1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 struct dax_device * 84 xfs_find_daxdev_for_inode( 85 struct inode *inode) 86 { 87 struct xfs_inode *ip = XFS_I(inode); 88 struct xfs_mount *mp = ip->i_mount; 89 90 if (XFS_IS_REALTIME_INODE(ip)) 91 return mp->m_rtdev_targp->bt_daxdev; 92 else 93 return mp->m_ddev_targp->bt_daxdev; 94 } 95 96 /* 97 * We're now finished for good with this page. Update the page state via the 98 * associated buffer_heads, paying attention to the start and end offsets that 99 * we need to process on the page. 100 * 101 * Note that we open code the action in end_buffer_async_write here so that we 102 * only have to iterate over the buffers attached to the page once. This is not 103 * only more efficient, but also ensures that we only calls end_page_writeback 104 * at the end of the iteration, and thus avoids the pitfall of having the page 105 * and buffers potentially freed after every call to end_buffer_async_write. 106 */ 107 static void 108 xfs_finish_page_writeback( 109 struct inode *inode, 110 struct bio_vec *bvec, 111 int error) 112 { 113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 114 bool busy = false; 115 unsigned int off = 0; 116 unsigned long flags; 117 118 ASSERT(bvec->bv_offset < PAGE_SIZE); 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 122 123 local_irq_save(flags); 124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 125 do { 126 if (off >= bvec->bv_offset && 127 off < bvec->bv_offset + bvec->bv_len) { 128 ASSERT(buffer_async_write(bh)); 129 ASSERT(bh->b_end_io == NULL); 130 131 if (error) { 132 mark_buffer_write_io_error(bh); 133 clear_buffer_uptodate(bh); 134 SetPageError(bvec->bv_page); 135 } else { 136 set_buffer_uptodate(bh); 137 } 138 clear_buffer_async_write(bh); 139 unlock_buffer(bh); 140 } else if (buffer_async_write(bh)) { 141 ASSERT(buffer_locked(bh)); 142 busy = true; 143 } 144 off += bh->b_size; 145 } while ((bh = bh->b_this_page) != head); 146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 147 local_irq_restore(flags); 148 149 if (!busy) 150 end_page_writeback(bvec->bv_page); 151 } 152 153 /* 154 * We're now finished for good with this ioend structure. Update the page 155 * state, release holds on bios, and finally free up memory. Do not use the 156 * ioend after this. 157 */ 158 STATIC void 159 xfs_destroy_ioend( 160 struct xfs_ioend *ioend, 161 int error) 162 { 163 struct inode *inode = ioend->io_inode; 164 struct bio *bio = &ioend->io_inline_bio; 165 struct bio *last = ioend->io_bio, *next; 166 u64 start = bio->bi_iter.bi_sector; 167 bool quiet = bio_flagged(bio, BIO_QUIET); 168 169 for (bio = &ioend->io_inline_bio; bio; bio = next) { 170 struct bio_vec *bvec; 171 int i; 172 173 /* 174 * For the last bio, bi_private points to the ioend, so we 175 * need to explicitly end the iteration here. 176 */ 177 if (bio == last) 178 next = NULL; 179 else 180 next = bio->bi_private; 181 182 /* walk each page on bio, ending page IO on them */ 183 bio_for_each_segment_all(bvec, bio, i) 184 xfs_finish_page_writeback(inode, bvec, error); 185 186 bio_put(bio); 187 } 188 189 if (unlikely(error && !quiet)) { 190 xfs_err_ratelimited(XFS_I(inode)->i_mount, 191 "writeback error on sector %llu", start); 192 } 193 } 194 195 /* 196 * Fast and loose check if this write could update the on-disk inode size. 197 */ 198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 199 { 200 return ioend->io_offset + ioend->io_size > 201 XFS_I(ioend->io_inode)->i_d.di_size; 202 } 203 204 STATIC int 205 xfs_setfilesize_trans_alloc( 206 struct xfs_ioend *ioend) 207 { 208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 209 struct xfs_trans *tp; 210 int error; 211 212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 213 if (error) 214 return error; 215 216 ioend->io_append_trans = tp; 217 218 /* 219 * We may pass freeze protection with a transaction. So tell lockdep 220 * we released it. 221 */ 222 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 223 /* 224 * We hand off the transaction to the completion thread now, so 225 * clear the flag here. 226 */ 227 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 228 return 0; 229 } 230 231 /* 232 * Update on-disk file size now that data has been written to disk. 233 */ 234 STATIC int 235 __xfs_setfilesize( 236 struct xfs_inode *ip, 237 struct xfs_trans *tp, 238 xfs_off_t offset, 239 size_t size) 240 { 241 xfs_fsize_t isize; 242 243 xfs_ilock(ip, XFS_ILOCK_EXCL); 244 isize = xfs_new_eof(ip, offset + size); 245 if (!isize) { 246 xfs_iunlock(ip, XFS_ILOCK_EXCL); 247 xfs_trans_cancel(tp); 248 return 0; 249 } 250 251 trace_xfs_setfilesize(ip, offset, size); 252 253 ip->i_d.di_size = isize; 254 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 255 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 256 257 return xfs_trans_commit(tp); 258 } 259 260 int 261 xfs_setfilesize( 262 struct xfs_inode *ip, 263 xfs_off_t offset, 264 size_t size) 265 { 266 struct xfs_mount *mp = ip->i_mount; 267 struct xfs_trans *tp; 268 int error; 269 270 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 271 if (error) 272 return error; 273 274 return __xfs_setfilesize(ip, tp, offset, size); 275 } 276 277 STATIC int 278 xfs_setfilesize_ioend( 279 struct xfs_ioend *ioend, 280 int error) 281 { 282 struct xfs_inode *ip = XFS_I(ioend->io_inode); 283 struct xfs_trans *tp = ioend->io_append_trans; 284 285 /* 286 * The transaction may have been allocated in the I/O submission thread, 287 * thus we need to mark ourselves as being in a transaction manually. 288 * Similarly for freeze protection. 289 */ 290 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 291 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 292 293 /* we abort the update if there was an IO error */ 294 if (error) { 295 xfs_trans_cancel(tp); 296 return error; 297 } 298 299 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 300 } 301 302 /* 303 * IO write completion. 304 */ 305 STATIC void 306 xfs_end_io( 307 struct work_struct *work) 308 { 309 struct xfs_ioend *ioend = 310 container_of(work, struct xfs_ioend, io_work); 311 struct xfs_inode *ip = XFS_I(ioend->io_inode); 312 xfs_off_t offset = ioend->io_offset; 313 size_t size = ioend->io_size; 314 int error; 315 316 /* 317 * Just clean up the in-memory strutures if the fs has been shut down. 318 */ 319 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 320 error = -EIO; 321 goto done; 322 } 323 324 /* 325 * Clean up any COW blocks on an I/O error. 326 */ 327 error = blk_status_to_errno(ioend->io_bio->bi_status); 328 if (unlikely(error)) { 329 switch (ioend->io_type) { 330 case XFS_IO_COW: 331 xfs_reflink_cancel_cow_range(ip, offset, size, true); 332 break; 333 } 334 335 goto done; 336 } 337 338 /* 339 * Success: commit the COW or unwritten blocks if needed. 340 */ 341 switch (ioend->io_type) { 342 case XFS_IO_COW: 343 error = xfs_reflink_end_cow(ip, offset, size); 344 break; 345 case XFS_IO_UNWRITTEN: 346 /* writeback should never update isize */ 347 error = xfs_iomap_write_unwritten(ip, offset, size, false); 348 break; 349 default: 350 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 351 break; 352 } 353 354 done: 355 if (ioend->io_append_trans) 356 error = xfs_setfilesize_ioend(ioend, error); 357 xfs_destroy_ioend(ioend, error); 358 } 359 360 STATIC void 361 xfs_end_bio( 362 struct bio *bio) 363 { 364 struct xfs_ioend *ioend = bio->bi_private; 365 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 366 367 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 368 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 369 else if (ioend->io_append_trans) 370 queue_work(mp->m_data_workqueue, &ioend->io_work); 371 else 372 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 373 } 374 375 STATIC int 376 xfs_map_blocks( 377 struct inode *inode, 378 loff_t offset, 379 struct xfs_bmbt_irec *imap, 380 int type) 381 { 382 struct xfs_inode *ip = XFS_I(inode); 383 struct xfs_mount *mp = ip->i_mount; 384 ssize_t count = i_blocksize(inode); 385 xfs_fileoff_t offset_fsb, end_fsb; 386 int error = 0; 387 int bmapi_flags = XFS_BMAPI_ENTIRE; 388 int nimaps = 1; 389 390 if (XFS_FORCED_SHUTDOWN(mp)) 391 return -EIO; 392 393 /* 394 * Truncate can race with writeback since writeback doesn't take the 395 * iolock and truncate decreases the file size before it starts 396 * truncating the pages between new_size and old_size. Therefore, we 397 * can end up in the situation where writeback gets a CoW fork mapping 398 * but the truncate makes the mapping invalid and we end up in here 399 * trying to get a new mapping. Bail out here so that we simply never 400 * get a valid mapping and so we drop the write altogether. The page 401 * truncation will kill the contents anyway. 402 */ 403 if (type == XFS_IO_COW && offset > i_size_read(inode)) 404 return 0; 405 406 ASSERT(type != XFS_IO_COW); 407 if (type == XFS_IO_UNWRITTEN) 408 bmapi_flags |= XFS_BMAPI_IGSTATE; 409 410 xfs_ilock(ip, XFS_ILOCK_SHARED); 411 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 412 (ip->i_df.if_flags & XFS_IFEXTENTS)); 413 ASSERT(offset <= mp->m_super->s_maxbytes); 414 415 if (offset > mp->m_super->s_maxbytes - count) 416 count = mp->m_super->s_maxbytes - offset; 417 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 418 offset_fsb = XFS_B_TO_FSBT(mp, offset); 419 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 420 imap, &nimaps, bmapi_flags); 421 /* 422 * Truncate an overwrite extent if there's a pending CoW 423 * reservation before the end of this extent. This forces us 424 * to come back to writepage to take care of the CoW. 425 */ 426 if (nimaps && type == XFS_IO_OVERWRITE) 427 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 428 xfs_iunlock(ip, XFS_ILOCK_SHARED); 429 430 if (error) 431 return error; 432 433 if (type == XFS_IO_DELALLOC && 434 (!nimaps || isnullstartblock(imap->br_startblock))) { 435 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 436 imap); 437 if (!error) 438 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 439 return error; 440 } 441 442 #ifdef DEBUG 443 if (type == XFS_IO_UNWRITTEN) { 444 ASSERT(nimaps); 445 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 446 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 447 } 448 #endif 449 if (nimaps) 450 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 451 return 0; 452 } 453 454 STATIC bool 455 xfs_imap_valid( 456 struct inode *inode, 457 struct xfs_bmbt_irec *imap, 458 xfs_off_t offset) 459 { 460 offset >>= inode->i_blkbits; 461 462 /* 463 * We have to make sure the cached mapping is within EOF to protect 464 * against eofblocks trimming on file release leaving us with a stale 465 * mapping. Otherwise, a page for a subsequent file extending buffered 466 * write could get picked up by this writeback cycle and written to the 467 * wrong blocks. 468 * 469 * Note that what we really want here is a generic mapping invalidation 470 * mechanism to protect us from arbitrary extent modifying contexts, not 471 * just eofblocks. 472 */ 473 xfs_trim_extent_eof(imap, XFS_I(inode)); 474 475 return offset >= imap->br_startoff && 476 offset < imap->br_startoff + imap->br_blockcount; 477 } 478 479 STATIC void 480 xfs_start_buffer_writeback( 481 struct buffer_head *bh) 482 { 483 ASSERT(buffer_mapped(bh)); 484 ASSERT(buffer_locked(bh)); 485 ASSERT(!buffer_delay(bh)); 486 ASSERT(!buffer_unwritten(bh)); 487 488 bh->b_end_io = NULL; 489 set_buffer_async_write(bh); 490 set_buffer_uptodate(bh); 491 clear_buffer_dirty(bh); 492 } 493 494 STATIC void 495 xfs_start_page_writeback( 496 struct page *page, 497 int clear_dirty) 498 { 499 ASSERT(PageLocked(page)); 500 ASSERT(!PageWriteback(page)); 501 502 /* 503 * if the page was not fully cleaned, we need to ensure that the higher 504 * layers come back to it correctly. That means we need to keep the page 505 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 506 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 507 * write this page in this writeback sweep will be made. 508 */ 509 if (clear_dirty) { 510 clear_page_dirty_for_io(page); 511 set_page_writeback(page); 512 } else 513 set_page_writeback_keepwrite(page); 514 515 unlock_page(page); 516 } 517 518 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 519 { 520 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 521 } 522 523 /* 524 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 525 * it, and we submit that bio. The ioend may be used for multiple bio 526 * submissions, so we only want to allocate an append transaction for the ioend 527 * once. In the case of multiple bio submission, each bio will take an IO 528 * reference to the ioend to ensure that the ioend completion is only done once 529 * all bios have been submitted and the ioend is really done. 530 * 531 * If @fail is non-zero, it means that we have a situation where some part of 532 * the submission process has failed after we have marked paged for writeback 533 * and unlocked them. In this situation, we need to fail the bio and ioend 534 * rather than submit it to IO. This typically only happens on a filesystem 535 * shutdown. 536 */ 537 STATIC int 538 xfs_submit_ioend( 539 struct writeback_control *wbc, 540 struct xfs_ioend *ioend, 541 int status) 542 { 543 /* Convert CoW extents to regular */ 544 if (!status && ioend->io_type == XFS_IO_COW) { 545 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 546 ioend->io_offset, ioend->io_size); 547 } 548 549 /* Reserve log space if we might write beyond the on-disk inode size. */ 550 if (!status && 551 ioend->io_type != XFS_IO_UNWRITTEN && 552 xfs_ioend_is_append(ioend) && 553 !ioend->io_append_trans) 554 status = xfs_setfilesize_trans_alloc(ioend); 555 556 ioend->io_bio->bi_private = ioend; 557 ioend->io_bio->bi_end_io = xfs_end_bio; 558 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 559 560 /* 561 * If we are failing the IO now, just mark the ioend with an 562 * error and finish it. This will run IO completion immediately 563 * as there is only one reference to the ioend at this point in 564 * time. 565 */ 566 if (status) { 567 ioend->io_bio->bi_status = errno_to_blk_status(status); 568 bio_endio(ioend->io_bio); 569 return status; 570 } 571 572 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 573 submit_bio(ioend->io_bio); 574 return 0; 575 } 576 577 static void 578 xfs_init_bio_from_bh( 579 struct bio *bio, 580 struct buffer_head *bh) 581 { 582 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 583 bio_set_dev(bio, bh->b_bdev); 584 } 585 586 static struct xfs_ioend * 587 xfs_alloc_ioend( 588 struct inode *inode, 589 unsigned int type, 590 xfs_off_t offset, 591 struct buffer_head *bh) 592 { 593 struct xfs_ioend *ioend; 594 struct bio *bio; 595 596 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 597 xfs_init_bio_from_bh(bio, bh); 598 599 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 600 INIT_LIST_HEAD(&ioend->io_list); 601 ioend->io_type = type; 602 ioend->io_inode = inode; 603 ioend->io_size = 0; 604 ioend->io_offset = offset; 605 INIT_WORK(&ioend->io_work, xfs_end_io); 606 ioend->io_append_trans = NULL; 607 ioend->io_bio = bio; 608 return ioend; 609 } 610 611 /* 612 * Allocate a new bio, and chain the old bio to the new one. 613 * 614 * Note that we have to do perform the chaining in this unintuitive order 615 * so that the bi_private linkage is set up in the right direction for the 616 * traversal in xfs_destroy_ioend(). 617 */ 618 static void 619 xfs_chain_bio( 620 struct xfs_ioend *ioend, 621 struct writeback_control *wbc, 622 struct buffer_head *bh) 623 { 624 struct bio *new; 625 626 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 627 xfs_init_bio_from_bh(new, bh); 628 629 bio_chain(ioend->io_bio, new); 630 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 631 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 632 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 633 submit_bio(ioend->io_bio); 634 ioend->io_bio = new; 635 } 636 637 /* 638 * Test to see if we've been building up a completion structure for 639 * earlier buffers -- if so, we try to append to this ioend if we 640 * can, otherwise we finish off any current ioend and start another. 641 * Return the ioend we finished off so that the caller can submit it 642 * once it has finished processing the dirty page. 643 */ 644 STATIC void 645 xfs_add_to_ioend( 646 struct inode *inode, 647 struct buffer_head *bh, 648 xfs_off_t offset, 649 struct xfs_writepage_ctx *wpc, 650 struct writeback_control *wbc, 651 struct list_head *iolist) 652 { 653 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 654 bh->b_blocknr != wpc->last_block + 1 || 655 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 656 if (wpc->ioend) 657 list_add(&wpc->ioend->io_list, iolist); 658 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 659 } 660 661 /* 662 * If the buffer doesn't fit into the bio we need to allocate a new 663 * one. This shouldn't happen more than once for a given buffer. 664 */ 665 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 666 xfs_chain_bio(wpc->ioend, wbc, bh); 667 668 wpc->ioend->io_size += bh->b_size; 669 wpc->last_block = bh->b_blocknr; 670 xfs_start_buffer_writeback(bh); 671 } 672 673 STATIC void 674 xfs_map_buffer( 675 struct inode *inode, 676 struct buffer_head *bh, 677 struct xfs_bmbt_irec *imap, 678 xfs_off_t offset) 679 { 680 sector_t bn; 681 struct xfs_mount *m = XFS_I(inode)->i_mount; 682 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 683 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 684 685 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 686 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 687 688 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 689 ((offset - iomap_offset) >> inode->i_blkbits); 690 691 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 692 693 bh->b_blocknr = bn; 694 set_buffer_mapped(bh); 695 } 696 697 STATIC void 698 xfs_map_at_offset( 699 struct inode *inode, 700 struct buffer_head *bh, 701 struct xfs_bmbt_irec *imap, 702 xfs_off_t offset) 703 { 704 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 705 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 706 707 xfs_map_buffer(inode, bh, imap, offset); 708 set_buffer_mapped(bh); 709 clear_buffer_delay(bh); 710 clear_buffer_unwritten(bh); 711 } 712 713 /* 714 * Test if a given page contains at least one buffer of a given @type. 715 * If @check_all_buffers is true, then we walk all the buffers in the page to 716 * try to find one of the type passed in. If it is not set, then the caller only 717 * needs to check the first buffer on the page for a match. 718 */ 719 STATIC bool 720 xfs_check_page_type( 721 struct page *page, 722 unsigned int type, 723 bool check_all_buffers) 724 { 725 struct buffer_head *bh; 726 struct buffer_head *head; 727 728 if (PageWriteback(page)) 729 return false; 730 if (!page->mapping) 731 return false; 732 if (!page_has_buffers(page)) 733 return false; 734 735 bh = head = page_buffers(page); 736 do { 737 if (buffer_unwritten(bh)) { 738 if (type == XFS_IO_UNWRITTEN) 739 return true; 740 } else if (buffer_delay(bh)) { 741 if (type == XFS_IO_DELALLOC) 742 return true; 743 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 744 if (type == XFS_IO_OVERWRITE) 745 return true; 746 } 747 748 /* If we are only checking the first buffer, we are done now. */ 749 if (!check_all_buffers) 750 break; 751 } while ((bh = bh->b_this_page) != head); 752 753 return false; 754 } 755 756 STATIC void 757 xfs_vm_invalidatepage( 758 struct page *page, 759 unsigned int offset, 760 unsigned int length) 761 { 762 trace_xfs_invalidatepage(page->mapping->host, page, offset, 763 length); 764 765 /* 766 * If we are invalidating the entire page, clear the dirty state from it 767 * so that we can check for attempts to release dirty cached pages in 768 * xfs_vm_releasepage(). 769 */ 770 if (offset == 0 && length >= PAGE_SIZE) 771 cancel_dirty_page(page); 772 block_invalidatepage(page, offset, length); 773 } 774 775 /* 776 * If the page has delalloc buffers on it, we need to punch them out before we 777 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 778 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 779 * is done on that same region - the delalloc extent is returned when none is 780 * supposed to be there. 781 * 782 * We prevent this by truncating away the delalloc regions on the page before 783 * invalidating it. Because they are delalloc, we can do this without needing a 784 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 785 * truncation without a transaction as there is no space left for block 786 * reservation (typically why we see a ENOSPC in writeback). 787 * 788 * This is not a performance critical path, so for now just do the punching a 789 * buffer head at a time. 790 */ 791 STATIC void 792 xfs_aops_discard_page( 793 struct page *page) 794 { 795 struct inode *inode = page->mapping->host; 796 struct xfs_inode *ip = XFS_I(inode); 797 struct buffer_head *bh, *head; 798 loff_t offset = page_offset(page); 799 800 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 801 goto out_invalidate; 802 803 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 804 goto out_invalidate; 805 806 xfs_alert(ip->i_mount, 807 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 808 page, ip->i_ino, offset); 809 810 xfs_ilock(ip, XFS_ILOCK_EXCL); 811 bh = head = page_buffers(page); 812 do { 813 int error; 814 xfs_fileoff_t start_fsb; 815 816 if (!buffer_delay(bh)) 817 goto next_buffer; 818 819 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 820 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 821 if (error) { 822 /* something screwed, just bail */ 823 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 824 xfs_alert(ip->i_mount, 825 "page discard unable to remove delalloc mapping."); 826 } 827 break; 828 } 829 next_buffer: 830 offset += i_blocksize(inode); 831 832 } while ((bh = bh->b_this_page) != head); 833 834 xfs_iunlock(ip, XFS_ILOCK_EXCL); 835 out_invalidate: 836 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 837 return; 838 } 839 840 static int 841 xfs_map_cow( 842 struct xfs_writepage_ctx *wpc, 843 struct inode *inode, 844 loff_t offset, 845 unsigned int *new_type) 846 { 847 struct xfs_inode *ip = XFS_I(inode); 848 struct xfs_bmbt_irec imap; 849 bool is_cow = false; 850 int error; 851 852 /* 853 * If we already have a valid COW mapping keep using it. 854 */ 855 if (wpc->io_type == XFS_IO_COW) { 856 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 857 if (wpc->imap_valid) { 858 *new_type = XFS_IO_COW; 859 return 0; 860 } 861 } 862 863 /* 864 * Else we need to check if there is a COW mapping at this offset. 865 */ 866 xfs_ilock(ip, XFS_ILOCK_SHARED); 867 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 868 xfs_iunlock(ip, XFS_ILOCK_SHARED); 869 870 if (!is_cow) 871 return 0; 872 873 /* 874 * And if the COW mapping has a delayed extent here we need to 875 * allocate real space for it now. 876 */ 877 if (isnullstartblock(imap.br_startblock)) { 878 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 879 &imap); 880 if (error) 881 return error; 882 } 883 884 wpc->io_type = *new_type = XFS_IO_COW; 885 wpc->imap_valid = true; 886 wpc->imap = imap; 887 return 0; 888 } 889 890 /* 891 * We implement an immediate ioend submission policy here to avoid needing to 892 * chain multiple ioends and hence nest mempool allocations which can violate 893 * forward progress guarantees we need to provide. The current ioend we are 894 * adding buffers to is cached on the writepage context, and if the new buffer 895 * does not append to the cached ioend it will create a new ioend and cache that 896 * instead. 897 * 898 * If a new ioend is created and cached, the old ioend is returned and queued 899 * locally for submission once the entire page is processed or an error has been 900 * detected. While ioends are submitted immediately after they are completed, 901 * batching optimisations are provided by higher level block plugging. 902 * 903 * At the end of a writeback pass, there will be a cached ioend remaining on the 904 * writepage context that the caller will need to submit. 905 */ 906 static int 907 xfs_writepage_map( 908 struct xfs_writepage_ctx *wpc, 909 struct writeback_control *wbc, 910 struct inode *inode, 911 struct page *page, 912 uint64_t end_offset) 913 { 914 LIST_HEAD(submit_list); 915 struct xfs_ioend *ioend, *next; 916 struct buffer_head *bh, *head; 917 ssize_t len = i_blocksize(inode); 918 uint64_t offset; 919 int error = 0; 920 int count = 0; 921 int uptodate = 1; 922 unsigned int new_type; 923 924 bh = head = page_buffers(page); 925 offset = page_offset(page); 926 do { 927 if (offset >= end_offset) 928 break; 929 if (!buffer_uptodate(bh)) 930 uptodate = 0; 931 932 /* 933 * set_page_dirty dirties all buffers in a page, independent 934 * of their state. The dirty state however is entirely 935 * meaningless for holes (!mapped && uptodate), so skip 936 * buffers covering holes here. 937 */ 938 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 939 wpc->imap_valid = false; 940 continue; 941 } 942 943 if (buffer_unwritten(bh)) 944 new_type = XFS_IO_UNWRITTEN; 945 else if (buffer_delay(bh)) 946 new_type = XFS_IO_DELALLOC; 947 else if (buffer_uptodate(bh)) 948 new_type = XFS_IO_OVERWRITE; 949 else { 950 if (PageUptodate(page)) 951 ASSERT(buffer_mapped(bh)); 952 /* 953 * This buffer is not uptodate and will not be 954 * written to disk. Ensure that we will put any 955 * subsequent writeable buffers into a new 956 * ioend. 957 */ 958 wpc->imap_valid = false; 959 continue; 960 } 961 962 if (xfs_is_reflink_inode(XFS_I(inode))) { 963 error = xfs_map_cow(wpc, inode, offset, &new_type); 964 if (error) 965 goto out; 966 } 967 968 if (wpc->io_type != new_type) { 969 wpc->io_type = new_type; 970 wpc->imap_valid = false; 971 } 972 973 if (wpc->imap_valid) 974 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 975 offset); 976 if (!wpc->imap_valid) { 977 error = xfs_map_blocks(inode, offset, &wpc->imap, 978 wpc->io_type); 979 if (error) 980 goto out; 981 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 982 offset); 983 } 984 if (wpc->imap_valid) { 985 lock_buffer(bh); 986 if (wpc->io_type != XFS_IO_OVERWRITE) 987 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 988 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 989 count++; 990 } 991 992 } while (offset += len, ((bh = bh->b_this_page) != head)); 993 994 if (uptodate && bh == head) 995 SetPageUptodate(page); 996 997 ASSERT(wpc->ioend || list_empty(&submit_list)); 998 999 out: 1000 /* 1001 * On error, we have to fail the ioend here because we have locked 1002 * buffers in the ioend. If we don't do this, we'll deadlock 1003 * invalidating the page as that tries to lock the buffers on the page. 1004 * Also, because we may have set pages under writeback, we have to make 1005 * sure we run IO completion to mark the error state of the IO 1006 * appropriately, so we can't cancel the ioend directly here. That means 1007 * we have to mark this page as under writeback if we included any 1008 * buffers from it in the ioend chain so that completion treats it 1009 * correctly. 1010 * 1011 * If we didn't include the page in the ioend, the on error we can 1012 * simply discard and unlock it as there are no other users of the page 1013 * or it's buffers right now. The caller will still need to trigger 1014 * submission of outstanding ioends on the writepage context so they are 1015 * treated correctly on error. 1016 */ 1017 if (count) { 1018 xfs_start_page_writeback(page, !error); 1019 1020 /* 1021 * Preserve the original error if there was one, otherwise catch 1022 * submission errors here and propagate into subsequent ioend 1023 * submissions. 1024 */ 1025 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1026 int error2; 1027 1028 list_del_init(&ioend->io_list); 1029 error2 = xfs_submit_ioend(wbc, ioend, error); 1030 if (error2 && !error) 1031 error = error2; 1032 } 1033 } else if (error) { 1034 xfs_aops_discard_page(page); 1035 ClearPageUptodate(page); 1036 unlock_page(page); 1037 } else { 1038 /* 1039 * We can end up here with no error and nothing to write if we 1040 * race with a partial page truncate on a sub-page block sized 1041 * filesystem. In that case we need to mark the page clean. 1042 */ 1043 xfs_start_page_writeback(page, 1); 1044 end_page_writeback(page); 1045 } 1046 1047 mapping_set_error(page->mapping, error); 1048 return error; 1049 } 1050 1051 /* 1052 * Write out a dirty page. 1053 * 1054 * For delalloc space on the page we need to allocate space and flush it. 1055 * For unwritten space on the page we need to start the conversion to 1056 * regular allocated space. 1057 * For any other dirty buffer heads on the page we should flush them. 1058 */ 1059 STATIC int 1060 xfs_do_writepage( 1061 struct page *page, 1062 struct writeback_control *wbc, 1063 void *data) 1064 { 1065 struct xfs_writepage_ctx *wpc = data; 1066 struct inode *inode = page->mapping->host; 1067 loff_t offset; 1068 uint64_t end_offset; 1069 pgoff_t end_index; 1070 1071 trace_xfs_writepage(inode, page, 0, 0); 1072 1073 ASSERT(page_has_buffers(page)); 1074 1075 /* 1076 * Refuse to write the page out if we are called from reclaim context. 1077 * 1078 * This avoids stack overflows when called from deeply used stacks in 1079 * random callers for direct reclaim or memcg reclaim. We explicitly 1080 * allow reclaim from kswapd as the stack usage there is relatively low. 1081 * 1082 * This should never happen except in the case of a VM regression so 1083 * warn about it. 1084 */ 1085 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1086 PF_MEMALLOC)) 1087 goto redirty; 1088 1089 /* 1090 * Given that we do not allow direct reclaim to call us, we should 1091 * never be called while in a filesystem transaction. 1092 */ 1093 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1094 goto redirty; 1095 1096 /* 1097 * Is this page beyond the end of the file? 1098 * 1099 * The page index is less than the end_index, adjust the end_offset 1100 * to the highest offset that this page should represent. 1101 * ----------------------------------------------------- 1102 * | file mapping | <EOF> | 1103 * ----------------------------------------------------- 1104 * | Page ... | Page N-2 | Page N-1 | Page N | | 1105 * ^--------------------------------^----------|-------- 1106 * | desired writeback range | see else | 1107 * ---------------------------------^------------------| 1108 */ 1109 offset = i_size_read(inode); 1110 end_index = offset >> PAGE_SHIFT; 1111 if (page->index < end_index) 1112 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1113 else { 1114 /* 1115 * Check whether the page to write out is beyond or straddles 1116 * i_size or not. 1117 * ------------------------------------------------------- 1118 * | file mapping | <EOF> | 1119 * ------------------------------------------------------- 1120 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1121 * ^--------------------------------^-----------|--------- 1122 * | | Straddles | 1123 * ---------------------------------^-----------|--------| 1124 */ 1125 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1126 1127 /* 1128 * Skip the page if it is fully outside i_size, e.g. due to a 1129 * truncate operation that is in progress. We must redirty the 1130 * page so that reclaim stops reclaiming it. Otherwise 1131 * xfs_vm_releasepage() is called on it and gets confused. 1132 * 1133 * Note that the end_index is unsigned long, it would overflow 1134 * if the given offset is greater than 16TB on 32-bit system 1135 * and if we do check the page is fully outside i_size or not 1136 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1137 * will be evaluated to 0. Hence this page will be redirtied 1138 * and be written out repeatedly which would result in an 1139 * infinite loop, the user program that perform this operation 1140 * will hang. Instead, we can verify this situation by checking 1141 * if the page to write is totally beyond the i_size or if it's 1142 * offset is just equal to the EOF. 1143 */ 1144 if (page->index > end_index || 1145 (page->index == end_index && offset_into_page == 0)) 1146 goto redirty; 1147 1148 /* 1149 * The page straddles i_size. It must be zeroed out on each 1150 * and every writepage invocation because it may be mmapped. 1151 * "A file is mapped in multiples of the page size. For a file 1152 * that is not a multiple of the page size, the remaining 1153 * memory is zeroed when mapped, and writes to that region are 1154 * not written out to the file." 1155 */ 1156 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1157 1158 /* Adjust the end_offset to the end of file */ 1159 end_offset = offset; 1160 } 1161 1162 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1163 1164 redirty: 1165 redirty_page_for_writepage(wbc, page); 1166 unlock_page(page); 1167 return 0; 1168 } 1169 1170 STATIC int 1171 xfs_vm_writepage( 1172 struct page *page, 1173 struct writeback_control *wbc) 1174 { 1175 struct xfs_writepage_ctx wpc = { 1176 .io_type = XFS_IO_INVALID, 1177 }; 1178 int ret; 1179 1180 ret = xfs_do_writepage(page, wbc, &wpc); 1181 if (wpc.ioend) 1182 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1183 return ret; 1184 } 1185 1186 STATIC int 1187 xfs_vm_writepages( 1188 struct address_space *mapping, 1189 struct writeback_control *wbc) 1190 { 1191 struct xfs_writepage_ctx wpc = { 1192 .io_type = XFS_IO_INVALID, 1193 }; 1194 int ret; 1195 1196 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1197 if (dax_mapping(mapping)) 1198 return dax_writeback_mapping_range(mapping, 1199 xfs_find_bdev_for_inode(mapping->host), wbc); 1200 1201 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1202 if (wpc.ioend) 1203 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1204 return ret; 1205 } 1206 1207 /* 1208 * Called to move a page into cleanable state - and from there 1209 * to be released. The page should already be clean. We always 1210 * have buffer heads in this call. 1211 * 1212 * Returns 1 if the page is ok to release, 0 otherwise. 1213 */ 1214 STATIC int 1215 xfs_vm_releasepage( 1216 struct page *page, 1217 gfp_t gfp_mask) 1218 { 1219 int delalloc, unwritten; 1220 1221 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1222 1223 /* 1224 * mm accommodates an old ext3 case where clean pages might not have had 1225 * the dirty bit cleared. Thus, it can send actual dirty pages to 1226 * ->releasepage() via shrink_active_list(). Conversely, 1227 * block_invalidatepage() can send pages that are still marked dirty but 1228 * otherwise have invalidated buffers. 1229 * 1230 * We want to release the latter to avoid unnecessary buildup of the 1231 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages 1232 * that are entirely invalidated and need to be released. Hence the 1233 * only time we should get dirty pages here is through 1234 * shrink_active_list() and so we can simply skip those now. 1235 * 1236 * warn if we've left any lingering delalloc/unwritten buffers on clean 1237 * or invalidated pages we are about to release. 1238 */ 1239 if (PageDirty(page)) 1240 return 0; 1241 1242 xfs_count_page_state(page, &delalloc, &unwritten); 1243 1244 if (WARN_ON_ONCE(delalloc)) 1245 return 0; 1246 if (WARN_ON_ONCE(unwritten)) 1247 return 0; 1248 1249 return try_to_free_buffers(page); 1250 } 1251 1252 /* 1253 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1254 * is, so that we can avoid repeated get_blocks calls. 1255 * 1256 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1257 * for blocks beyond EOF must be marked new so that sub block regions can be 1258 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1259 * was just allocated or is unwritten, otherwise the callers would overwrite 1260 * existing data with zeros. Hence we have to split the mapping into a range up 1261 * to and including EOF, and a second mapping for beyond EOF. 1262 */ 1263 static void 1264 xfs_map_trim_size( 1265 struct inode *inode, 1266 sector_t iblock, 1267 struct buffer_head *bh_result, 1268 struct xfs_bmbt_irec *imap, 1269 xfs_off_t offset, 1270 ssize_t size) 1271 { 1272 xfs_off_t mapping_size; 1273 1274 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1275 mapping_size <<= inode->i_blkbits; 1276 1277 ASSERT(mapping_size > 0); 1278 if (mapping_size > size) 1279 mapping_size = size; 1280 if (offset < i_size_read(inode) && 1281 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) { 1282 /* limit mapping to block that spans EOF */ 1283 mapping_size = roundup_64(i_size_read(inode) - offset, 1284 i_blocksize(inode)); 1285 } 1286 if (mapping_size > LONG_MAX) 1287 mapping_size = LONG_MAX; 1288 1289 bh_result->b_size = mapping_size; 1290 } 1291 1292 static int 1293 xfs_get_blocks( 1294 struct inode *inode, 1295 sector_t iblock, 1296 struct buffer_head *bh_result, 1297 int create) 1298 { 1299 struct xfs_inode *ip = XFS_I(inode); 1300 struct xfs_mount *mp = ip->i_mount; 1301 xfs_fileoff_t offset_fsb, end_fsb; 1302 int error = 0; 1303 int lockmode = 0; 1304 struct xfs_bmbt_irec imap; 1305 int nimaps = 1; 1306 xfs_off_t offset; 1307 ssize_t size; 1308 1309 BUG_ON(create); 1310 1311 if (XFS_FORCED_SHUTDOWN(mp)) 1312 return -EIO; 1313 1314 offset = (xfs_off_t)iblock << inode->i_blkbits; 1315 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1316 size = bh_result->b_size; 1317 1318 if (offset >= i_size_read(inode)) 1319 return 0; 1320 1321 /* 1322 * Direct I/O is usually done on preallocated files, so try getting 1323 * a block mapping without an exclusive lock first. 1324 */ 1325 lockmode = xfs_ilock_data_map_shared(ip); 1326 1327 ASSERT(offset <= mp->m_super->s_maxbytes); 1328 if (offset > mp->m_super->s_maxbytes - size) 1329 size = mp->m_super->s_maxbytes - offset; 1330 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1331 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1332 1333 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1334 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1335 if (error) 1336 goto out_unlock; 1337 1338 if (nimaps) { 1339 trace_xfs_get_blocks_found(ip, offset, size, 1340 imap.br_state == XFS_EXT_UNWRITTEN ? 1341 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1342 xfs_iunlock(ip, lockmode); 1343 } else { 1344 trace_xfs_get_blocks_notfound(ip, offset, size); 1345 goto out_unlock; 1346 } 1347 1348 /* trim mapping down to size requested */ 1349 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1350 1351 /* 1352 * For unwritten extents do not report a disk address in the buffered 1353 * read case (treat as if we're reading into a hole). 1354 */ 1355 if (xfs_bmap_is_real_extent(&imap)) 1356 xfs_map_buffer(inode, bh_result, &imap, offset); 1357 1358 /* 1359 * If this is a realtime file, data may be on a different device. 1360 * to that pointed to from the buffer_head b_bdev currently. 1361 */ 1362 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1363 return 0; 1364 1365 out_unlock: 1366 xfs_iunlock(ip, lockmode); 1367 return error; 1368 } 1369 1370 STATIC ssize_t 1371 xfs_vm_direct_IO( 1372 struct kiocb *iocb, 1373 struct iov_iter *iter) 1374 { 1375 /* 1376 * We just need the method present so that open/fcntl allow direct I/O. 1377 */ 1378 return -EINVAL; 1379 } 1380 1381 STATIC sector_t 1382 xfs_vm_bmap( 1383 struct address_space *mapping, 1384 sector_t block) 1385 { 1386 struct inode *inode = (struct inode *)mapping->host; 1387 struct xfs_inode *ip = XFS_I(inode); 1388 1389 trace_xfs_vm_bmap(XFS_I(inode)); 1390 1391 /* 1392 * The swap code (ab-)uses ->bmap to get a block mapping and then 1393 * bypasseѕ the file system for actual I/O. We really can't allow 1394 * that on reflinks inodes, so we have to skip out here. And yes, 1395 * 0 is the magic code for a bmap error. 1396 * 1397 * Since we don't pass back blockdev info, we can't return bmap 1398 * information for rt files either. 1399 */ 1400 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1401 return 0; 1402 1403 filemap_write_and_wait(mapping); 1404 return generic_block_bmap(mapping, block, xfs_get_blocks); 1405 } 1406 1407 STATIC int 1408 xfs_vm_readpage( 1409 struct file *unused, 1410 struct page *page) 1411 { 1412 trace_xfs_vm_readpage(page->mapping->host, 1); 1413 return mpage_readpage(page, xfs_get_blocks); 1414 } 1415 1416 STATIC int 1417 xfs_vm_readpages( 1418 struct file *unused, 1419 struct address_space *mapping, 1420 struct list_head *pages, 1421 unsigned nr_pages) 1422 { 1423 trace_xfs_vm_readpages(mapping->host, nr_pages); 1424 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1425 } 1426 1427 /* 1428 * This is basically a copy of __set_page_dirty_buffers() with one 1429 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1430 * dirty, we'll never be able to clean them because we don't write buffers 1431 * beyond EOF, and that means we can't invalidate pages that span EOF 1432 * that have been marked dirty. Further, the dirty state can leak into 1433 * the file interior if the file is extended, resulting in all sorts of 1434 * bad things happening as the state does not match the underlying data. 1435 * 1436 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1437 * this only exist because of bufferheads and how the generic code manages them. 1438 */ 1439 STATIC int 1440 xfs_vm_set_page_dirty( 1441 struct page *page) 1442 { 1443 struct address_space *mapping = page->mapping; 1444 struct inode *inode = mapping->host; 1445 loff_t end_offset; 1446 loff_t offset; 1447 int newly_dirty; 1448 1449 if (unlikely(!mapping)) 1450 return !TestSetPageDirty(page); 1451 1452 end_offset = i_size_read(inode); 1453 offset = page_offset(page); 1454 1455 spin_lock(&mapping->private_lock); 1456 if (page_has_buffers(page)) { 1457 struct buffer_head *head = page_buffers(page); 1458 struct buffer_head *bh = head; 1459 1460 do { 1461 if (offset < end_offset) 1462 set_buffer_dirty(bh); 1463 bh = bh->b_this_page; 1464 offset += i_blocksize(inode); 1465 } while (bh != head); 1466 } 1467 /* 1468 * Lock out page->mem_cgroup migration to keep PageDirty 1469 * synchronized with per-memcg dirty page counters. 1470 */ 1471 lock_page_memcg(page); 1472 newly_dirty = !TestSetPageDirty(page); 1473 spin_unlock(&mapping->private_lock); 1474 1475 if (newly_dirty) { 1476 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1477 unsigned long flags; 1478 1479 spin_lock_irqsave(&mapping->tree_lock, flags); 1480 if (page->mapping) { /* Race with truncate? */ 1481 WARN_ON_ONCE(!PageUptodate(page)); 1482 account_page_dirtied(page, mapping); 1483 radix_tree_tag_set(&mapping->page_tree, 1484 page_index(page), PAGECACHE_TAG_DIRTY); 1485 } 1486 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1487 } 1488 unlock_page_memcg(page); 1489 if (newly_dirty) 1490 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1491 return newly_dirty; 1492 } 1493 1494 const struct address_space_operations xfs_address_space_operations = { 1495 .readpage = xfs_vm_readpage, 1496 .readpages = xfs_vm_readpages, 1497 .writepage = xfs_vm_writepage, 1498 .writepages = xfs_vm_writepages, 1499 .set_page_dirty = xfs_vm_set_page_dirty, 1500 .releasepage = xfs_vm_releasepage, 1501 .invalidatepage = xfs_vm_invalidatepage, 1502 .bmap = xfs_vm_bmap, 1503 .direct_IO = xfs_vm_direct_IO, 1504 .migratepage = buffer_migrate_page, 1505 .is_partially_uptodate = block_is_partially_uptodate, 1506 .error_remove_page = generic_error_remove_page, 1507 }; 1508