 676 STATIC int 677 xfs_convert_page( 678 struct inode *inode, 679 struct page *page, 680 loff_t tindex, 681 struct xfs_bmbt_irec *imap, 682 xfs_ioend_t **ioendp, 683 struct writeback_control *wbc) 684 { 685 struct buffer_head *bh, *head; 686 xfs_off_t end_offset; 687 unsigned long p_offset; 688 unsigned int type; 689 int len, page_dirty; 690 int count = 0, done = 0, uptodate = 1; 691 xfs_off_t offset = page_offset(page); 692 693 if (page->index != tindex) 694 goto fail; 695 if (!trylock_page(page)) 696 goto fail; 697 if (PageWriteback(page)) 698 goto fail_unlock_page; 699 if (page->mapping != inode->i_mapping) 700 goto fail_unlock_page; 701 if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) 702 goto fail_unlock_page; 703 704 /* 705 * page_dirty is initially a count of buffers on the page before 706 * EOF and is decremented as we move each into a cleanable state. 707 * 708 * Derivation: 709 * 710 * End offset is the highest offset that this page should represent. 711 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 712 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 713 * hence give us the correct page_dirty count. On any other page, 714 * it will be zero and in that case we need page_dirty to be the 715 * count of buffers on the page. 716 */ 717 end_offset = min_t(unsigned long long, 718 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 719 i_size_read(inode)); 720 721 len = 1 << inode->i_blkbits; 722 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 723 PAGE_CACHE_SIZE); 724 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 725 page_dirty = p_offset / len; 726 727 bh = head = page_buffers(page); 728 do { 729 if (offset >= end_offset) 730 break; 731 if (!buffer_uptodate(bh)) 732 uptodate = 0; 733 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 734 done = 1; 735 continue; 736 } 737 738 if (buffer_unwritten(bh) || buffer_delay(bh) || 739 buffer_mapped(bh)) { 740 if (buffer_unwritten(bh)) 741 type = IO_UNWRITTEN; 742 else if (buffer_delay(bh)) 743 type = IO_DELALLOC; 744 else 745 type = IO_OVERWRITE; 746 747 if (!xfs_imap_valid(inode, imap, offset)) { 748 done = 1; 749 continue; 750 } 751 752 lock_buffer(bh); 753 if (type != IO_OVERWRITE) 754 xfs_map_at_offset(inode, bh, imap, offset); 755 xfs_add_to_ioend(inode, bh, offset, type, 756 ioendp, done); 757 758 page_dirty--; 759 count++; 760 } else { 761 done = 1; 762 } 763 } while (offset += len, (bh = bh->b_this_page) != head); 764 765 if (uptodate && bh == head) 766 SetPageUptodate(page); 767 768 if (count) { 769 if (--wbc->nr_to_write <= 0 && 770 wbc->sync_mode == WB_SYNC_NONE) 771 done = 1; 772 } 773 xfs_start_page_writeback(page, !page_dirty, count); 774 775 return done; 776 fail_unlock_page: 777 unlock_page(page); 778 fail: 779 return 1; 780 } 781 782 /* 783 * Convert & write out a cluster of pages in the same extent as defined 784 * by mp and following the start page. 785 */ 786 STATIC void 787 xfs_cluster_write( 788 struct inode *inode, 789 pgoff_t tindex, 790 struct xfs_bmbt_irec *imap, 791 xfs_ioend_t **ioendp, 792 struct writeback_control *wbc, 793 pgoff_t tlast) 794 { 795 struct pagevec pvec; 796 int done = 0, i; 797 798 pagevec_init(&pvec, 0); 799 while (!done && tindex <= tlast) { 800 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 801 802 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 803 break; 804 805 for (i = 0; i < pagevec_count(&pvec); i++) { 806 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 807 imap, ioendp, wbc); 808 if (done) 809 break; 810 } 811 812 pagevec_release(&pvec); 813 cond_resched(); 814 } 815 } 816 817 STATIC void 818 xfs_vm_invalidatepage( 819 struct page *page, 820 unsigned long offset) 821 { 822 trace_xfs_invalidatepage(page->mapping->host, page, offset); 823 block_invalidatepage(page, offset); 824 } 825 826 /* 827 * If the page has delalloc buffers on it, we need to punch them out before we 828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 830 * is done on that same region - the delalloc extent is returned when none is 831 * supposed to be there. 832 * 833 * We prevent this by truncating away the delalloc regions on the page before 834 * invalidating it. Because they are delalloc, we can do this without needing a 835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 836 * truncation without a transaction as there is no space left for block 837 * reservation (typically why we see a ENOSPC in writeback). 838 * 839 * This is not a performance critical path, so for now just do the punching a 840 * buffer head at a time. 841 */ 842 STATIC void 843 xfs_aops_discard_page( 844 struct page *page) 845 { 846 struct inode *inode = page->mapping->host; 847 struct xfs_inode *ip = XFS_I(inode); 848 struct buffer_head *bh, *head; 849 loff_t offset = page_offset(page); 850 851 if (!xfs_is_delayed_page(page, IO_DELALLOC)) 852 goto out_invalidate; 853 854 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 855 goto out_invalidate; 856 857 xfs_alert(ip->i_mount, 858 "page discard on page %p, inode 0x%llx, offset %llu.", 859 page, ip->i_ino, offset); 860 861 xfs_ilock(ip, XFS_ILOCK_EXCL); 862 bh = head = page_buffers(page); 863 do { 864 int error; 865 xfs_fileoff_t start_fsb; 866 867 if (!buffer_delay(bh)) 868 goto next_buffer; 869 870 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 871 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 872 if (error) { 873 /* something screwed, just bail */ 874 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 875 xfs_alert(ip->i_mount, 876 "page discard unable to remove delalloc mapping."); 877 } 878 break; 879 } 880 next_buffer: 881 offset += 1 << inode->i_blkbits; 882 883 } while ((bh = bh->b_this_page) != head); 884 885 xfs_iunlock(ip, XFS_ILOCK_EXCL); 886 out_invalidate: 887 xfs_vm_invalidatepage(page, 0); 888 return; 889 } 890 891 /* 892 * Write out a dirty page. 893 * 894 * For delalloc space on the page we need to allocate space and flush it. 895 * For unwritten space on the page we need to start the conversion to 896 * regular allocated space. 897 * For any other dirty buffer heads on the page we should flush them. 898 */ 899 STATIC int 900 xfs_vm_writepage( 901 struct page *page, 902 struct writeback_control *wbc) 903 { 904 struct inode *inode = page->mapping->host; 905 struct buffer_head *bh, *head; 906 struct xfs_bmbt_irec imap; 907 xfs_ioend_t *ioend = NULL, *iohead = NULL; 908 loff_t offset; 909 unsigned int type; 910 __uint64_t end_offset; 911 pgoff_t end_index, last_index; 912 ssize_t len; 913 int err, imap_valid = 0, uptodate = 1; 914 int count = 0; 915 int nonblocking = 0; 916 917 trace_xfs_writepage(inode, page, 0); 918 919 ASSERT(page_has_buffers(page)); 920 921 /* 922 * Refuse to write the page out if we are called from reclaim context. 923 * 924 * This avoids stack overflows when called from deeply used stacks in 925 * random callers for direct reclaim or memcg reclaim. We explicitly 926 * allow reclaim from kswapd as the stack usage there is relatively low. 927 * 928 * This should really be done by the core VM, but until that happens 929 * filesystems like XFS, btrfs and ext4 have to take care of this 930 * by themselves. 931 */ 932 if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC) 933 goto redirty; 934 935 /* 936 * Given that we do not allow direct reclaim to call us, we should 937 * never be called while in a filesystem transaction. 938 */ 939 if (WARN_ON(current->flags & PF_FSTRANS)) 940 goto redirty; 941 942 /* Is this page beyond the end of the file? */ 943 offset = i_size_read(inode); 944 end_index = offset >> PAGE_CACHE_SHIFT; 945 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 946 if (page->index >= end_index) { 947 if ((page->index >= end_index + 1) || 948 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { 949 unlock_page(page); 950 return 0; 951 } 952 } 953 954 end_offset = min_t(unsigned long long, 955 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 956 offset); 957 len = 1 << inode->i_blkbits; 958 959 bh = head = page_buffers(page); 960 offset = page_offset(page); 961 type = IO_OVERWRITE; 962 963 if (wbc->sync_mode == WB_SYNC_NONE) 964 nonblocking = 1; 965 966 do { 967 int new_ioend = 0; 968 969 if (offset >= end_offset) 970 break; 971 if (!buffer_uptodate(bh)) 972 uptodate = 0; 973 974 /* 975 * set_page_dirty dirties all buffers in a page, independent 976 * of their state. The dirty state however is entirely 977 * meaningless for holes (!mapped && uptodate), so skip 978 * buffers covering holes here. 979 */ 980 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 981 imap_valid = 0; 982 continue; 983 } 984 985 if (buffer_unwritten(bh)) { 986 if (type != IO_UNWRITTEN) { 987 type = IO_UNWRITTEN; 988 imap_valid = 0; 989 } 990 } else if (buffer_delay(bh)) { 991 if (type != IO_DELALLOC) { 992 type = IO_DELALLOC; 993 imap_valid = 0; 994 } 995 } else if (buffer_uptodate(bh)) { 996 if (type != IO_OVERWRITE) { 997 type = IO_OVERWRITE; 998 imap_valid = 0; 999 } 1000 } else { 1001 if (PageUptodate(page)) { 1002 ASSERT(buffer_mapped(bh)); 1003 imap_valid = 0; 1004 } 1005 continue; 1006 } 1007 1008 if (imap_valid) 1009 imap_valid = xfs_imap_valid(inode, &imap, offset); 1010 if (!imap_valid) { 1011 /* 1012 * If we didn't have a valid mapping then we need to 1013 * put the new mapping into a separate ioend structure. 1014 * This ensures non-contiguous extents always have 1015 * separate ioends, which is particularly important 1016 * for unwritten extent conversion at I/O completion 1017 * time. 1018 */ 1019 new_ioend = 1; 1020 err = xfs_map_blocks(inode, offset, &imap, type, 1021 nonblocking); 1022 if (err) 1023 goto error; 1024 imap_valid = xfs_imap_valid(inode, &imap, offset); 1025 } 1026 if (imap_valid) { 1027 lock_buffer(bh); 1028 if (type != IO_OVERWRITE) 1029 xfs_map_at_offset(inode, bh, &imap, offset); 1030 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1031 new_ioend); 1032 count++; 1033 } 1034 1035 if (!iohead) 1036 iohead = ioend; 1037 1038 } while (offset += len, ((bh = bh->b_this_page) != head)); 1039 1040 if (uptodate && bh == head) 1041 SetPageUptodate(page); 1042 1043 xfs_start_page_writeback(page, 1, count); 1044 1045 if (ioend && imap_valid) { 1046 xfs_off_t end_index; 1047 1048 end_index = imap.br_startoff + imap.br_blockcount; 1049 1050 /* to bytes */ 1051 end_index <<= inode->i_blkbits; 1052 1053 /* to pages */ 1054 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1055 1056 /* check against file size */ 1057 if (end_index > last_index) 1058 end_index = last_index; 1059 1060 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1061 wbc, end_index); 1062 } 1063 1064 if (iohead) 1065 xfs_submit_ioend(wbc, iohead); 1066 1067 return 0; 1068 1069 error: 1070 if (iohead) 1071 xfs_cancel_ioend(iohead); 1072 1073 if (err == -EAGAIN) 1074 goto redirty; 1075 1076 xfs_aops_discard_page(page); 1077 ClearPageUptodate(page); 1078 unlock_page(page); 1079 return err; 1080 1081 redirty: 1082 redirty_page_for_writepage(wbc, page); 1083 unlock_page(page); 1084 return 0; 1085 } 1086 1087 STATIC int 1088 xfs_vm_writepages( 1089 struct address_space *mapping, 1090 struct writeback_control *wbc) 1091 { 1092 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1093 return generic_writepages(mapping, wbc); 1094 } 1095 1096 /* 1097 * Called to move a page into cleanable state - and from there 1098 * to be released. The page should already be clean. We always 1099 * have buffer heads in this call. 1100 * 1101 * Returns 1 if the page is ok to release, 0 otherwise. 1102 */ 1103 STATIC int 1104 xfs_vm_releasepage( 1105 struct page *page, 1106 gfp_t gfp_mask) 1107 { 1108 int delalloc, unwritten; 1109 1110 trace_xfs_releasepage(page->mapping->host, page, 0); 1111 1112 xfs_count_page_state(page, &delalloc, &unwritten); 1113 1114 if (WARN_ON(delalloc)) 1115 return 0; 1116 if (WARN_ON(unwritten)) 1117 return 0; 1118 1119 return try_to_free_buffers(page); 1120 } 1121 1122 STATIC int 1123 __xfs_get_blocks( 1124 struct inode *inode, 1125 sector_t iblock, 1126 struct buffer_head *bh_result, 1127 int create, 1128 int direct) 1129 { 1130 struct xfs_inode *ip = XFS_I(inode); 1131 struct xfs_mount *mp = ip->i_mount; 1132 xfs_fileoff_t offset_fsb, end_fsb; 1133 int error = 0; 1134 int lockmode = 0; 1135 struct xfs_bmbt_irec imap; 1136 int nimaps = 1; 1137 xfs_off_t offset; 1138 ssize_t size; 1139 int new = 0; 1140 1141 if (XFS_FORCED_SHUTDOWN(mp)) 1142 return -XFS_ERROR(EIO); 1143 1144 offset = (xfs_off_t)iblock << inode->i_blkbits; 1145 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1146 size = bh_result->b_size; 1147 1148 if (!create && direct && offset >= i_size_read(inode)) 1149 return 0; 1150 1151 if (create) { 1152 lockmode = XFS_ILOCK_EXCL; 1153 xfs_ilock(ip, lockmode); 1154 } else { 1155 lockmode = xfs_ilock_map_shared(ip); 1156 } 1157 1158 ASSERT(offset <= mp->m_maxioffset); 1159 if (offset + size > mp->m_maxioffset) 1160 size = mp->m_maxioffset - offset; 1161 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1162 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1163 1164 error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, 1165 XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL); 1166 if (error) 1167 goto out_unlock; 1168 1169 if (create && 1170 (!nimaps || 1171 (imap.br_startblock == HOLESTARTBLOCK || 1172 imap.br_startblock == DELAYSTARTBLOCK))) { 1173 if (direct) { 1174 error = xfs_iomap_write_direct(ip, offset, size, 1175 &imap, nimaps); 1176 } else { 1177 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1178 } 1179 if (error) 1180 goto out_unlock; 1181 1182 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1183 } else if (nimaps) { 1184 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1185 } else { 1186 trace_xfs_get_blocks_notfound(ip, offset, size); 1187 goto out_unlock; 1188 } 1189 xfs_iunlock(ip, lockmode); 1190 1191 if (imap.br_startblock != HOLESTARTBLOCK && 1192 imap.br_startblock != DELAYSTARTBLOCK) { 1193 /* 1194 * For unwritten extents do not report a disk address on 1195 * the read case (treat as if we're reading into a hole). 1196 */ 1197 if (create || !ISUNWRITTEN(&imap)) 1198 xfs_map_buffer(inode, bh_result, &imap, offset); 1199 if (create && ISUNWRITTEN(&imap)) { 1200 if (direct) 1201 bh_result->b_private = inode; 1202 set_buffer_unwritten(bh_result); 1203 } 1204 } 1205 1206 /* 1207 * If this is a realtime file, data may be on a different device. 1208 * to that pointed to from the buffer_head b_bdev currently. 1209 */ 1210 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1211 1212 /* 1213 * If we previously allocated a block out beyond eof and we are now 1214 * coming back to use it then we will need to flag it as new even if it 1215 * has a disk address. 1216 * 1217 * With sub-block writes into unwritten extents we also need to mark 1218 * the buffer as new so that the unwritten parts of the buffer gets 1219 * correctly zeroed. 1220 */ 1221 if (create && 1222 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1223 (offset >= i_size_read(inode)) || 1224 (new || ISUNWRITTEN(&imap)))) 1225 set_buffer_new(bh_result); 1226 1227 if (imap.br_startblock == DELAYSTARTBLOCK) { 1228 BUG_ON(direct); 1229 if (create) { 1230 set_buffer_uptodate(bh_result); 1231 set_buffer_mapped(bh_result); 1232 set_buffer_delay(bh_result); 1233 } 1234 } 1235 1236 /* 1237 * If this is O_DIRECT or the mpage code calling tell them how large 1238 * the mapping is, so that we can avoid repeated get_blocks calls. 1239 */ 1240 if (direct || size > (1 << inode->i_blkbits)) { 1241 xfs_off_t mapping_size; 1242 1243 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1244 mapping_size <<= inode->i_blkbits; 1245 1246 ASSERT(mapping_size > 0); 1247 if (mapping_size > size) 1248 mapping_size = size; 1249 if (mapping_size > LONG_MAX) 1250 mapping_size = LONG_MAX; 1251 1252 bh_result->b_size = mapping_size; 1253 } 1254 1255 return 0; 1256 1257 out_unlock: 1258 xfs_iunlock(ip, lockmode); 1259 return -error; 1260 } 1261 1262 int 1263 xfs_get_blocks( 1264 struct inode *inode, 1265 sector_t iblock, 1266 struct buffer_head *bh_result, 1267 int create) 1268 { 1269 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1270 } 1271 1272 STATIC int 1273 xfs_get_blocks_direct( 1274 struct inode *inode, 1275 sector_t iblock, 1276 struct buffer_head *bh_result, 1277 int create) 1278 { 1279 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1280 } 1281 1282 /* 1283 * Complete a direct I/O write request. 1284 * 1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1286 * need to issue a transaction to convert the range from unwritten to written 1287 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1288 * to do this and we are done. But in case this was a successful AIO 1289 * request this handler is called from interrupt context, from which we 1290 * can't start transactions. In that case offload the I/O completion to 1291 * the workqueues we also use for buffered I/O completion. 1292 */ 1293 STATIC void 1294 xfs_end_io_direct_write( 1295 struct kiocb *iocb, 1296 loff_t offset, 1297 ssize_t size, 1298 void *private, 1299 int ret, 1300 bool is_async) 1301 { 1302 struct xfs_ioend *ioend = iocb->private; 1303 struct inode *inode = ioend->io_inode; 1304 1305 /* 1306 * blockdev_direct_IO can return an error even after the I/O 1307 * completion handler was called. Thus we need to protect 1308 * against double-freeing. 1309 */ 1310 iocb->private = NULL; 1311 1312 ioend->io_offset = offset; 1313 ioend->io_size = size; 1314 if (private && size > 0) 1315 ioend->io_type = IO_UNWRITTEN; 1316 1317 if (is_async) { 1318 /* 1319 * If we are converting an unwritten extent we need to delay 1320 * the AIO completion until after the unwrittent extent 1321 * conversion has completed, otherwise do it ASAP. 1322 */ 1323 if (ioend->io_type == IO_UNWRITTEN) { 1324 ioend->io_iocb = iocb; 1325 ioend->io_result = ret; 1326 } else { 1327 aio_complete(iocb, ret, 0); 1328 } 1329 xfs_finish_ioend(ioend); 1330 } else { 1331 xfs_finish_ioend_sync(ioend); 1332 } 1333 1334 /* XXX: probably should move into the real I/O completion handler */ 1335 inode_dio_done(inode); 1336 } 1337 1338 STATIC ssize_t 1339 xfs_vm_direct_IO( 1340 int rw, 1341 struct kiocb *iocb, 1342 const struct iovec *iov, 1343 loff_t offset, 1344 unsigned long nr_segs) 1345 { 1346 struct inode *inode = iocb->ki_filp->f_mapping->host; 1347 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1348 ssize_t ret; 1349 1350 if (rw & WRITE) { 1351 iocb->private = xfs_alloc_ioend(inode, IO_DIRECT); 1352 1353 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1354 offset, nr_segs, 1355 xfs_get_blocks_direct, 1356 xfs_end_io_direct_write, NULL, 0); 1357 if (ret != -EIOCBQUEUED && iocb->private) 1358 xfs_destroy_ioend(iocb->private); 1359 } else { 1360 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1361 offset, nr_segs, 1362 xfs_get_blocks_direct, 1363 NULL, NULL, 0); 1364 } 1365 1366 return ret; 1367 } 1368 1369 STATIC void 1370 xfs_vm_write_failed( 1371 struct address_space *mapping, 1372 loff_t to) 1373 { 1374 struct inode *inode = mapping->host; 1375 1376 if (to > inode->i_size) { 1377 /* 1378 * punch out the delalloc blocks we have already allocated. We 1379 * don't call xfs_setattr() to do this as we may be in the 1380 * middle of a multi-iovec write and so the vfs inode->i_size 1381 * will not match the xfs ip->i_size and so it will zero too 1382 * much. Hence we jus truncate the page cache to zero what is 1383 * necessary and punch the delalloc blocks directly. 1384 */ 1385 struct xfs_inode *ip = XFS_I(inode); 1386 xfs_fileoff_t start_fsb; 1387 xfs_fileoff_t end_fsb; 1388 int error; 1389 1390 truncate_pagecache(inode, to, inode->i_size); 1391 1392 /* 1393 * Check if there are any blocks that are outside of i_size 1394 * that need to be trimmed back. 1395 */ 1396 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; 1397 end_fsb = XFS_B_TO_FSB(ip->i_mount, to); 1398 if (end_fsb <= start_fsb) 1399 return; 1400 1401 xfs_ilock(ip, XFS_ILOCK_EXCL); 1402 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1403 end_fsb - start_fsb); 1404 if (error) { 1405 /* something screwed, just bail */ 1406 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1407 xfs_alert(ip->i_mount, 1408 "xfs_vm_write_failed: unable to clean up ino %lld", 1409 ip->i_ino); 1410 } 1411 } 1412 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1413 } 1414 } 1415 1416 STATIC int 1417 xfs_vm_write_begin( 1418 struct file *file, 1419 struct address_space *mapping, 1420 loff_t pos, 1421 unsigned len, 1422 unsigned flags, 1423 struct page **pagep, 1424 void **fsdata) 1425 { 1426 int ret; 1427 1428 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, 1429 pagep, xfs_get_blocks); 1430 if (unlikely(ret)) 1431 xfs_vm_write_failed(mapping, pos + len); 1432 return ret; 1433 } 1434 1435 STATIC int 1436 xfs_vm_write_end( 1437 struct file *file, 1438 struct address_space *mapping, 1439 loff_t pos, 1440 unsigned len, 1441 unsigned copied, 1442 struct page *page, 1443 void *fsdata) 1444 { 1445 int ret; 1446 1447 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1448 if (unlikely(ret < len)) 1449 xfs_vm_write_failed(mapping, pos + len); 1450 return ret; 1451 } 1452 1453 STATIC sector_t 1454 xfs_vm_bmap( 1455 struct address_space *mapping, 1456 sector_t block) 1457 { 1458 struct inode *inode = (struct inode *)mapping->host; 1459 struct xfs_inode *ip = XFS_I(inode); 1460 1461 trace_xfs_vm_bmap(XFS_I(inode)); 1462 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1463 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); 1464 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1465 return generic_block_bmap(mapping, block, xfs_get_blocks); 1466 } 1467 1468 STATIC int 1469 xfs_vm_readpage( 1470 struct file *unused, 1471 struct page *page) 1472 { 1473 return mpage_readpage(page, xfs_get_blocks); 1474 } 1475 1476 STATIC int 1477 xfs_vm_readpages( 1478 struct file *unused, 1479 struct address_space *mapping, 1480 struct list_head *pages, 1481 unsigned nr_pages) 1482 { 1483 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1484 } 1485 1486 const struct address_space_operations xfs_address_space_operations = { 1487 .readpage = xfs_vm_readpage, 1488 .readpages = xfs_vm_readpages, 1489 .writepage = xfs_vm_writepage, 1490 .writepages = xfs_vm_writepages, 1491 .releasepage = xfs_vm_releasepage, 1492 .invalidatepage = xfs_vm_invalidatepage, 1493 .write_begin = xfs_vm_write_begin, 1494 .write_end = xfs_vm_write_end, 1495 .bmap = xfs_vm_bmap, 1496 .direct_IO = xfs_vm_direct_IO, 1497 .migratepage = buffer_migrate_page, 1498 .is_partially_uptodate = block_is_partially_uptodate, 1499 .error_remove_page = generic_error_remove_page, 1500 }; 1501