1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 struct dax_device * 84 xfs_find_daxdev_for_inode( 85 struct inode *inode) 86 { 87 struct xfs_inode *ip = XFS_I(inode); 88 struct xfs_mount *mp = ip->i_mount; 89 90 if (XFS_IS_REALTIME_INODE(ip)) 91 return mp->m_rtdev_targp->bt_daxdev; 92 else 93 return mp->m_ddev_targp->bt_daxdev; 94 } 95 96 /* 97 * We're now finished for good with this page. Update the page state via the 98 * associated buffer_heads, paying attention to the start and end offsets that 99 * we need to process on the page. 100 * 101 * Note that we open code the action in end_buffer_async_write here so that we 102 * only have to iterate over the buffers attached to the page once. This is not 103 * only more efficient, but also ensures that we only calls end_page_writeback 104 * at the end of the iteration, and thus avoids the pitfall of having the page 105 * and buffers potentially freed after every call to end_buffer_async_write. 106 */ 107 static void 108 xfs_finish_page_writeback( 109 struct inode *inode, 110 struct bio_vec *bvec, 111 int error) 112 { 113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 114 bool busy = false; 115 unsigned int off = 0; 116 unsigned long flags; 117 118 ASSERT(bvec->bv_offset < PAGE_SIZE); 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 122 123 local_irq_save(flags); 124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 125 do { 126 if (off >= bvec->bv_offset && 127 off < bvec->bv_offset + bvec->bv_len) { 128 ASSERT(buffer_async_write(bh)); 129 ASSERT(bh->b_end_io == NULL); 130 131 if (error) { 132 mark_buffer_write_io_error(bh); 133 clear_buffer_uptodate(bh); 134 SetPageError(bvec->bv_page); 135 } else { 136 set_buffer_uptodate(bh); 137 } 138 clear_buffer_async_write(bh); 139 unlock_buffer(bh); 140 } else if (buffer_async_write(bh)) { 141 ASSERT(buffer_locked(bh)); 142 busy = true; 143 } 144 off += bh->b_size; 145 } while ((bh = bh->b_this_page) != head); 146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 147 local_irq_restore(flags); 148 149 if (!busy) 150 end_page_writeback(bvec->bv_page); 151 } 152 153 /* 154 * We're now finished for good with this ioend structure. Update the page 155 * state, release holds on bios, and finally free up memory. Do not use the 156 * ioend after this. 157 */ 158 STATIC void 159 xfs_destroy_ioend( 160 struct xfs_ioend *ioend, 161 int error) 162 { 163 struct inode *inode = ioend->io_inode; 164 struct bio *bio = &ioend->io_inline_bio; 165 struct bio *last = ioend->io_bio, *next; 166 u64 start = bio->bi_iter.bi_sector; 167 bool quiet = bio_flagged(bio, BIO_QUIET); 168 169 for (bio = &ioend->io_inline_bio; bio; bio = next) { 170 struct bio_vec *bvec; 171 int i; 172 173 /* 174 * For the last bio, bi_private points to the ioend, so we 175 * need to explicitly end the iteration here. 176 */ 177 if (bio == last) 178 next = NULL; 179 else 180 next = bio->bi_private; 181 182 /* walk each page on bio, ending page IO on them */ 183 bio_for_each_segment_all(bvec, bio, i) 184 xfs_finish_page_writeback(inode, bvec, error); 185 186 bio_put(bio); 187 } 188 189 if (unlikely(error && !quiet)) { 190 xfs_err_ratelimited(XFS_I(inode)->i_mount, 191 "writeback error on sector %llu", start); 192 } 193 } 194 195 /* 196 * Fast and loose check if this write could update the on-disk inode size. 197 */ 198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 199 { 200 return ioend->io_offset + ioend->io_size > 201 XFS_I(ioend->io_inode)->i_d.di_size; 202 } 203 204 STATIC int 205 xfs_setfilesize_trans_alloc( 206 struct xfs_ioend *ioend) 207 { 208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 209 struct xfs_trans *tp; 210 int error; 211 212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 213 if (error) 214 return error; 215 216 ioend->io_append_trans = tp; 217 218 /* 219 * We may pass freeze protection with a transaction. So tell lockdep 220 * we released it. 221 */ 222 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 223 /* 224 * We hand off the transaction to the completion thread now, so 225 * clear the flag here. 226 */ 227 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 228 return 0; 229 } 230 231 /* 232 * Update on-disk file size now that data has been written to disk. 233 */ 234 STATIC int 235 __xfs_setfilesize( 236 struct xfs_inode *ip, 237 struct xfs_trans *tp, 238 xfs_off_t offset, 239 size_t size) 240 { 241 xfs_fsize_t isize; 242 243 xfs_ilock(ip, XFS_ILOCK_EXCL); 244 isize = xfs_new_eof(ip, offset + size); 245 if (!isize) { 246 xfs_iunlock(ip, XFS_ILOCK_EXCL); 247 xfs_trans_cancel(tp); 248 return 0; 249 } 250 251 trace_xfs_setfilesize(ip, offset, size); 252 253 ip->i_d.di_size = isize; 254 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 255 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 256 257 return xfs_trans_commit(tp); 258 } 259 260 int 261 xfs_setfilesize( 262 struct xfs_inode *ip, 263 xfs_off_t offset, 264 size_t size) 265 { 266 struct xfs_mount *mp = ip->i_mount; 267 struct xfs_trans *tp; 268 int error; 269 270 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 271 if (error) 272 return error; 273 274 return __xfs_setfilesize(ip, tp, offset, size); 275 } 276 277 STATIC int 278 xfs_setfilesize_ioend( 279 struct xfs_ioend *ioend, 280 int error) 281 { 282 struct xfs_inode *ip = XFS_I(ioend->io_inode); 283 struct xfs_trans *tp = ioend->io_append_trans; 284 285 /* 286 * The transaction may have been allocated in the I/O submission thread, 287 * thus we need to mark ourselves as being in a transaction manually. 288 * Similarly for freeze protection. 289 */ 290 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 291 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 292 293 /* we abort the update if there was an IO error */ 294 if (error) { 295 xfs_trans_cancel(tp); 296 return error; 297 } 298 299 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 300 } 301 302 /* 303 * IO write completion. 304 */ 305 STATIC void 306 xfs_end_io( 307 struct work_struct *work) 308 { 309 struct xfs_ioend *ioend = 310 container_of(work, struct xfs_ioend, io_work); 311 struct xfs_inode *ip = XFS_I(ioend->io_inode); 312 xfs_off_t offset = ioend->io_offset; 313 size_t size = ioend->io_size; 314 int error; 315 316 /* 317 * Just clean up the in-memory strutures if the fs has been shut down. 318 */ 319 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 320 error = -EIO; 321 goto done; 322 } 323 324 /* 325 * Clean up any COW blocks on an I/O error. 326 */ 327 error = blk_status_to_errno(ioend->io_bio->bi_status); 328 if (unlikely(error)) { 329 switch (ioend->io_type) { 330 case XFS_IO_COW: 331 xfs_reflink_cancel_cow_range(ip, offset, size, true); 332 break; 333 } 334 335 goto done; 336 } 337 338 /* 339 * Success: commit the COW or unwritten blocks if needed. 340 */ 341 switch (ioend->io_type) { 342 case XFS_IO_COW: 343 error = xfs_reflink_end_cow(ip, offset, size); 344 break; 345 case XFS_IO_UNWRITTEN: 346 /* writeback should never update isize */ 347 error = xfs_iomap_write_unwritten(ip, offset, size, false); 348 break; 349 default: 350 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 351 break; 352 } 353 354 done: 355 if (ioend->io_append_trans) 356 error = xfs_setfilesize_ioend(ioend, error); 357 xfs_destroy_ioend(ioend, error); 358 } 359 360 STATIC void 361 xfs_end_bio( 362 struct bio *bio) 363 { 364 struct xfs_ioend *ioend = bio->bi_private; 365 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 366 367 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 368 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 369 else if (ioend->io_append_trans) 370 queue_work(mp->m_data_workqueue, &ioend->io_work); 371 else 372 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 373 } 374 375 STATIC int 376 xfs_map_blocks( 377 struct inode *inode, 378 loff_t offset, 379 struct xfs_bmbt_irec *imap, 380 int type) 381 { 382 struct xfs_inode *ip = XFS_I(inode); 383 struct xfs_mount *mp = ip->i_mount; 384 ssize_t count = i_blocksize(inode); 385 xfs_fileoff_t offset_fsb, end_fsb; 386 int error = 0; 387 int bmapi_flags = XFS_BMAPI_ENTIRE; 388 int nimaps = 1; 389 390 if (XFS_FORCED_SHUTDOWN(mp)) 391 return -EIO; 392 393 ASSERT(type != XFS_IO_COW); 394 if (type == XFS_IO_UNWRITTEN) 395 bmapi_flags |= XFS_BMAPI_IGSTATE; 396 397 xfs_ilock(ip, XFS_ILOCK_SHARED); 398 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 399 (ip->i_df.if_flags & XFS_IFEXTENTS)); 400 ASSERT(offset <= mp->m_super->s_maxbytes); 401 402 if (offset + count > mp->m_super->s_maxbytes) 403 count = mp->m_super->s_maxbytes - offset; 404 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 405 offset_fsb = XFS_B_TO_FSBT(mp, offset); 406 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 407 imap, &nimaps, bmapi_flags); 408 /* 409 * Truncate an overwrite extent if there's a pending CoW 410 * reservation before the end of this extent. This forces us 411 * to come back to writepage to take care of the CoW. 412 */ 413 if (nimaps && type == XFS_IO_OVERWRITE) 414 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 415 xfs_iunlock(ip, XFS_ILOCK_SHARED); 416 417 if (error) 418 return error; 419 420 if (type == XFS_IO_DELALLOC && 421 (!nimaps || isnullstartblock(imap->br_startblock))) { 422 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 423 imap); 424 if (!error) 425 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 426 return error; 427 } 428 429 #ifdef DEBUG 430 if (type == XFS_IO_UNWRITTEN) { 431 ASSERT(nimaps); 432 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 433 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 434 } 435 #endif 436 if (nimaps) 437 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 438 return 0; 439 } 440 441 STATIC bool 442 xfs_imap_valid( 443 struct inode *inode, 444 struct xfs_bmbt_irec *imap, 445 xfs_off_t offset) 446 { 447 offset >>= inode->i_blkbits; 448 449 return offset >= imap->br_startoff && 450 offset < imap->br_startoff + imap->br_blockcount; 451 } 452 453 STATIC void 454 xfs_start_buffer_writeback( 455 struct buffer_head *bh) 456 { 457 ASSERT(buffer_mapped(bh)); 458 ASSERT(buffer_locked(bh)); 459 ASSERT(!buffer_delay(bh)); 460 ASSERT(!buffer_unwritten(bh)); 461 462 bh->b_end_io = NULL; 463 set_buffer_async_write(bh); 464 set_buffer_uptodate(bh); 465 clear_buffer_dirty(bh); 466 } 467 468 STATIC void 469 xfs_start_page_writeback( 470 struct page *page, 471 int clear_dirty) 472 { 473 ASSERT(PageLocked(page)); 474 ASSERT(!PageWriteback(page)); 475 476 /* 477 * if the page was not fully cleaned, we need to ensure that the higher 478 * layers come back to it correctly. That means we need to keep the page 479 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 480 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 481 * write this page in this writeback sweep will be made. 482 */ 483 if (clear_dirty) { 484 clear_page_dirty_for_io(page); 485 set_page_writeback(page); 486 } else 487 set_page_writeback_keepwrite(page); 488 489 unlock_page(page); 490 } 491 492 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 493 { 494 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 495 } 496 497 /* 498 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 499 * it, and we submit that bio. The ioend may be used for multiple bio 500 * submissions, so we only want to allocate an append transaction for the ioend 501 * once. In the case of multiple bio submission, each bio will take an IO 502 * reference to the ioend to ensure that the ioend completion is only done once 503 * all bios have been submitted and the ioend is really done. 504 * 505 * If @fail is non-zero, it means that we have a situation where some part of 506 * the submission process has failed after we have marked paged for writeback 507 * and unlocked them. In this situation, we need to fail the bio and ioend 508 * rather than submit it to IO. This typically only happens on a filesystem 509 * shutdown. 510 */ 511 STATIC int 512 xfs_submit_ioend( 513 struct writeback_control *wbc, 514 struct xfs_ioend *ioend, 515 int status) 516 { 517 /* Convert CoW extents to regular */ 518 if (!status && ioend->io_type == XFS_IO_COW) { 519 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 520 ioend->io_offset, ioend->io_size); 521 } 522 523 /* Reserve log space if we might write beyond the on-disk inode size. */ 524 if (!status && 525 ioend->io_type != XFS_IO_UNWRITTEN && 526 xfs_ioend_is_append(ioend) && 527 !ioend->io_append_trans) 528 status = xfs_setfilesize_trans_alloc(ioend); 529 530 ioend->io_bio->bi_private = ioend; 531 ioend->io_bio->bi_end_io = xfs_end_bio; 532 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 533 534 /* 535 * If we are failing the IO now, just mark the ioend with an 536 * error and finish it. This will run IO completion immediately 537 * as there is only one reference to the ioend at this point in 538 * time. 539 */ 540 if (status) { 541 ioend->io_bio->bi_status = errno_to_blk_status(status); 542 bio_endio(ioend->io_bio); 543 return status; 544 } 545 546 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 547 submit_bio(ioend->io_bio); 548 return 0; 549 } 550 551 static void 552 xfs_init_bio_from_bh( 553 struct bio *bio, 554 struct buffer_head *bh) 555 { 556 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 557 bio_set_dev(bio, bh->b_bdev); 558 } 559 560 static struct xfs_ioend * 561 xfs_alloc_ioend( 562 struct inode *inode, 563 unsigned int type, 564 xfs_off_t offset, 565 struct buffer_head *bh) 566 { 567 struct xfs_ioend *ioend; 568 struct bio *bio; 569 570 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 571 xfs_init_bio_from_bh(bio, bh); 572 573 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 574 INIT_LIST_HEAD(&ioend->io_list); 575 ioend->io_type = type; 576 ioend->io_inode = inode; 577 ioend->io_size = 0; 578 ioend->io_offset = offset; 579 INIT_WORK(&ioend->io_work, xfs_end_io); 580 ioend->io_append_trans = NULL; 581 ioend->io_bio = bio; 582 return ioend; 583 } 584 585 /* 586 * Allocate a new bio, and chain the old bio to the new one. 587 * 588 * Note that we have to do perform the chaining in this unintuitive order 589 * so that the bi_private linkage is set up in the right direction for the 590 * traversal in xfs_destroy_ioend(). 591 */ 592 static void 593 xfs_chain_bio( 594 struct xfs_ioend *ioend, 595 struct writeback_control *wbc, 596 struct buffer_head *bh) 597 { 598 struct bio *new; 599 600 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 601 xfs_init_bio_from_bh(new, bh); 602 603 bio_chain(ioend->io_bio, new); 604 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 605 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 606 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 607 submit_bio(ioend->io_bio); 608 ioend->io_bio = new; 609 } 610 611 /* 612 * Test to see if we've been building up a completion structure for 613 * earlier buffers -- if so, we try to append to this ioend if we 614 * can, otherwise we finish off any current ioend and start another. 615 * Return the ioend we finished off so that the caller can submit it 616 * once it has finished processing the dirty page. 617 */ 618 STATIC void 619 xfs_add_to_ioend( 620 struct inode *inode, 621 struct buffer_head *bh, 622 xfs_off_t offset, 623 struct xfs_writepage_ctx *wpc, 624 struct writeback_control *wbc, 625 struct list_head *iolist) 626 { 627 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 628 bh->b_blocknr != wpc->last_block + 1 || 629 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 630 if (wpc->ioend) 631 list_add(&wpc->ioend->io_list, iolist); 632 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 633 } 634 635 /* 636 * If the buffer doesn't fit into the bio we need to allocate a new 637 * one. This shouldn't happen more than once for a given buffer. 638 */ 639 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 640 xfs_chain_bio(wpc->ioend, wbc, bh); 641 642 wpc->ioend->io_size += bh->b_size; 643 wpc->last_block = bh->b_blocknr; 644 xfs_start_buffer_writeback(bh); 645 } 646 647 STATIC void 648 xfs_map_buffer( 649 struct inode *inode, 650 struct buffer_head *bh, 651 struct xfs_bmbt_irec *imap, 652 xfs_off_t offset) 653 { 654 sector_t bn; 655 struct xfs_mount *m = XFS_I(inode)->i_mount; 656 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 657 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 658 659 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 660 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 661 662 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 663 ((offset - iomap_offset) >> inode->i_blkbits); 664 665 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 666 667 bh->b_blocknr = bn; 668 set_buffer_mapped(bh); 669 } 670 671 STATIC void 672 xfs_map_at_offset( 673 struct inode *inode, 674 struct buffer_head *bh, 675 struct xfs_bmbt_irec *imap, 676 xfs_off_t offset) 677 { 678 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 679 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 680 681 xfs_map_buffer(inode, bh, imap, offset); 682 set_buffer_mapped(bh); 683 clear_buffer_delay(bh); 684 clear_buffer_unwritten(bh); 685 } 686 687 /* 688 * Test if a given page contains at least one buffer of a given @type. 689 * If @check_all_buffers is true, then we walk all the buffers in the page to 690 * try to find one of the type passed in. If it is not set, then the caller only 691 * needs to check the first buffer on the page for a match. 692 */ 693 STATIC bool 694 xfs_check_page_type( 695 struct page *page, 696 unsigned int type, 697 bool check_all_buffers) 698 { 699 struct buffer_head *bh; 700 struct buffer_head *head; 701 702 if (PageWriteback(page)) 703 return false; 704 if (!page->mapping) 705 return false; 706 if (!page_has_buffers(page)) 707 return false; 708 709 bh = head = page_buffers(page); 710 do { 711 if (buffer_unwritten(bh)) { 712 if (type == XFS_IO_UNWRITTEN) 713 return true; 714 } else if (buffer_delay(bh)) { 715 if (type == XFS_IO_DELALLOC) 716 return true; 717 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 718 if (type == XFS_IO_OVERWRITE) 719 return true; 720 } 721 722 /* If we are only checking the first buffer, we are done now. */ 723 if (!check_all_buffers) 724 break; 725 } while ((bh = bh->b_this_page) != head); 726 727 return false; 728 } 729 730 STATIC void 731 xfs_vm_invalidatepage( 732 struct page *page, 733 unsigned int offset, 734 unsigned int length) 735 { 736 trace_xfs_invalidatepage(page->mapping->host, page, offset, 737 length); 738 block_invalidatepage(page, offset, length); 739 } 740 741 /* 742 * If the page has delalloc buffers on it, we need to punch them out before we 743 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 744 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 745 * is done on that same region - the delalloc extent is returned when none is 746 * supposed to be there. 747 * 748 * We prevent this by truncating away the delalloc regions on the page before 749 * invalidating it. Because they are delalloc, we can do this without needing a 750 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 751 * truncation without a transaction as there is no space left for block 752 * reservation (typically why we see a ENOSPC in writeback). 753 * 754 * This is not a performance critical path, so for now just do the punching a 755 * buffer head at a time. 756 */ 757 STATIC void 758 xfs_aops_discard_page( 759 struct page *page) 760 { 761 struct inode *inode = page->mapping->host; 762 struct xfs_inode *ip = XFS_I(inode); 763 struct buffer_head *bh, *head; 764 loff_t offset = page_offset(page); 765 766 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 767 goto out_invalidate; 768 769 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 770 goto out_invalidate; 771 772 xfs_alert(ip->i_mount, 773 "page discard on page %p, inode 0x%llx, offset %llu.", 774 page, ip->i_ino, offset); 775 776 xfs_ilock(ip, XFS_ILOCK_EXCL); 777 bh = head = page_buffers(page); 778 do { 779 int error; 780 xfs_fileoff_t start_fsb; 781 782 if (!buffer_delay(bh)) 783 goto next_buffer; 784 785 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 786 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 787 if (error) { 788 /* something screwed, just bail */ 789 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 790 xfs_alert(ip->i_mount, 791 "page discard unable to remove delalloc mapping."); 792 } 793 break; 794 } 795 next_buffer: 796 offset += i_blocksize(inode); 797 798 } while ((bh = bh->b_this_page) != head); 799 800 xfs_iunlock(ip, XFS_ILOCK_EXCL); 801 out_invalidate: 802 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 803 return; 804 } 805 806 static int 807 xfs_map_cow( 808 struct xfs_writepage_ctx *wpc, 809 struct inode *inode, 810 loff_t offset, 811 unsigned int *new_type) 812 { 813 struct xfs_inode *ip = XFS_I(inode); 814 struct xfs_bmbt_irec imap; 815 bool is_cow = false; 816 int error; 817 818 /* 819 * If we already have a valid COW mapping keep using it. 820 */ 821 if (wpc->io_type == XFS_IO_COW) { 822 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 823 if (wpc->imap_valid) { 824 *new_type = XFS_IO_COW; 825 return 0; 826 } 827 } 828 829 /* 830 * Else we need to check if there is a COW mapping at this offset. 831 */ 832 xfs_ilock(ip, XFS_ILOCK_SHARED); 833 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 834 xfs_iunlock(ip, XFS_ILOCK_SHARED); 835 836 if (!is_cow) 837 return 0; 838 839 /* 840 * And if the COW mapping has a delayed extent here we need to 841 * allocate real space for it now. 842 */ 843 if (isnullstartblock(imap.br_startblock)) { 844 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 845 &imap); 846 if (error) 847 return error; 848 } 849 850 wpc->io_type = *new_type = XFS_IO_COW; 851 wpc->imap_valid = true; 852 wpc->imap = imap; 853 return 0; 854 } 855 856 /* 857 * We implement an immediate ioend submission policy here to avoid needing to 858 * chain multiple ioends and hence nest mempool allocations which can violate 859 * forward progress guarantees we need to provide. The current ioend we are 860 * adding buffers to is cached on the writepage context, and if the new buffer 861 * does not append to the cached ioend it will create a new ioend and cache that 862 * instead. 863 * 864 * If a new ioend is created and cached, the old ioend is returned and queued 865 * locally for submission once the entire page is processed or an error has been 866 * detected. While ioends are submitted immediately after they are completed, 867 * batching optimisations are provided by higher level block plugging. 868 * 869 * At the end of a writeback pass, there will be a cached ioend remaining on the 870 * writepage context that the caller will need to submit. 871 */ 872 static int 873 xfs_writepage_map( 874 struct xfs_writepage_ctx *wpc, 875 struct writeback_control *wbc, 876 struct inode *inode, 877 struct page *page, 878 loff_t offset, 879 uint64_t end_offset) 880 { 881 LIST_HEAD(submit_list); 882 struct xfs_ioend *ioend, *next; 883 struct buffer_head *bh, *head; 884 ssize_t len = i_blocksize(inode); 885 int error = 0; 886 int count = 0; 887 int uptodate = 1; 888 unsigned int new_type; 889 890 bh = head = page_buffers(page); 891 offset = page_offset(page); 892 do { 893 if (offset >= end_offset) 894 break; 895 if (!buffer_uptodate(bh)) 896 uptodate = 0; 897 898 /* 899 * set_page_dirty dirties all buffers in a page, independent 900 * of their state. The dirty state however is entirely 901 * meaningless for holes (!mapped && uptodate), so skip 902 * buffers covering holes here. 903 */ 904 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 905 wpc->imap_valid = false; 906 continue; 907 } 908 909 if (buffer_unwritten(bh)) 910 new_type = XFS_IO_UNWRITTEN; 911 else if (buffer_delay(bh)) 912 new_type = XFS_IO_DELALLOC; 913 else if (buffer_uptodate(bh)) 914 new_type = XFS_IO_OVERWRITE; 915 else { 916 if (PageUptodate(page)) 917 ASSERT(buffer_mapped(bh)); 918 /* 919 * This buffer is not uptodate and will not be 920 * written to disk. Ensure that we will put any 921 * subsequent writeable buffers into a new 922 * ioend. 923 */ 924 wpc->imap_valid = false; 925 continue; 926 } 927 928 if (xfs_is_reflink_inode(XFS_I(inode))) { 929 error = xfs_map_cow(wpc, inode, offset, &new_type); 930 if (error) 931 goto out; 932 } 933 934 if (wpc->io_type != new_type) { 935 wpc->io_type = new_type; 936 wpc->imap_valid = false; 937 } 938 939 if (wpc->imap_valid) 940 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 941 offset); 942 if (!wpc->imap_valid) { 943 error = xfs_map_blocks(inode, offset, &wpc->imap, 944 wpc->io_type); 945 if (error) 946 goto out; 947 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 948 offset); 949 } 950 if (wpc->imap_valid) { 951 lock_buffer(bh); 952 if (wpc->io_type != XFS_IO_OVERWRITE) 953 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 954 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 955 count++; 956 } 957 958 } while (offset += len, ((bh = bh->b_this_page) != head)); 959 960 if (uptodate && bh == head) 961 SetPageUptodate(page); 962 963 ASSERT(wpc->ioend || list_empty(&submit_list)); 964 965 out: 966 /* 967 * On error, we have to fail the ioend here because we have locked 968 * buffers in the ioend. If we don't do this, we'll deadlock 969 * invalidating the page as that tries to lock the buffers on the page. 970 * Also, because we may have set pages under writeback, we have to make 971 * sure we run IO completion to mark the error state of the IO 972 * appropriately, so we can't cancel the ioend directly here. That means 973 * we have to mark this page as under writeback if we included any 974 * buffers from it in the ioend chain so that completion treats it 975 * correctly. 976 * 977 * If we didn't include the page in the ioend, the on error we can 978 * simply discard and unlock it as there are no other users of the page 979 * or it's buffers right now. The caller will still need to trigger 980 * submission of outstanding ioends on the writepage context so they are 981 * treated correctly on error. 982 */ 983 if (count) { 984 xfs_start_page_writeback(page, !error); 985 986 /* 987 * Preserve the original error if there was one, otherwise catch 988 * submission errors here and propagate into subsequent ioend 989 * submissions. 990 */ 991 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 992 int error2; 993 994 list_del_init(&ioend->io_list); 995 error2 = xfs_submit_ioend(wbc, ioend, error); 996 if (error2 && !error) 997 error = error2; 998 } 999 } else if (error) { 1000 xfs_aops_discard_page(page); 1001 ClearPageUptodate(page); 1002 unlock_page(page); 1003 } else { 1004 /* 1005 * We can end up here with no error and nothing to write if we 1006 * race with a partial page truncate on a sub-page block sized 1007 * filesystem. In that case we need to mark the page clean. 1008 */ 1009 xfs_start_page_writeback(page, 1); 1010 end_page_writeback(page); 1011 } 1012 1013 mapping_set_error(page->mapping, error); 1014 return error; 1015 } 1016 1017 /* 1018 * Write out a dirty page. 1019 * 1020 * For delalloc space on the page we need to allocate space and flush it. 1021 * For unwritten space on the page we need to start the conversion to 1022 * regular allocated space. 1023 * For any other dirty buffer heads on the page we should flush them. 1024 */ 1025 STATIC int 1026 xfs_do_writepage( 1027 struct page *page, 1028 struct writeback_control *wbc, 1029 void *data) 1030 { 1031 struct xfs_writepage_ctx *wpc = data; 1032 struct inode *inode = page->mapping->host; 1033 loff_t offset; 1034 uint64_t end_offset; 1035 pgoff_t end_index; 1036 1037 trace_xfs_writepage(inode, page, 0, 0); 1038 1039 ASSERT(page_has_buffers(page)); 1040 1041 /* 1042 * Refuse to write the page out if we are called from reclaim context. 1043 * 1044 * This avoids stack overflows when called from deeply used stacks in 1045 * random callers for direct reclaim or memcg reclaim. We explicitly 1046 * allow reclaim from kswapd as the stack usage there is relatively low. 1047 * 1048 * This should never happen except in the case of a VM regression so 1049 * warn about it. 1050 */ 1051 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1052 PF_MEMALLOC)) 1053 goto redirty; 1054 1055 /* 1056 * Given that we do not allow direct reclaim to call us, we should 1057 * never be called while in a filesystem transaction. 1058 */ 1059 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1060 goto redirty; 1061 1062 /* 1063 * Is this page beyond the end of the file? 1064 * 1065 * The page index is less than the end_index, adjust the end_offset 1066 * to the highest offset that this page should represent. 1067 * ----------------------------------------------------- 1068 * | file mapping | <EOF> | 1069 * ----------------------------------------------------- 1070 * | Page ... | Page N-2 | Page N-1 | Page N | | 1071 * ^--------------------------------^----------|-------- 1072 * | desired writeback range | see else | 1073 * ---------------------------------^------------------| 1074 */ 1075 offset = i_size_read(inode); 1076 end_index = offset >> PAGE_SHIFT; 1077 if (page->index < end_index) 1078 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1079 else { 1080 /* 1081 * Check whether the page to write out is beyond or straddles 1082 * i_size or not. 1083 * ------------------------------------------------------- 1084 * | file mapping | <EOF> | 1085 * ------------------------------------------------------- 1086 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1087 * ^--------------------------------^-----------|--------- 1088 * | | Straddles | 1089 * ---------------------------------^-----------|--------| 1090 */ 1091 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1092 1093 /* 1094 * Skip the page if it is fully outside i_size, e.g. due to a 1095 * truncate operation that is in progress. We must redirty the 1096 * page so that reclaim stops reclaiming it. Otherwise 1097 * xfs_vm_releasepage() is called on it and gets confused. 1098 * 1099 * Note that the end_index is unsigned long, it would overflow 1100 * if the given offset is greater than 16TB on 32-bit system 1101 * and if we do check the page is fully outside i_size or not 1102 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1103 * will be evaluated to 0. Hence this page will be redirtied 1104 * and be written out repeatedly which would result in an 1105 * infinite loop, the user program that perform this operation 1106 * will hang. Instead, we can verify this situation by checking 1107 * if the page to write is totally beyond the i_size or if it's 1108 * offset is just equal to the EOF. 1109 */ 1110 if (page->index > end_index || 1111 (page->index == end_index && offset_into_page == 0)) 1112 goto redirty; 1113 1114 /* 1115 * The page straddles i_size. It must be zeroed out on each 1116 * and every writepage invocation because it may be mmapped. 1117 * "A file is mapped in multiples of the page size. For a file 1118 * that is not a multiple of the page size, the remaining 1119 * memory is zeroed when mapped, and writes to that region are 1120 * not written out to the file." 1121 */ 1122 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1123 1124 /* Adjust the end_offset to the end of file */ 1125 end_offset = offset; 1126 } 1127 1128 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 1129 1130 redirty: 1131 redirty_page_for_writepage(wbc, page); 1132 unlock_page(page); 1133 return 0; 1134 } 1135 1136 STATIC int 1137 xfs_vm_writepage( 1138 struct page *page, 1139 struct writeback_control *wbc) 1140 { 1141 struct xfs_writepage_ctx wpc = { 1142 .io_type = XFS_IO_INVALID, 1143 }; 1144 int ret; 1145 1146 ret = xfs_do_writepage(page, wbc, &wpc); 1147 if (wpc.ioend) 1148 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1149 return ret; 1150 } 1151 1152 STATIC int 1153 xfs_vm_writepages( 1154 struct address_space *mapping, 1155 struct writeback_control *wbc) 1156 { 1157 struct xfs_writepage_ctx wpc = { 1158 .io_type = XFS_IO_INVALID, 1159 }; 1160 int ret; 1161 1162 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1163 if (dax_mapping(mapping)) 1164 return dax_writeback_mapping_range(mapping, 1165 xfs_find_bdev_for_inode(mapping->host), wbc); 1166 1167 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1168 if (wpc.ioend) 1169 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1170 return ret; 1171 } 1172 1173 /* 1174 * Called to move a page into cleanable state - and from there 1175 * to be released. The page should already be clean. We always 1176 * have buffer heads in this call. 1177 * 1178 * Returns 1 if the page is ok to release, 0 otherwise. 1179 */ 1180 STATIC int 1181 xfs_vm_releasepage( 1182 struct page *page, 1183 gfp_t gfp_mask) 1184 { 1185 int delalloc, unwritten; 1186 1187 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1188 1189 /* 1190 * mm accommodates an old ext3 case where clean pages might not have had 1191 * the dirty bit cleared. Thus, it can send actual dirty pages to 1192 * ->releasepage() via shrink_active_list(). Conversely, 1193 * block_invalidatepage() can send pages that are still marked dirty 1194 * but otherwise have invalidated buffers. 1195 * 1196 * We want to release the latter to avoid unnecessary buildup of the 1197 * LRU, skip the former and warn if we've left any lingering 1198 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc 1199 * or unwritten buffers and warn if the page is not dirty. Otherwise 1200 * try to release the buffers. 1201 */ 1202 xfs_count_page_state(page, &delalloc, &unwritten); 1203 1204 if (delalloc) { 1205 WARN_ON_ONCE(!PageDirty(page)); 1206 return 0; 1207 } 1208 if (unwritten) { 1209 WARN_ON_ONCE(!PageDirty(page)); 1210 return 0; 1211 } 1212 1213 return try_to_free_buffers(page); 1214 } 1215 1216 /* 1217 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1218 * is, so that we can avoid repeated get_blocks calls. 1219 * 1220 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1221 * for blocks beyond EOF must be marked new so that sub block regions can be 1222 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1223 * was just allocated or is unwritten, otherwise the callers would overwrite 1224 * existing data with zeros. Hence we have to split the mapping into a range up 1225 * to and including EOF, and a second mapping for beyond EOF. 1226 */ 1227 static void 1228 xfs_map_trim_size( 1229 struct inode *inode, 1230 sector_t iblock, 1231 struct buffer_head *bh_result, 1232 struct xfs_bmbt_irec *imap, 1233 xfs_off_t offset, 1234 ssize_t size) 1235 { 1236 xfs_off_t mapping_size; 1237 1238 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1239 mapping_size <<= inode->i_blkbits; 1240 1241 ASSERT(mapping_size > 0); 1242 if (mapping_size > size) 1243 mapping_size = size; 1244 if (offset < i_size_read(inode) && 1245 offset + mapping_size >= i_size_read(inode)) { 1246 /* limit mapping to block that spans EOF */ 1247 mapping_size = roundup_64(i_size_read(inode) - offset, 1248 i_blocksize(inode)); 1249 } 1250 if (mapping_size > LONG_MAX) 1251 mapping_size = LONG_MAX; 1252 1253 bh_result->b_size = mapping_size; 1254 } 1255 1256 static int 1257 xfs_get_blocks( 1258 struct inode *inode, 1259 sector_t iblock, 1260 struct buffer_head *bh_result, 1261 int create) 1262 { 1263 struct xfs_inode *ip = XFS_I(inode); 1264 struct xfs_mount *mp = ip->i_mount; 1265 xfs_fileoff_t offset_fsb, end_fsb; 1266 int error = 0; 1267 int lockmode = 0; 1268 struct xfs_bmbt_irec imap; 1269 int nimaps = 1; 1270 xfs_off_t offset; 1271 ssize_t size; 1272 1273 BUG_ON(create); 1274 1275 if (XFS_FORCED_SHUTDOWN(mp)) 1276 return -EIO; 1277 1278 offset = (xfs_off_t)iblock << inode->i_blkbits; 1279 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1280 size = bh_result->b_size; 1281 1282 if (offset >= i_size_read(inode)) 1283 return 0; 1284 1285 /* 1286 * Direct I/O is usually done on preallocated files, so try getting 1287 * a block mapping without an exclusive lock first. 1288 */ 1289 lockmode = xfs_ilock_data_map_shared(ip); 1290 1291 ASSERT(offset <= mp->m_super->s_maxbytes); 1292 if (offset + size > mp->m_super->s_maxbytes) 1293 size = mp->m_super->s_maxbytes - offset; 1294 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1295 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1296 1297 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1298 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1299 if (error) 1300 goto out_unlock; 1301 1302 if (nimaps) { 1303 trace_xfs_get_blocks_found(ip, offset, size, 1304 imap.br_state == XFS_EXT_UNWRITTEN ? 1305 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1306 xfs_iunlock(ip, lockmode); 1307 } else { 1308 trace_xfs_get_blocks_notfound(ip, offset, size); 1309 goto out_unlock; 1310 } 1311 1312 /* trim mapping down to size requested */ 1313 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1314 1315 /* 1316 * For unwritten extents do not report a disk address in the buffered 1317 * read case (treat as if we're reading into a hole). 1318 */ 1319 if (xfs_bmap_is_real_extent(&imap)) 1320 xfs_map_buffer(inode, bh_result, &imap, offset); 1321 1322 /* 1323 * If this is a realtime file, data may be on a different device. 1324 * to that pointed to from the buffer_head b_bdev currently. 1325 */ 1326 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1327 return 0; 1328 1329 out_unlock: 1330 xfs_iunlock(ip, lockmode); 1331 return error; 1332 } 1333 1334 STATIC ssize_t 1335 xfs_vm_direct_IO( 1336 struct kiocb *iocb, 1337 struct iov_iter *iter) 1338 { 1339 /* 1340 * We just need the method present so that open/fcntl allow direct I/O. 1341 */ 1342 return -EINVAL; 1343 } 1344 1345 STATIC sector_t 1346 xfs_vm_bmap( 1347 struct address_space *mapping, 1348 sector_t block) 1349 { 1350 struct inode *inode = (struct inode *)mapping->host; 1351 struct xfs_inode *ip = XFS_I(inode); 1352 1353 trace_xfs_vm_bmap(XFS_I(inode)); 1354 1355 /* 1356 * The swap code (ab-)uses ->bmap to get a block mapping and then 1357 * bypasseѕ the file system for actual I/O. We really can't allow 1358 * that on reflinks inodes, so we have to skip out here. And yes, 1359 * 0 is the magic code for a bmap error. 1360 * 1361 * Since we don't pass back blockdev info, we can't return bmap 1362 * information for rt files either. 1363 */ 1364 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1365 return 0; 1366 1367 filemap_write_and_wait(mapping); 1368 return generic_block_bmap(mapping, block, xfs_get_blocks); 1369 } 1370 1371 STATIC int 1372 xfs_vm_readpage( 1373 struct file *unused, 1374 struct page *page) 1375 { 1376 trace_xfs_vm_readpage(page->mapping->host, 1); 1377 return mpage_readpage(page, xfs_get_blocks); 1378 } 1379 1380 STATIC int 1381 xfs_vm_readpages( 1382 struct file *unused, 1383 struct address_space *mapping, 1384 struct list_head *pages, 1385 unsigned nr_pages) 1386 { 1387 trace_xfs_vm_readpages(mapping->host, nr_pages); 1388 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1389 } 1390 1391 /* 1392 * This is basically a copy of __set_page_dirty_buffers() with one 1393 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1394 * dirty, we'll never be able to clean them because we don't write buffers 1395 * beyond EOF, and that means we can't invalidate pages that span EOF 1396 * that have been marked dirty. Further, the dirty state can leak into 1397 * the file interior if the file is extended, resulting in all sorts of 1398 * bad things happening as the state does not match the underlying data. 1399 * 1400 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1401 * this only exist because of bufferheads and how the generic code manages them. 1402 */ 1403 STATIC int 1404 xfs_vm_set_page_dirty( 1405 struct page *page) 1406 { 1407 struct address_space *mapping = page->mapping; 1408 struct inode *inode = mapping->host; 1409 loff_t end_offset; 1410 loff_t offset; 1411 int newly_dirty; 1412 1413 if (unlikely(!mapping)) 1414 return !TestSetPageDirty(page); 1415 1416 end_offset = i_size_read(inode); 1417 offset = page_offset(page); 1418 1419 spin_lock(&mapping->private_lock); 1420 if (page_has_buffers(page)) { 1421 struct buffer_head *head = page_buffers(page); 1422 struct buffer_head *bh = head; 1423 1424 do { 1425 if (offset < end_offset) 1426 set_buffer_dirty(bh); 1427 bh = bh->b_this_page; 1428 offset += i_blocksize(inode); 1429 } while (bh != head); 1430 } 1431 /* 1432 * Lock out page->mem_cgroup migration to keep PageDirty 1433 * synchronized with per-memcg dirty page counters. 1434 */ 1435 lock_page_memcg(page); 1436 newly_dirty = !TestSetPageDirty(page); 1437 spin_unlock(&mapping->private_lock); 1438 1439 if (newly_dirty) { 1440 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&mapping->tree_lock, flags); 1444 if (page->mapping) { /* Race with truncate? */ 1445 WARN_ON_ONCE(!PageUptodate(page)); 1446 account_page_dirtied(page, mapping); 1447 radix_tree_tag_set(&mapping->page_tree, 1448 page_index(page), PAGECACHE_TAG_DIRTY); 1449 } 1450 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1451 } 1452 unlock_page_memcg(page); 1453 if (newly_dirty) 1454 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1455 return newly_dirty; 1456 } 1457 1458 const struct address_space_operations xfs_address_space_operations = { 1459 .readpage = xfs_vm_readpage, 1460 .readpages = xfs_vm_readpages, 1461 .writepage = xfs_vm_writepage, 1462 .writepages = xfs_vm_writepages, 1463 .set_page_dirty = xfs_vm_set_page_dirty, 1464 .releasepage = xfs_vm_releasepage, 1465 .invalidatepage = xfs_vm_invalidatepage, 1466 .bmap = xfs_vm_bmap, 1467 .direct_IO = xfs_vm_direct_IO, 1468 .migratepage = buffer_migrate_page, 1469 .is_partially_uptodate = block_is_partially_uptodate, 1470 .error_remove_page = generic_error_remove_page, 1471 }; 1472