1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_sb.h" 24 #include "xfs_ag.h" 25 #include "xfs_mount.h" 26 #include "xfs_inode.h" 27 #include "xfs_trans.h" 28 #include "xfs_inode_item.h" 29 #include "xfs_alloc.h" 30 #include "xfs_error.h" 31 #include "xfs_iomap.h" 32 #include "xfs_trace.h" 33 #include "xfs_bmap.h" 34 #include "xfs_bmap_util.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_dinode.h" 37 #include <linux/aio.h> 38 #include <linux/gfp.h> 39 #include <linux/mpage.h> 40 #include <linux/pagevec.h> 41 #include <linux/writeback.h> 42 43 void 44 xfs_count_page_state( 45 struct page *page, 46 int *delalloc, 47 int *unwritten) 48 { 49 struct buffer_head *bh, *head; 50 51 *delalloc = *unwritten = 0; 52 53 bh = head = page_buffers(page); 54 do { 55 if (buffer_unwritten(bh)) 56 (*unwritten) = 1; 57 else if (buffer_delay(bh)) 58 (*delalloc) = 1; 59 } while ((bh = bh->b_this_page) != head); 60 } 61 62 STATIC struct block_device * 63 xfs_find_bdev_for_inode( 64 struct inode *inode) 65 { 66 struct xfs_inode *ip = XFS_I(inode); 67 struct xfs_mount *mp = ip->i_mount; 68 69 if (XFS_IS_REALTIME_INODE(ip)) 70 return mp->m_rtdev_targp->bt_bdev; 71 else 72 return mp->m_ddev_targp->bt_bdev; 73 } 74 75 /* 76 * We're now finished for good with this ioend structure. 77 * Update the page state via the associated buffer_heads, 78 * release holds on the inode and bio, and finally free 79 * up memory. Do not use the ioend after this. 80 */ 81 STATIC void 82 xfs_destroy_ioend( 83 xfs_ioend_t *ioend) 84 { 85 struct buffer_head *bh, *next; 86 87 for (bh = ioend->io_buffer_head; bh; bh = next) { 88 next = bh->b_private; 89 bh->b_end_io(bh, !ioend->io_error); 90 } 91 92 mempool_free(ioend, xfs_ioend_pool); 93 } 94 95 /* 96 * Fast and loose check if this write could update the on-disk inode size. 97 */ 98 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 99 { 100 return ioend->io_offset + ioend->io_size > 101 XFS_I(ioend->io_inode)->i_d.di_size; 102 } 103 104 STATIC int 105 xfs_setfilesize_trans_alloc( 106 struct xfs_ioend *ioend) 107 { 108 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 109 struct xfs_trans *tp; 110 int error; 111 112 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 113 114 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 115 if (error) { 116 xfs_trans_cancel(tp, 0); 117 return error; 118 } 119 120 ioend->io_append_trans = tp; 121 122 /* 123 * We may pass freeze protection with a transaction. So tell lockdep 124 * we released it. 125 */ 126 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 127 1, _THIS_IP_); 128 /* 129 * We hand off the transaction to the completion thread now, so 130 * clear the flag here. 131 */ 132 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 133 return 0; 134 } 135 136 /* 137 * Update on-disk file size now that data has been written to disk. 138 */ 139 STATIC int 140 xfs_setfilesize( 141 struct xfs_ioend *ioend) 142 { 143 struct xfs_inode *ip = XFS_I(ioend->io_inode); 144 struct xfs_trans *tp = ioend->io_append_trans; 145 xfs_fsize_t isize; 146 147 /* 148 * The transaction may have been allocated in the I/O submission thread, 149 * thus we need to mark ourselves as beeing in a transaction manually. 150 * Similarly for freeze protection. 151 */ 152 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 153 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 154 0, 1, _THIS_IP_); 155 156 xfs_ilock(ip, XFS_ILOCK_EXCL); 157 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 158 if (!isize) { 159 xfs_iunlock(ip, XFS_ILOCK_EXCL); 160 xfs_trans_cancel(tp, 0); 161 return 0; 162 } 163 164 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 165 166 ip->i_d.di_size = isize; 167 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 169 170 return xfs_trans_commit(tp, 0); 171 } 172 173 /* 174 * Schedule IO completion handling on the final put of an ioend. 175 * 176 * If there is no work to do we might as well call it a day and free the 177 * ioend right now. 178 */ 179 STATIC void 180 xfs_finish_ioend( 181 struct xfs_ioend *ioend) 182 { 183 if (atomic_dec_and_test(&ioend->io_remaining)) { 184 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 185 186 if (ioend->io_type == XFS_IO_UNWRITTEN) 187 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 188 else if (ioend->io_append_trans || 189 (ioend->io_isdirect && xfs_ioend_is_append(ioend))) 190 queue_work(mp->m_data_workqueue, &ioend->io_work); 191 else 192 xfs_destroy_ioend(ioend); 193 } 194 } 195 196 /* 197 * IO write completion. 198 */ 199 STATIC void 200 xfs_end_io( 201 struct work_struct *work) 202 { 203 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 204 struct xfs_inode *ip = XFS_I(ioend->io_inode); 205 int error = 0; 206 207 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 208 ioend->io_error = -EIO; 209 goto done; 210 } 211 if (ioend->io_error) 212 goto done; 213 214 /* 215 * For unwritten extents we need to issue transactions to convert a 216 * range to normal written extens after the data I/O has finished. 217 */ 218 if (ioend->io_type == XFS_IO_UNWRITTEN) { 219 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 220 ioend->io_size); 221 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) { 222 /* 223 * For direct I/O we do not know if we need to allocate blocks 224 * or not so we can't preallocate an append transaction as that 225 * results in nested reservations and log space deadlocks. Hence 226 * allocate the transaction here. While this is sub-optimal and 227 * can block IO completion for some time, we're stuck with doing 228 * it this way until we can pass the ioend to the direct IO 229 * allocation callbacks and avoid nesting that way. 230 */ 231 error = xfs_setfilesize_trans_alloc(ioend); 232 if (error) 233 goto done; 234 error = xfs_setfilesize(ioend); 235 } else if (ioend->io_append_trans) { 236 error = xfs_setfilesize(ioend); 237 } else { 238 ASSERT(!xfs_ioend_is_append(ioend)); 239 } 240 241 done: 242 if (error) 243 ioend->io_error = -error; 244 xfs_destroy_ioend(ioend); 245 } 246 247 /* 248 * Call IO completion handling in caller context on the final put of an ioend. 249 */ 250 STATIC void 251 xfs_finish_ioend_sync( 252 struct xfs_ioend *ioend) 253 { 254 if (atomic_dec_and_test(&ioend->io_remaining)) 255 xfs_end_io(&ioend->io_work); 256 } 257 258 /* 259 * Allocate and initialise an IO completion structure. 260 * We need to track unwritten extent write completion here initially. 261 * We'll need to extend this for updating the ondisk inode size later 262 * (vs. incore size). 263 */ 264 STATIC xfs_ioend_t * 265 xfs_alloc_ioend( 266 struct inode *inode, 267 unsigned int type) 268 { 269 xfs_ioend_t *ioend; 270 271 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 272 273 /* 274 * Set the count to 1 initially, which will prevent an I/O 275 * completion callback from happening before we have started 276 * all the I/O from calling the completion routine too early. 277 */ 278 atomic_set(&ioend->io_remaining, 1); 279 ioend->io_isdirect = 0; 280 ioend->io_error = 0; 281 ioend->io_list = NULL; 282 ioend->io_type = type; 283 ioend->io_inode = inode; 284 ioend->io_buffer_head = NULL; 285 ioend->io_buffer_tail = NULL; 286 ioend->io_offset = 0; 287 ioend->io_size = 0; 288 ioend->io_append_trans = NULL; 289 290 INIT_WORK(&ioend->io_work, xfs_end_io); 291 return ioend; 292 } 293 294 STATIC int 295 xfs_map_blocks( 296 struct inode *inode, 297 loff_t offset, 298 struct xfs_bmbt_irec *imap, 299 int type, 300 int nonblocking) 301 { 302 struct xfs_inode *ip = XFS_I(inode); 303 struct xfs_mount *mp = ip->i_mount; 304 ssize_t count = 1 << inode->i_blkbits; 305 xfs_fileoff_t offset_fsb, end_fsb; 306 int error = 0; 307 int bmapi_flags = XFS_BMAPI_ENTIRE; 308 int nimaps = 1; 309 310 if (XFS_FORCED_SHUTDOWN(mp)) 311 return -XFS_ERROR(EIO); 312 313 if (type == XFS_IO_UNWRITTEN) 314 bmapi_flags |= XFS_BMAPI_IGSTATE; 315 316 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 317 if (nonblocking) 318 return -XFS_ERROR(EAGAIN); 319 xfs_ilock(ip, XFS_ILOCK_SHARED); 320 } 321 322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 323 (ip->i_df.if_flags & XFS_IFEXTENTS)); 324 ASSERT(offset <= mp->m_super->s_maxbytes); 325 326 if (offset + count > mp->m_super->s_maxbytes) 327 count = mp->m_super->s_maxbytes - offset; 328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 329 offset_fsb = XFS_B_TO_FSBT(mp, offset); 330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 331 imap, &nimaps, bmapi_flags); 332 xfs_iunlock(ip, XFS_ILOCK_SHARED); 333 334 if (error) 335 return -XFS_ERROR(error); 336 337 if (type == XFS_IO_DELALLOC && 338 (!nimaps || isnullstartblock(imap->br_startblock))) { 339 error = xfs_iomap_write_allocate(ip, offset, imap); 340 if (!error) 341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 342 return -XFS_ERROR(error); 343 } 344 345 #ifdef DEBUG 346 if (type == XFS_IO_UNWRITTEN) { 347 ASSERT(nimaps); 348 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 350 } 351 #endif 352 if (nimaps) 353 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 354 return 0; 355 } 356 357 STATIC int 358 xfs_imap_valid( 359 struct inode *inode, 360 struct xfs_bmbt_irec *imap, 361 xfs_off_t offset) 362 { 363 offset >>= inode->i_blkbits; 364 365 return offset >= imap->br_startoff && 366 offset < imap->br_startoff + imap->br_blockcount; 367 } 368 369 /* 370 * BIO completion handler for buffered IO. 371 */ 372 STATIC void 373 xfs_end_bio( 374 struct bio *bio, 375 int error) 376 { 377 xfs_ioend_t *ioend = bio->bi_private; 378 379 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 380 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 381 382 /* Toss bio and pass work off to an xfsdatad thread */ 383 bio->bi_private = NULL; 384 bio->bi_end_io = NULL; 385 bio_put(bio); 386 387 xfs_finish_ioend(ioend); 388 } 389 390 STATIC void 391 xfs_submit_ioend_bio( 392 struct writeback_control *wbc, 393 xfs_ioend_t *ioend, 394 struct bio *bio) 395 { 396 atomic_inc(&ioend->io_remaining); 397 bio->bi_private = ioend; 398 bio->bi_end_io = xfs_end_bio; 399 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 400 } 401 402 STATIC struct bio * 403 xfs_alloc_ioend_bio( 404 struct buffer_head *bh) 405 { 406 int nvecs = bio_get_nr_vecs(bh->b_bdev); 407 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 408 409 ASSERT(bio->bi_private == NULL); 410 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 411 bio->bi_bdev = bh->b_bdev; 412 return bio; 413 } 414 415 STATIC void 416 xfs_start_buffer_writeback( 417 struct buffer_head *bh) 418 { 419 ASSERT(buffer_mapped(bh)); 420 ASSERT(buffer_locked(bh)); 421 ASSERT(!buffer_delay(bh)); 422 ASSERT(!buffer_unwritten(bh)); 423 424 mark_buffer_async_write(bh); 425 set_buffer_uptodate(bh); 426 clear_buffer_dirty(bh); 427 } 428 429 STATIC void 430 xfs_start_page_writeback( 431 struct page *page, 432 int clear_dirty, 433 int buffers) 434 { 435 ASSERT(PageLocked(page)); 436 ASSERT(!PageWriteback(page)); 437 if (clear_dirty) 438 clear_page_dirty_for_io(page); 439 set_page_writeback(page); 440 unlock_page(page); 441 /* If no buffers on the page are to be written, finish it here */ 442 if (!buffers) 443 end_page_writeback(page); 444 } 445 446 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 447 { 448 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 449 } 450 451 /* 452 * Submit all of the bios for all of the ioends we have saved up, covering the 453 * initial writepage page and also any probed pages. 454 * 455 * Because we may have multiple ioends spanning a page, we need to start 456 * writeback on all the buffers before we submit them for I/O. If we mark the 457 * buffers as we got, then we can end up with a page that only has buffers 458 * marked async write and I/O complete on can occur before we mark the other 459 * buffers async write. 460 * 461 * The end result of this is that we trip a bug in end_page_writeback() because 462 * we call it twice for the one page as the code in end_buffer_async_write() 463 * assumes that all buffers on the page are started at the same time. 464 * 465 * The fix is two passes across the ioend list - one to start writeback on the 466 * buffer_heads, and then submit them for I/O on the second pass. 467 * 468 * If @fail is non-zero, it means that we have a situation where some part of 469 * the submission process has failed after we have marked paged for writeback 470 * and unlocked them. In this situation, we need to fail the ioend chain rather 471 * than submit it to IO. This typically only happens on a filesystem shutdown. 472 */ 473 STATIC void 474 xfs_submit_ioend( 475 struct writeback_control *wbc, 476 xfs_ioend_t *ioend, 477 int fail) 478 { 479 xfs_ioend_t *head = ioend; 480 xfs_ioend_t *next; 481 struct buffer_head *bh; 482 struct bio *bio; 483 sector_t lastblock = 0; 484 485 /* Pass 1 - start writeback */ 486 do { 487 next = ioend->io_list; 488 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 489 xfs_start_buffer_writeback(bh); 490 } while ((ioend = next) != NULL); 491 492 /* Pass 2 - submit I/O */ 493 ioend = head; 494 do { 495 next = ioend->io_list; 496 bio = NULL; 497 498 /* 499 * If we are failing the IO now, just mark the ioend with an 500 * error and finish it. This will run IO completion immediately 501 * as there is only one reference to the ioend at this point in 502 * time. 503 */ 504 if (fail) { 505 ioend->io_error = -fail; 506 xfs_finish_ioend(ioend); 507 continue; 508 } 509 510 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 511 512 if (!bio) { 513 retry: 514 bio = xfs_alloc_ioend_bio(bh); 515 } else if (bh->b_blocknr != lastblock + 1) { 516 xfs_submit_ioend_bio(wbc, ioend, bio); 517 goto retry; 518 } 519 520 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 521 xfs_submit_ioend_bio(wbc, ioend, bio); 522 goto retry; 523 } 524 525 lastblock = bh->b_blocknr; 526 } 527 if (bio) 528 xfs_submit_ioend_bio(wbc, ioend, bio); 529 xfs_finish_ioend(ioend); 530 } while ((ioend = next) != NULL); 531 } 532 533 /* 534 * Cancel submission of all buffer_heads so far in this endio. 535 * Toss the endio too. Only ever called for the initial page 536 * in a writepage request, so only ever one page. 537 */ 538 STATIC void 539 xfs_cancel_ioend( 540 xfs_ioend_t *ioend) 541 { 542 xfs_ioend_t *next; 543 struct buffer_head *bh, *next_bh; 544 545 do { 546 next = ioend->io_list; 547 bh = ioend->io_buffer_head; 548 do { 549 next_bh = bh->b_private; 550 clear_buffer_async_write(bh); 551 unlock_buffer(bh); 552 } while ((bh = next_bh) != NULL); 553 554 mempool_free(ioend, xfs_ioend_pool); 555 } while ((ioend = next) != NULL); 556 } 557 558 /* 559 * Test to see if we've been building up a completion structure for 560 * earlier buffers -- if so, we try to append to this ioend if we 561 * can, otherwise we finish off any current ioend and start another. 562 * Return true if we've finished the given ioend. 563 */ 564 STATIC void 565 xfs_add_to_ioend( 566 struct inode *inode, 567 struct buffer_head *bh, 568 xfs_off_t offset, 569 unsigned int type, 570 xfs_ioend_t **result, 571 int need_ioend) 572 { 573 xfs_ioend_t *ioend = *result; 574 575 if (!ioend || need_ioend || type != ioend->io_type) { 576 xfs_ioend_t *previous = *result; 577 578 ioend = xfs_alloc_ioend(inode, type); 579 ioend->io_offset = offset; 580 ioend->io_buffer_head = bh; 581 ioend->io_buffer_tail = bh; 582 if (previous) 583 previous->io_list = ioend; 584 *result = ioend; 585 } else { 586 ioend->io_buffer_tail->b_private = bh; 587 ioend->io_buffer_tail = bh; 588 } 589 590 bh->b_private = NULL; 591 ioend->io_size += bh->b_size; 592 } 593 594 STATIC void 595 xfs_map_buffer( 596 struct inode *inode, 597 struct buffer_head *bh, 598 struct xfs_bmbt_irec *imap, 599 xfs_off_t offset) 600 { 601 sector_t bn; 602 struct xfs_mount *m = XFS_I(inode)->i_mount; 603 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 604 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 605 606 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 607 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 608 609 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 610 ((offset - iomap_offset) >> inode->i_blkbits); 611 612 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 613 614 bh->b_blocknr = bn; 615 set_buffer_mapped(bh); 616 } 617 618 STATIC void 619 xfs_map_at_offset( 620 struct inode *inode, 621 struct buffer_head *bh, 622 struct xfs_bmbt_irec *imap, 623 xfs_off_t offset) 624 { 625 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 626 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 627 628 xfs_map_buffer(inode, bh, imap, offset); 629 set_buffer_mapped(bh); 630 clear_buffer_delay(bh); 631 clear_buffer_unwritten(bh); 632 } 633 634 /* 635 * Test if a given page is suitable for writing as part of an unwritten 636 * or delayed allocate extent. 637 */ 638 STATIC int 639 xfs_check_page_type( 640 struct page *page, 641 unsigned int type) 642 { 643 if (PageWriteback(page)) 644 return 0; 645 646 if (page->mapping && page_has_buffers(page)) { 647 struct buffer_head *bh, *head; 648 int acceptable = 0; 649 650 bh = head = page_buffers(page); 651 do { 652 if (buffer_unwritten(bh)) 653 acceptable += (type == XFS_IO_UNWRITTEN); 654 else if (buffer_delay(bh)) 655 acceptable += (type == XFS_IO_DELALLOC); 656 else if (buffer_dirty(bh) && buffer_mapped(bh)) 657 acceptable += (type == XFS_IO_OVERWRITE); 658 else 659 break; 660 } while ((bh = bh->b_this_page) != head); 661 662 if (acceptable) 663 return 1; 664 } 665 666 return 0; 667 } 668 669 /* 670 * Allocate & map buffers for page given the extent map. Write it out. 671 * except for the original page of a writepage, this is called on 672 * delalloc/unwritten pages only, for the original page it is possible 673 * that the page has no mapping at all. 674 */ 675 STATIC int 676 xfs_convert_page( 677 struct inode *inode, 678 struct page *page, 679 loff_t tindex, 680 struct xfs_bmbt_irec *imap, 681 xfs_ioend_t **ioendp, 682 struct writeback_control *wbc) 683 { 684 struct buffer_head *bh, *head; 685 xfs_off_t end_offset; 686 unsigned long p_offset; 687 unsigned int type; 688 int len, page_dirty; 689 int count = 0, done = 0, uptodate = 1; 690 xfs_off_t offset = page_offset(page); 691 692 if (page->index != tindex) 693 goto fail; 694 if (!trylock_page(page)) 695 goto fail; 696 if (PageWriteback(page)) 697 goto fail_unlock_page; 698 if (page->mapping != inode->i_mapping) 699 goto fail_unlock_page; 700 if (!xfs_check_page_type(page, (*ioendp)->io_type)) 701 goto fail_unlock_page; 702 703 /* 704 * page_dirty is initially a count of buffers on the page before 705 * EOF and is decremented as we move each into a cleanable state. 706 * 707 * Derivation: 708 * 709 * End offset is the highest offset that this page should represent. 710 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 711 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 712 * hence give us the correct page_dirty count. On any other page, 713 * it will be zero and in that case we need page_dirty to be the 714 * count of buffers on the page. 715 */ 716 end_offset = min_t(unsigned long long, 717 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 718 i_size_read(inode)); 719 720 /* 721 * If the current map does not span the entire page we are about to try 722 * to write, then give up. The only way we can write a page that spans 723 * multiple mappings in a single writeback iteration is via the 724 * xfs_vm_writepage() function. Data integrity writeback requires the 725 * entire page to be written in a single attempt, otherwise the part of 726 * the page we don't write here doesn't get written as part of the data 727 * integrity sync. 728 * 729 * For normal writeback, we also don't attempt to write partial pages 730 * here as it simply means that write_cache_pages() will see it under 731 * writeback and ignore the page until some point in the future, at 732 * which time this will be the only page in the file that needs 733 * writeback. Hence for more optimal IO patterns, we should always 734 * avoid partial page writeback due to multiple mappings on a page here. 735 */ 736 if (!xfs_imap_valid(inode, imap, end_offset)) 737 goto fail_unlock_page; 738 739 len = 1 << inode->i_blkbits; 740 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 741 PAGE_CACHE_SIZE); 742 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 743 page_dirty = p_offset / len; 744 745 bh = head = page_buffers(page); 746 do { 747 if (offset >= end_offset) 748 break; 749 if (!buffer_uptodate(bh)) 750 uptodate = 0; 751 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 752 done = 1; 753 continue; 754 } 755 756 if (buffer_unwritten(bh) || buffer_delay(bh) || 757 buffer_mapped(bh)) { 758 if (buffer_unwritten(bh)) 759 type = XFS_IO_UNWRITTEN; 760 else if (buffer_delay(bh)) 761 type = XFS_IO_DELALLOC; 762 else 763 type = XFS_IO_OVERWRITE; 764 765 if (!xfs_imap_valid(inode, imap, offset)) { 766 done = 1; 767 continue; 768 } 769 770 lock_buffer(bh); 771 if (type != XFS_IO_OVERWRITE) 772 xfs_map_at_offset(inode, bh, imap, offset); 773 xfs_add_to_ioend(inode, bh, offset, type, 774 ioendp, done); 775 776 page_dirty--; 777 count++; 778 } else { 779 done = 1; 780 } 781 } while (offset += len, (bh = bh->b_this_page) != head); 782 783 if (uptodate && bh == head) 784 SetPageUptodate(page); 785 786 if (count) { 787 if (--wbc->nr_to_write <= 0 && 788 wbc->sync_mode == WB_SYNC_NONE) 789 done = 1; 790 } 791 xfs_start_page_writeback(page, !page_dirty, count); 792 793 return done; 794 fail_unlock_page: 795 unlock_page(page); 796 fail: 797 return 1; 798 } 799 800 /* 801 * Convert & write out a cluster of pages in the same extent as defined 802 * by mp and following the start page. 803 */ 804 STATIC void 805 xfs_cluster_write( 806 struct inode *inode, 807 pgoff_t tindex, 808 struct xfs_bmbt_irec *imap, 809 xfs_ioend_t **ioendp, 810 struct writeback_control *wbc, 811 pgoff_t tlast) 812 { 813 struct pagevec pvec; 814 int done = 0, i; 815 816 pagevec_init(&pvec, 0); 817 while (!done && tindex <= tlast) { 818 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 819 820 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 821 break; 822 823 for (i = 0; i < pagevec_count(&pvec); i++) { 824 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 825 imap, ioendp, wbc); 826 if (done) 827 break; 828 } 829 830 pagevec_release(&pvec); 831 cond_resched(); 832 } 833 } 834 835 STATIC void 836 xfs_vm_invalidatepage( 837 struct page *page, 838 unsigned int offset, 839 unsigned int length) 840 { 841 trace_xfs_invalidatepage(page->mapping->host, page, offset, 842 length); 843 block_invalidatepage(page, offset, length); 844 } 845 846 /* 847 * If the page has delalloc buffers on it, we need to punch them out before we 848 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 849 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 850 * is done on that same region - the delalloc extent is returned when none is 851 * supposed to be there. 852 * 853 * We prevent this by truncating away the delalloc regions on the page before 854 * invalidating it. Because they are delalloc, we can do this without needing a 855 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 856 * truncation without a transaction as there is no space left for block 857 * reservation (typically why we see a ENOSPC in writeback). 858 * 859 * This is not a performance critical path, so for now just do the punching a 860 * buffer head at a time. 861 */ 862 STATIC void 863 xfs_aops_discard_page( 864 struct page *page) 865 { 866 struct inode *inode = page->mapping->host; 867 struct xfs_inode *ip = XFS_I(inode); 868 struct buffer_head *bh, *head; 869 loff_t offset = page_offset(page); 870 871 if (!xfs_check_page_type(page, XFS_IO_DELALLOC)) 872 goto out_invalidate; 873 874 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 875 goto out_invalidate; 876 877 xfs_alert(ip->i_mount, 878 "page discard on page %p, inode 0x%llx, offset %llu.", 879 page, ip->i_ino, offset); 880 881 xfs_ilock(ip, XFS_ILOCK_EXCL); 882 bh = head = page_buffers(page); 883 do { 884 int error; 885 xfs_fileoff_t start_fsb; 886 887 if (!buffer_delay(bh)) 888 goto next_buffer; 889 890 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 891 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 892 if (error) { 893 /* something screwed, just bail */ 894 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 895 xfs_alert(ip->i_mount, 896 "page discard unable to remove delalloc mapping."); 897 } 898 break; 899 } 900 next_buffer: 901 offset += 1 << inode->i_blkbits; 902 903 } while ((bh = bh->b_this_page) != head); 904 905 xfs_iunlock(ip, XFS_ILOCK_EXCL); 906 out_invalidate: 907 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 908 return; 909 } 910 911 /* 912 * Write out a dirty page. 913 * 914 * For delalloc space on the page we need to allocate space and flush it. 915 * For unwritten space on the page we need to start the conversion to 916 * regular allocated space. 917 * For any other dirty buffer heads on the page we should flush them. 918 */ 919 STATIC int 920 xfs_vm_writepage( 921 struct page *page, 922 struct writeback_control *wbc) 923 { 924 struct inode *inode = page->mapping->host; 925 struct buffer_head *bh, *head; 926 struct xfs_bmbt_irec imap; 927 xfs_ioend_t *ioend = NULL, *iohead = NULL; 928 loff_t offset; 929 unsigned int type; 930 __uint64_t end_offset; 931 pgoff_t end_index, last_index; 932 ssize_t len; 933 int err, imap_valid = 0, uptodate = 1; 934 int count = 0; 935 int nonblocking = 0; 936 937 trace_xfs_writepage(inode, page, 0, 0); 938 939 ASSERT(page_has_buffers(page)); 940 941 /* 942 * Refuse to write the page out if we are called from reclaim context. 943 * 944 * This avoids stack overflows when called from deeply used stacks in 945 * random callers for direct reclaim or memcg reclaim. We explicitly 946 * allow reclaim from kswapd as the stack usage there is relatively low. 947 * 948 * This should never happen except in the case of a VM regression so 949 * warn about it. 950 */ 951 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 952 PF_MEMALLOC)) 953 goto redirty; 954 955 /* 956 * Given that we do not allow direct reclaim to call us, we should 957 * never be called while in a filesystem transaction. 958 */ 959 if (WARN_ON(current->flags & PF_FSTRANS)) 960 goto redirty; 961 962 /* Is this page beyond the end of the file? */ 963 offset = i_size_read(inode); 964 end_index = offset >> PAGE_CACHE_SHIFT; 965 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 966 if (page->index >= end_index) { 967 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 968 969 /* 970 * Skip the page if it is fully outside i_size, e.g. due to a 971 * truncate operation that is in progress. We must redirty the 972 * page so that reclaim stops reclaiming it. Otherwise 973 * xfs_vm_releasepage() is called on it and gets confused. 974 */ 975 if (page->index >= end_index + 1 || offset_into_page == 0) 976 goto redirty; 977 978 /* 979 * The page straddles i_size. It must be zeroed out on each 980 * and every writepage invocation because it may be mmapped. 981 * "A file is mapped in multiples of the page size. For a file 982 * that is not a multiple of the page size, the remaining 983 * memory is zeroed when mapped, and writes to that region are 984 * not written out to the file." 985 */ 986 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 987 } 988 989 end_offset = min_t(unsigned long long, 990 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 991 offset); 992 len = 1 << inode->i_blkbits; 993 994 bh = head = page_buffers(page); 995 offset = page_offset(page); 996 type = XFS_IO_OVERWRITE; 997 998 if (wbc->sync_mode == WB_SYNC_NONE) 999 nonblocking = 1; 1000 1001 do { 1002 int new_ioend = 0; 1003 1004 if (offset >= end_offset) 1005 break; 1006 if (!buffer_uptodate(bh)) 1007 uptodate = 0; 1008 1009 /* 1010 * set_page_dirty dirties all buffers in a page, independent 1011 * of their state. The dirty state however is entirely 1012 * meaningless for holes (!mapped && uptodate), so skip 1013 * buffers covering holes here. 1014 */ 1015 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1016 imap_valid = 0; 1017 continue; 1018 } 1019 1020 if (buffer_unwritten(bh)) { 1021 if (type != XFS_IO_UNWRITTEN) { 1022 type = XFS_IO_UNWRITTEN; 1023 imap_valid = 0; 1024 } 1025 } else if (buffer_delay(bh)) { 1026 if (type != XFS_IO_DELALLOC) { 1027 type = XFS_IO_DELALLOC; 1028 imap_valid = 0; 1029 } 1030 } else if (buffer_uptodate(bh)) { 1031 if (type != XFS_IO_OVERWRITE) { 1032 type = XFS_IO_OVERWRITE; 1033 imap_valid = 0; 1034 } 1035 } else { 1036 if (PageUptodate(page)) 1037 ASSERT(buffer_mapped(bh)); 1038 /* 1039 * This buffer is not uptodate and will not be 1040 * written to disk. Ensure that we will put any 1041 * subsequent writeable buffers into a new 1042 * ioend. 1043 */ 1044 imap_valid = 0; 1045 continue; 1046 } 1047 1048 if (imap_valid) 1049 imap_valid = xfs_imap_valid(inode, &imap, offset); 1050 if (!imap_valid) { 1051 /* 1052 * If we didn't have a valid mapping then we need to 1053 * put the new mapping into a separate ioend structure. 1054 * This ensures non-contiguous extents always have 1055 * separate ioends, which is particularly important 1056 * for unwritten extent conversion at I/O completion 1057 * time. 1058 */ 1059 new_ioend = 1; 1060 err = xfs_map_blocks(inode, offset, &imap, type, 1061 nonblocking); 1062 if (err) 1063 goto error; 1064 imap_valid = xfs_imap_valid(inode, &imap, offset); 1065 } 1066 if (imap_valid) { 1067 lock_buffer(bh); 1068 if (type != XFS_IO_OVERWRITE) 1069 xfs_map_at_offset(inode, bh, &imap, offset); 1070 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1071 new_ioend); 1072 count++; 1073 } 1074 1075 if (!iohead) 1076 iohead = ioend; 1077 1078 } while (offset += len, ((bh = bh->b_this_page) != head)); 1079 1080 if (uptodate && bh == head) 1081 SetPageUptodate(page); 1082 1083 xfs_start_page_writeback(page, 1, count); 1084 1085 /* if there is no IO to be submitted for this page, we are done */ 1086 if (!ioend) 1087 return 0; 1088 1089 ASSERT(iohead); 1090 1091 /* 1092 * Any errors from this point onwards need tobe reported through the IO 1093 * completion path as we have marked the initial page as under writeback 1094 * and unlocked it. 1095 */ 1096 if (imap_valid) { 1097 xfs_off_t end_index; 1098 1099 end_index = imap.br_startoff + imap.br_blockcount; 1100 1101 /* to bytes */ 1102 end_index <<= inode->i_blkbits; 1103 1104 /* to pages */ 1105 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1106 1107 /* check against file size */ 1108 if (end_index > last_index) 1109 end_index = last_index; 1110 1111 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1112 wbc, end_index); 1113 } 1114 1115 1116 /* 1117 * Reserve log space if we might write beyond the on-disk inode size. 1118 */ 1119 err = 0; 1120 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1121 err = xfs_setfilesize_trans_alloc(ioend); 1122 1123 xfs_submit_ioend(wbc, iohead, err); 1124 1125 return 0; 1126 1127 error: 1128 if (iohead) 1129 xfs_cancel_ioend(iohead); 1130 1131 if (err == -EAGAIN) 1132 goto redirty; 1133 1134 xfs_aops_discard_page(page); 1135 ClearPageUptodate(page); 1136 unlock_page(page); 1137 return err; 1138 1139 redirty: 1140 redirty_page_for_writepage(wbc, page); 1141 unlock_page(page); 1142 return 0; 1143 } 1144 1145 STATIC int 1146 xfs_vm_writepages( 1147 struct address_space *mapping, 1148 struct writeback_control *wbc) 1149 { 1150 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1151 return generic_writepages(mapping, wbc); 1152 } 1153 1154 /* 1155 * Called to move a page into cleanable state - and from there 1156 * to be released. The page should already be clean. We always 1157 * have buffer heads in this call. 1158 * 1159 * Returns 1 if the page is ok to release, 0 otherwise. 1160 */ 1161 STATIC int 1162 xfs_vm_releasepage( 1163 struct page *page, 1164 gfp_t gfp_mask) 1165 { 1166 int delalloc, unwritten; 1167 1168 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1169 1170 xfs_count_page_state(page, &delalloc, &unwritten); 1171 1172 if (WARN_ON(delalloc)) 1173 return 0; 1174 if (WARN_ON(unwritten)) 1175 return 0; 1176 1177 return try_to_free_buffers(page); 1178 } 1179 1180 STATIC int 1181 __xfs_get_blocks( 1182 struct inode *inode, 1183 sector_t iblock, 1184 struct buffer_head *bh_result, 1185 int create, 1186 int direct) 1187 { 1188 struct xfs_inode *ip = XFS_I(inode); 1189 struct xfs_mount *mp = ip->i_mount; 1190 xfs_fileoff_t offset_fsb, end_fsb; 1191 int error = 0; 1192 int lockmode = 0; 1193 struct xfs_bmbt_irec imap; 1194 int nimaps = 1; 1195 xfs_off_t offset; 1196 ssize_t size; 1197 int new = 0; 1198 1199 if (XFS_FORCED_SHUTDOWN(mp)) 1200 return -XFS_ERROR(EIO); 1201 1202 offset = (xfs_off_t)iblock << inode->i_blkbits; 1203 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1204 size = bh_result->b_size; 1205 1206 if (!create && direct && offset >= i_size_read(inode)) 1207 return 0; 1208 1209 /* 1210 * Direct I/O is usually done on preallocated files, so try getting 1211 * a block mapping without an exclusive lock first. For buffered 1212 * writes we already have the exclusive iolock anyway, so avoiding 1213 * a lock roundtrip here by taking the ilock exclusive from the 1214 * beginning is a useful micro optimization. 1215 */ 1216 if (create && !direct) { 1217 lockmode = XFS_ILOCK_EXCL; 1218 xfs_ilock(ip, lockmode); 1219 } else { 1220 lockmode = xfs_ilock_data_map_shared(ip); 1221 } 1222 1223 ASSERT(offset <= mp->m_super->s_maxbytes); 1224 if (offset + size > mp->m_super->s_maxbytes) 1225 size = mp->m_super->s_maxbytes - offset; 1226 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1227 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1228 1229 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1230 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1231 if (error) 1232 goto out_unlock; 1233 1234 if (create && 1235 (!nimaps || 1236 (imap.br_startblock == HOLESTARTBLOCK || 1237 imap.br_startblock == DELAYSTARTBLOCK))) { 1238 if (direct || xfs_get_extsz_hint(ip)) { 1239 /* 1240 * Drop the ilock in preparation for starting the block 1241 * allocation transaction. It will be retaken 1242 * exclusively inside xfs_iomap_write_direct for the 1243 * actual allocation. 1244 */ 1245 xfs_iunlock(ip, lockmode); 1246 error = xfs_iomap_write_direct(ip, offset, size, 1247 &imap, nimaps); 1248 if (error) 1249 return -error; 1250 new = 1; 1251 } else { 1252 /* 1253 * Delalloc reservations do not require a transaction, 1254 * we can go on without dropping the lock here. If we 1255 * are allocating a new delalloc block, make sure that 1256 * we set the new flag so that we mark the buffer new so 1257 * that we know that it is newly allocated if the write 1258 * fails. 1259 */ 1260 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1261 new = 1; 1262 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1263 if (error) 1264 goto out_unlock; 1265 1266 xfs_iunlock(ip, lockmode); 1267 } 1268 1269 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1270 } else if (nimaps) { 1271 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1272 xfs_iunlock(ip, lockmode); 1273 } else { 1274 trace_xfs_get_blocks_notfound(ip, offset, size); 1275 goto out_unlock; 1276 } 1277 1278 if (imap.br_startblock != HOLESTARTBLOCK && 1279 imap.br_startblock != DELAYSTARTBLOCK) { 1280 /* 1281 * For unwritten extents do not report a disk address on 1282 * the read case (treat as if we're reading into a hole). 1283 */ 1284 if (create || !ISUNWRITTEN(&imap)) 1285 xfs_map_buffer(inode, bh_result, &imap, offset); 1286 if (create && ISUNWRITTEN(&imap)) { 1287 if (direct) { 1288 bh_result->b_private = inode; 1289 set_buffer_defer_completion(bh_result); 1290 } 1291 set_buffer_unwritten(bh_result); 1292 } 1293 } 1294 1295 /* 1296 * If this is a realtime file, data may be on a different device. 1297 * to that pointed to from the buffer_head b_bdev currently. 1298 */ 1299 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1300 1301 /* 1302 * If we previously allocated a block out beyond eof and we are now 1303 * coming back to use it then we will need to flag it as new even if it 1304 * has a disk address. 1305 * 1306 * With sub-block writes into unwritten extents we also need to mark 1307 * the buffer as new so that the unwritten parts of the buffer gets 1308 * correctly zeroed. 1309 */ 1310 if (create && 1311 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1312 (offset >= i_size_read(inode)) || 1313 (new || ISUNWRITTEN(&imap)))) 1314 set_buffer_new(bh_result); 1315 1316 if (imap.br_startblock == DELAYSTARTBLOCK) { 1317 BUG_ON(direct); 1318 if (create) { 1319 set_buffer_uptodate(bh_result); 1320 set_buffer_mapped(bh_result); 1321 set_buffer_delay(bh_result); 1322 } 1323 } 1324 1325 /* 1326 * If this is O_DIRECT or the mpage code calling tell them how large 1327 * the mapping is, so that we can avoid repeated get_blocks calls. 1328 */ 1329 if (direct || size > (1 << inode->i_blkbits)) { 1330 xfs_off_t mapping_size; 1331 1332 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1333 mapping_size <<= inode->i_blkbits; 1334 1335 ASSERT(mapping_size > 0); 1336 if (mapping_size > size) 1337 mapping_size = size; 1338 if (mapping_size > LONG_MAX) 1339 mapping_size = LONG_MAX; 1340 1341 bh_result->b_size = mapping_size; 1342 } 1343 1344 return 0; 1345 1346 out_unlock: 1347 xfs_iunlock(ip, lockmode); 1348 return -error; 1349 } 1350 1351 int 1352 xfs_get_blocks( 1353 struct inode *inode, 1354 sector_t iblock, 1355 struct buffer_head *bh_result, 1356 int create) 1357 { 1358 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1359 } 1360 1361 STATIC int 1362 xfs_get_blocks_direct( 1363 struct inode *inode, 1364 sector_t iblock, 1365 struct buffer_head *bh_result, 1366 int create) 1367 { 1368 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1369 } 1370 1371 /* 1372 * Complete a direct I/O write request. 1373 * 1374 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1375 * need to issue a transaction to convert the range from unwritten to written 1376 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1377 * to do this and we are done. But in case this was a successful AIO 1378 * request this handler is called from interrupt context, from which we 1379 * can't start transactions. In that case offload the I/O completion to 1380 * the workqueues we also use for buffered I/O completion. 1381 */ 1382 STATIC void 1383 xfs_end_io_direct_write( 1384 struct kiocb *iocb, 1385 loff_t offset, 1386 ssize_t size, 1387 void *private) 1388 { 1389 struct xfs_ioend *ioend = iocb->private; 1390 1391 /* 1392 * While the generic direct I/O code updates the inode size, it does 1393 * so only after the end_io handler is called, which means our 1394 * end_io handler thinks the on-disk size is outside the in-core 1395 * size. To prevent this just update it a little bit earlier here. 1396 */ 1397 if (offset + size > i_size_read(ioend->io_inode)) 1398 i_size_write(ioend->io_inode, offset + size); 1399 1400 /* 1401 * blockdev_direct_IO can return an error even after the I/O 1402 * completion handler was called. Thus we need to protect 1403 * against double-freeing. 1404 */ 1405 iocb->private = NULL; 1406 1407 ioend->io_offset = offset; 1408 ioend->io_size = size; 1409 if (private && size > 0) 1410 ioend->io_type = XFS_IO_UNWRITTEN; 1411 1412 xfs_finish_ioend_sync(ioend); 1413 } 1414 1415 STATIC ssize_t 1416 xfs_vm_direct_IO( 1417 int rw, 1418 struct kiocb *iocb, 1419 const struct iovec *iov, 1420 loff_t offset, 1421 unsigned long nr_segs) 1422 { 1423 struct inode *inode = iocb->ki_filp->f_mapping->host; 1424 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1425 struct xfs_ioend *ioend = NULL; 1426 ssize_t ret; 1427 1428 if (rw & WRITE) { 1429 size_t size = iov_length(iov, nr_segs); 1430 1431 /* 1432 * We cannot preallocate a size update transaction here as we 1433 * don't know whether allocation is necessary or not. Hence we 1434 * can only tell IO completion that one is necessary if we are 1435 * not doing unwritten extent conversion. 1436 */ 1437 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT); 1438 if (offset + size > XFS_I(inode)->i_d.di_size) 1439 ioend->io_isdirect = 1; 1440 1441 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1442 offset, nr_segs, 1443 xfs_get_blocks_direct, 1444 xfs_end_io_direct_write, NULL, 0); 1445 if (ret != -EIOCBQUEUED && iocb->private) 1446 goto out_destroy_ioend; 1447 } else { 1448 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1449 offset, nr_segs, 1450 xfs_get_blocks_direct, 1451 NULL, NULL, 0); 1452 } 1453 1454 return ret; 1455 1456 out_destroy_ioend: 1457 xfs_destroy_ioend(ioend); 1458 return ret; 1459 } 1460 1461 /* 1462 * Punch out the delalloc blocks we have already allocated. 1463 * 1464 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1465 * as the page is still locked at this point. 1466 */ 1467 STATIC void 1468 xfs_vm_kill_delalloc_range( 1469 struct inode *inode, 1470 loff_t start, 1471 loff_t end) 1472 { 1473 struct xfs_inode *ip = XFS_I(inode); 1474 xfs_fileoff_t start_fsb; 1475 xfs_fileoff_t end_fsb; 1476 int error; 1477 1478 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1479 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1480 if (end_fsb <= start_fsb) 1481 return; 1482 1483 xfs_ilock(ip, XFS_ILOCK_EXCL); 1484 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1485 end_fsb - start_fsb); 1486 if (error) { 1487 /* something screwed, just bail */ 1488 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1489 xfs_alert(ip->i_mount, 1490 "xfs_vm_write_failed: unable to clean up ino %lld", 1491 ip->i_ino); 1492 } 1493 } 1494 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1495 } 1496 1497 STATIC void 1498 xfs_vm_write_failed( 1499 struct inode *inode, 1500 struct page *page, 1501 loff_t pos, 1502 unsigned len) 1503 { 1504 loff_t block_offset; 1505 loff_t block_start; 1506 loff_t block_end; 1507 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1508 loff_t to = from + len; 1509 struct buffer_head *bh, *head; 1510 1511 /* 1512 * The request pos offset might be 32 or 64 bit, this is all fine 1513 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1514 * platform, the high 32-bit will be masked off if we evaluate the 1515 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1516 * 0xfffff000 as an unsigned long, hence the result is incorrect 1517 * which could cause the following ASSERT failed in most cases. 1518 * In order to avoid this, we can evaluate the block_offset of the 1519 * start of the page by using shifts rather than masks the mismatch 1520 * problem. 1521 */ 1522 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1523 1524 ASSERT(block_offset + from == pos); 1525 1526 head = page_buffers(page); 1527 block_start = 0; 1528 for (bh = head; bh != head || !block_start; 1529 bh = bh->b_this_page, block_start = block_end, 1530 block_offset += bh->b_size) { 1531 block_end = block_start + bh->b_size; 1532 1533 /* skip buffers before the write */ 1534 if (block_end <= from) 1535 continue; 1536 1537 /* if the buffer is after the write, we're done */ 1538 if (block_start >= to) 1539 break; 1540 1541 if (!buffer_delay(bh)) 1542 continue; 1543 1544 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1545 continue; 1546 1547 xfs_vm_kill_delalloc_range(inode, block_offset, 1548 block_offset + bh->b_size); 1549 } 1550 1551 } 1552 1553 /* 1554 * This used to call block_write_begin(), but it unlocks and releases the page 1555 * on error, and we need that page to be able to punch stale delalloc blocks out 1556 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1557 * the appropriate point. 1558 */ 1559 STATIC int 1560 xfs_vm_write_begin( 1561 struct file *file, 1562 struct address_space *mapping, 1563 loff_t pos, 1564 unsigned len, 1565 unsigned flags, 1566 struct page **pagep, 1567 void **fsdata) 1568 { 1569 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1570 struct page *page; 1571 int status; 1572 1573 ASSERT(len <= PAGE_CACHE_SIZE); 1574 1575 page = grab_cache_page_write_begin(mapping, index, flags); 1576 if (!page) 1577 return -ENOMEM; 1578 1579 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1580 if (unlikely(status)) { 1581 struct inode *inode = mapping->host; 1582 1583 xfs_vm_write_failed(inode, page, pos, len); 1584 unlock_page(page); 1585 1586 if (pos + len > i_size_read(inode)) 1587 truncate_pagecache(inode, i_size_read(inode)); 1588 1589 page_cache_release(page); 1590 page = NULL; 1591 } 1592 1593 *pagep = page; 1594 return status; 1595 } 1596 1597 /* 1598 * On failure, we only need to kill delalloc blocks beyond EOF because they 1599 * will never be written. For blocks within EOF, generic_write_end() zeros them 1600 * so they are safe to leave alone and be written with all the other valid data. 1601 */ 1602 STATIC int 1603 xfs_vm_write_end( 1604 struct file *file, 1605 struct address_space *mapping, 1606 loff_t pos, 1607 unsigned len, 1608 unsigned copied, 1609 struct page *page, 1610 void *fsdata) 1611 { 1612 int ret; 1613 1614 ASSERT(len <= PAGE_CACHE_SIZE); 1615 1616 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1617 if (unlikely(ret < len)) { 1618 struct inode *inode = mapping->host; 1619 size_t isize = i_size_read(inode); 1620 loff_t to = pos + len; 1621 1622 if (to > isize) { 1623 truncate_pagecache(inode, isize); 1624 xfs_vm_kill_delalloc_range(inode, isize, to); 1625 } 1626 } 1627 return ret; 1628 } 1629 1630 STATIC sector_t 1631 xfs_vm_bmap( 1632 struct address_space *mapping, 1633 sector_t block) 1634 { 1635 struct inode *inode = (struct inode *)mapping->host; 1636 struct xfs_inode *ip = XFS_I(inode); 1637 1638 trace_xfs_vm_bmap(XFS_I(inode)); 1639 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1640 filemap_write_and_wait(mapping); 1641 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1642 return generic_block_bmap(mapping, block, xfs_get_blocks); 1643 } 1644 1645 STATIC int 1646 xfs_vm_readpage( 1647 struct file *unused, 1648 struct page *page) 1649 { 1650 return mpage_readpage(page, xfs_get_blocks); 1651 } 1652 1653 STATIC int 1654 xfs_vm_readpages( 1655 struct file *unused, 1656 struct address_space *mapping, 1657 struct list_head *pages, 1658 unsigned nr_pages) 1659 { 1660 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1661 } 1662 1663 const struct address_space_operations xfs_address_space_operations = { 1664 .readpage = xfs_vm_readpage, 1665 .readpages = xfs_vm_readpages, 1666 .writepage = xfs_vm_writepage, 1667 .writepages = xfs_vm_writepages, 1668 .releasepage = xfs_vm_releasepage, 1669 .invalidatepage = xfs_vm_invalidatepage, 1670 .write_begin = xfs_vm_write_begin, 1671 .write_end = xfs_vm_write_end, 1672 .bmap = xfs_vm_bmap, 1673 .direct_IO = xfs_vm_direct_IO, 1674 .migratepage = buffer_migrate_page, 1675 .is_partially_uptodate = block_is_partially_uptodate, 1676 .error_remove_page = generic_error_remove_page, 1677 }; 1678