1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_shared.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_inode.h" 13 #include "xfs_trans.h" 14 #include "xfs_inode_item.h" 15 #include "xfs_alloc.h" 16 #include "xfs_error.h" 17 #include "xfs_iomap.h" 18 #include "xfs_trace.h" 19 #include "xfs_bmap.h" 20 #include "xfs_bmap_util.h" 21 #include "xfs_bmap_btree.h" 22 #include "xfs_reflink.h" 23 #include <linux/gfp.h> 24 #include <linux/mpage.h> 25 #include <linux/pagevec.h> 26 #include <linux/writeback.h> 27 28 /* 29 * structure owned by writepages passed to individual writepage calls 30 */ 31 struct xfs_writepage_ctx { 32 struct xfs_bmbt_irec imap; 33 bool imap_valid; 34 unsigned int io_type; 35 struct xfs_ioend *ioend; 36 sector_t last_block; 37 }; 38 39 void 40 xfs_count_page_state( 41 struct page *page, 42 int *delalloc, 43 int *unwritten) 44 { 45 struct buffer_head *bh, *head; 46 47 *delalloc = *unwritten = 0; 48 49 bh = head = page_buffers(page); 50 do { 51 if (buffer_unwritten(bh)) 52 (*unwritten) = 1; 53 else if (buffer_delay(bh)) 54 (*delalloc) = 1; 55 } while ((bh = bh->b_this_page) != head); 56 } 57 58 struct block_device * 59 xfs_find_bdev_for_inode( 60 struct inode *inode) 61 { 62 struct xfs_inode *ip = XFS_I(inode); 63 struct xfs_mount *mp = ip->i_mount; 64 65 if (XFS_IS_REALTIME_INODE(ip)) 66 return mp->m_rtdev_targp->bt_bdev; 67 else 68 return mp->m_ddev_targp->bt_bdev; 69 } 70 71 struct dax_device * 72 xfs_find_daxdev_for_inode( 73 struct inode *inode) 74 { 75 struct xfs_inode *ip = XFS_I(inode); 76 struct xfs_mount *mp = ip->i_mount; 77 78 if (XFS_IS_REALTIME_INODE(ip)) 79 return mp->m_rtdev_targp->bt_daxdev; 80 else 81 return mp->m_ddev_targp->bt_daxdev; 82 } 83 84 /* 85 * We're now finished for good with this page. Update the page state via the 86 * associated buffer_heads, paying attention to the start and end offsets that 87 * we need to process on the page. 88 * 89 * Note that we open code the action in end_buffer_async_write here so that we 90 * only have to iterate over the buffers attached to the page once. This is not 91 * only more efficient, but also ensures that we only calls end_page_writeback 92 * at the end of the iteration, and thus avoids the pitfall of having the page 93 * and buffers potentially freed after every call to end_buffer_async_write. 94 */ 95 static void 96 xfs_finish_page_writeback( 97 struct inode *inode, 98 struct bio_vec *bvec, 99 int error) 100 { 101 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 102 bool busy = false; 103 unsigned int off = 0; 104 unsigned long flags; 105 106 ASSERT(bvec->bv_offset < PAGE_SIZE); 107 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 108 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 109 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 110 111 local_irq_save(flags); 112 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 113 do { 114 if (off >= bvec->bv_offset && 115 off < bvec->bv_offset + bvec->bv_len) { 116 ASSERT(buffer_async_write(bh)); 117 ASSERT(bh->b_end_io == NULL); 118 119 if (error) { 120 mark_buffer_write_io_error(bh); 121 clear_buffer_uptodate(bh); 122 SetPageError(bvec->bv_page); 123 } else { 124 set_buffer_uptodate(bh); 125 } 126 clear_buffer_async_write(bh); 127 unlock_buffer(bh); 128 } else if (buffer_async_write(bh)) { 129 ASSERT(buffer_locked(bh)); 130 busy = true; 131 } 132 off += bh->b_size; 133 } while ((bh = bh->b_this_page) != head); 134 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 135 local_irq_restore(flags); 136 137 if (!busy) 138 end_page_writeback(bvec->bv_page); 139 } 140 141 /* 142 * We're now finished for good with this ioend structure. Update the page 143 * state, release holds on bios, and finally free up memory. Do not use the 144 * ioend after this. 145 */ 146 STATIC void 147 xfs_destroy_ioend( 148 struct xfs_ioend *ioend, 149 int error) 150 { 151 struct inode *inode = ioend->io_inode; 152 struct bio *bio = &ioend->io_inline_bio; 153 struct bio *last = ioend->io_bio, *next; 154 u64 start = bio->bi_iter.bi_sector; 155 bool quiet = bio_flagged(bio, BIO_QUIET); 156 157 for (bio = &ioend->io_inline_bio; bio; bio = next) { 158 struct bio_vec *bvec; 159 int i; 160 161 /* 162 * For the last bio, bi_private points to the ioend, so we 163 * need to explicitly end the iteration here. 164 */ 165 if (bio == last) 166 next = NULL; 167 else 168 next = bio->bi_private; 169 170 /* walk each page on bio, ending page IO on them */ 171 bio_for_each_segment_all(bvec, bio, i) 172 xfs_finish_page_writeback(inode, bvec, error); 173 174 bio_put(bio); 175 } 176 177 if (unlikely(error && !quiet)) { 178 xfs_err_ratelimited(XFS_I(inode)->i_mount, 179 "writeback error on sector %llu", start); 180 } 181 } 182 183 /* 184 * Fast and loose check if this write could update the on-disk inode size. 185 */ 186 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 187 { 188 return ioend->io_offset + ioend->io_size > 189 XFS_I(ioend->io_inode)->i_d.di_size; 190 } 191 192 STATIC int 193 xfs_setfilesize_trans_alloc( 194 struct xfs_ioend *ioend) 195 { 196 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 197 struct xfs_trans *tp; 198 int error; 199 200 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 201 XFS_TRANS_NOFS, &tp); 202 if (error) 203 return error; 204 205 ioend->io_append_trans = tp; 206 207 /* 208 * We may pass freeze protection with a transaction. So tell lockdep 209 * we released it. 210 */ 211 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 212 /* 213 * We hand off the transaction to the completion thread now, so 214 * clear the flag here. 215 */ 216 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 217 return 0; 218 } 219 220 /* 221 * Update on-disk file size now that data has been written to disk. 222 */ 223 STATIC int 224 __xfs_setfilesize( 225 struct xfs_inode *ip, 226 struct xfs_trans *tp, 227 xfs_off_t offset, 228 size_t size) 229 { 230 xfs_fsize_t isize; 231 232 xfs_ilock(ip, XFS_ILOCK_EXCL); 233 isize = xfs_new_eof(ip, offset + size); 234 if (!isize) { 235 xfs_iunlock(ip, XFS_ILOCK_EXCL); 236 xfs_trans_cancel(tp); 237 return 0; 238 } 239 240 trace_xfs_setfilesize(ip, offset, size); 241 242 ip->i_d.di_size = isize; 243 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 244 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 245 246 return xfs_trans_commit(tp); 247 } 248 249 int 250 xfs_setfilesize( 251 struct xfs_inode *ip, 252 xfs_off_t offset, 253 size_t size) 254 { 255 struct xfs_mount *mp = ip->i_mount; 256 struct xfs_trans *tp; 257 int error; 258 259 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 260 if (error) 261 return error; 262 263 return __xfs_setfilesize(ip, tp, offset, size); 264 } 265 266 STATIC int 267 xfs_setfilesize_ioend( 268 struct xfs_ioend *ioend, 269 int error) 270 { 271 struct xfs_inode *ip = XFS_I(ioend->io_inode); 272 struct xfs_trans *tp = ioend->io_append_trans; 273 274 /* 275 * The transaction may have been allocated in the I/O submission thread, 276 * thus we need to mark ourselves as being in a transaction manually. 277 * Similarly for freeze protection. 278 */ 279 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 280 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 281 282 /* we abort the update if there was an IO error */ 283 if (error) { 284 xfs_trans_cancel(tp); 285 return error; 286 } 287 288 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 289 } 290 291 /* 292 * IO write completion. 293 */ 294 STATIC void 295 xfs_end_io( 296 struct work_struct *work) 297 { 298 struct xfs_ioend *ioend = 299 container_of(work, struct xfs_ioend, io_work); 300 struct xfs_inode *ip = XFS_I(ioend->io_inode); 301 xfs_off_t offset = ioend->io_offset; 302 size_t size = ioend->io_size; 303 int error; 304 305 /* 306 * Just clean up the in-memory strutures if the fs has been shut down. 307 */ 308 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 309 error = -EIO; 310 goto done; 311 } 312 313 /* 314 * Clean up any COW blocks on an I/O error. 315 */ 316 error = blk_status_to_errno(ioend->io_bio->bi_status); 317 if (unlikely(error)) { 318 switch (ioend->io_type) { 319 case XFS_IO_COW: 320 xfs_reflink_cancel_cow_range(ip, offset, size, true); 321 break; 322 } 323 324 goto done; 325 } 326 327 /* 328 * Success: commit the COW or unwritten blocks if needed. 329 */ 330 switch (ioend->io_type) { 331 case XFS_IO_COW: 332 error = xfs_reflink_end_cow(ip, offset, size); 333 break; 334 case XFS_IO_UNWRITTEN: 335 /* writeback should never update isize */ 336 error = xfs_iomap_write_unwritten(ip, offset, size, false); 337 break; 338 default: 339 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 340 break; 341 } 342 343 done: 344 if (ioend->io_append_trans) 345 error = xfs_setfilesize_ioend(ioend, error); 346 xfs_destroy_ioend(ioend, error); 347 } 348 349 STATIC void 350 xfs_end_bio( 351 struct bio *bio) 352 { 353 struct xfs_ioend *ioend = bio->bi_private; 354 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 355 356 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 357 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 358 else if (ioend->io_append_trans) 359 queue_work(mp->m_data_workqueue, &ioend->io_work); 360 else 361 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 362 } 363 364 STATIC int 365 xfs_map_blocks( 366 struct inode *inode, 367 loff_t offset, 368 struct xfs_bmbt_irec *imap, 369 int type) 370 { 371 struct xfs_inode *ip = XFS_I(inode); 372 struct xfs_mount *mp = ip->i_mount; 373 ssize_t count = i_blocksize(inode); 374 xfs_fileoff_t offset_fsb, end_fsb; 375 int error = 0; 376 int bmapi_flags = XFS_BMAPI_ENTIRE; 377 int nimaps = 1; 378 379 if (XFS_FORCED_SHUTDOWN(mp)) 380 return -EIO; 381 382 /* 383 * Truncate can race with writeback since writeback doesn't take the 384 * iolock and truncate decreases the file size before it starts 385 * truncating the pages between new_size and old_size. Therefore, we 386 * can end up in the situation where writeback gets a CoW fork mapping 387 * but the truncate makes the mapping invalid and we end up in here 388 * trying to get a new mapping. Bail out here so that we simply never 389 * get a valid mapping and so we drop the write altogether. The page 390 * truncation will kill the contents anyway. 391 */ 392 if (type == XFS_IO_COW && offset > i_size_read(inode)) 393 return 0; 394 395 ASSERT(type != XFS_IO_COW); 396 if (type == XFS_IO_UNWRITTEN) 397 bmapi_flags |= XFS_BMAPI_IGSTATE; 398 399 xfs_ilock(ip, XFS_ILOCK_SHARED); 400 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 401 (ip->i_df.if_flags & XFS_IFEXTENTS)); 402 ASSERT(offset <= mp->m_super->s_maxbytes); 403 404 if (offset > mp->m_super->s_maxbytes - count) 405 count = mp->m_super->s_maxbytes - offset; 406 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 407 offset_fsb = XFS_B_TO_FSBT(mp, offset); 408 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 409 imap, &nimaps, bmapi_flags); 410 /* 411 * Truncate an overwrite extent if there's a pending CoW 412 * reservation before the end of this extent. This forces us 413 * to come back to writepage to take care of the CoW. 414 */ 415 if (nimaps && type == XFS_IO_OVERWRITE) 416 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 417 xfs_iunlock(ip, XFS_ILOCK_SHARED); 418 419 if (error) 420 return error; 421 422 if (type == XFS_IO_DELALLOC && 423 (!nimaps || isnullstartblock(imap->br_startblock))) { 424 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 425 imap); 426 if (!error) 427 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 428 return error; 429 } 430 431 #ifdef DEBUG 432 if (type == XFS_IO_UNWRITTEN) { 433 ASSERT(nimaps); 434 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 435 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 436 } 437 #endif 438 if (nimaps) 439 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 440 return 0; 441 } 442 443 STATIC bool 444 xfs_imap_valid( 445 struct inode *inode, 446 struct xfs_bmbt_irec *imap, 447 xfs_off_t offset) 448 { 449 offset >>= inode->i_blkbits; 450 451 /* 452 * We have to make sure the cached mapping is within EOF to protect 453 * against eofblocks trimming on file release leaving us with a stale 454 * mapping. Otherwise, a page for a subsequent file extending buffered 455 * write could get picked up by this writeback cycle and written to the 456 * wrong blocks. 457 * 458 * Note that what we really want here is a generic mapping invalidation 459 * mechanism to protect us from arbitrary extent modifying contexts, not 460 * just eofblocks. 461 */ 462 xfs_trim_extent_eof(imap, XFS_I(inode)); 463 464 return offset >= imap->br_startoff && 465 offset < imap->br_startoff + imap->br_blockcount; 466 } 467 468 STATIC void 469 xfs_start_buffer_writeback( 470 struct buffer_head *bh) 471 { 472 ASSERT(buffer_mapped(bh)); 473 ASSERT(buffer_locked(bh)); 474 ASSERT(!buffer_delay(bh)); 475 ASSERT(!buffer_unwritten(bh)); 476 477 bh->b_end_io = NULL; 478 set_buffer_async_write(bh); 479 set_buffer_uptodate(bh); 480 clear_buffer_dirty(bh); 481 } 482 483 STATIC void 484 xfs_start_page_writeback( 485 struct page *page, 486 int clear_dirty) 487 { 488 ASSERT(PageLocked(page)); 489 ASSERT(!PageWriteback(page)); 490 491 /* 492 * if the page was not fully cleaned, we need to ensure that the higher 493 * layers come back to it correctly. That means we need to keep the page 494 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 495 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 496 * write this page in this writeback sweep will be made. 497 */ 498 if (clear_dirty) { 499 clear_page_dirty_for_io(page); 500 set_page_writeback(page); 501 } else 502 set_page_writeback_keepwrite(page); 503 504 unlock_page(page); 505 } 506 507 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 508 { 509 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 510 } 511 512 /* 513 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 514 * it, and we submit that bio. The ioend may be used for multiple bio 515 * submissions, so we only want to allocate an append transaction for the ioend 516 * once. In the case of multiple bio submission, each bio will take an IO 517 * reference to the ioend to ensure that the ioend completion is only done once 518 * all bios have been submitted and the ioend is really done. 519 * 520 * If @fail is non-zero, it means that we have a situation where some part of 521 * the submission process has failed after we have marked paged for writeback 522 * and unlocked them. In this situation, we need to fail the bio and ioend 523 * rather than submit it to IO. This typically only happens on a filesystem 524 * shutdown. 525 */ 526 STATIC int 527 xfs_submit_ioend( 528 struct writeback_control *wbc, 529 struct xfs_ioend *ioend, 530 int status) 531 { 532 /* Convert CoW extents to regular */ 533 if (!status && ioend->io_type == XFS_IO_COW) { 534 /* 535 * Yuk. This can do memory allocation, but is not a 536 * transactional operation so everything is done in GFP_KERNEL 537 * context. That can deadlock, because we hold pages in 538 * writeback state and GFP_KERNEL allocations can block on them. 539 * Hence we must operate in nofs conditions here. 540 */ 541 unsigned nofs_flag; 542 543 nofs_flag = memalloc_nofs_save(); 544 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 545 ioend->io_offset, ioend->io_size); 546 memalloc_nofs_restore(nofs_flag); 547 } 548 549 /* Reserve log space if we might write beyond the on-disk inode size. */ 550 if (!status && 551 ioend->io_type != XFS_IO_UNWRITTEN && 552 xfs_ioend_is_append(ioend) && 553 !ioend->io_append_trans) 554 status = xfs_setfilesize_trans_alloc(ioend); 555 556 ioend->io_bio->bi_private = ioend; 557 ioend->io_bio->bi_end_io = xfs_end_bio; 558 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 559 560 /* 561 * If we are failing the IO now, just mark the ioend with an 562 * error and finish it. This will run IO completion immediately 563 * as there is only one reference to the ioend at this point in 564 * time. 565 */ 566 if (status) { 567 ioend->io_bio->bi_status = errno_to_blk_status(status); 568 bio_endio(ioend->io_bio); 569 return status; 570 } 571 572 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 573 submit_bio(ioend->io_bio); 574 return 0; 575 } 576 577 static void 578 xfs_init_bio_from_bh( 579 struct bio *bio, 580 struct buffer_head *bh) 581 { 582 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 583 bio_set_dev(bio, bh->b_bdev); 584 } 585 586 static struct xfs_ioend * 587 xfs_alloc_ioend( 588 struct inode *inode, 589 unsigned int type, 590 xfs_off_t offset, 591 struct buffer_head *bh) 592 { 593 struct xfs_ioend *ioend; 594 struct bio *bio; 595 596 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); 597 xfs_init_bio_from_bh(bio, bh); 598 599 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 600 INIT_LIST_HEAD(&ioend->io_list); 601 ioend->io_type = type; 602 ioend->io_inode = inode; 603 ioend->io_size = 0; 604 ioend->io_offset = offset; 605 INIT_WORK(&ioend->io_work, xfs_end_io); 606 ioend->io_append_trans = NULL; 607 ioend->io_bio = bio; 608 return ioend; 609 } 610 611 /* 612 * Allocate a new bio, and chain the old bio to the new one. 613 * 614 * Note that we have to do perform the chaining in this unintuitive order 615 * so that the bi_private linkage is set up in the right direction for the 616 * traversal in xfs_destroy_ioend(). 617 */ 618 static void 619 xfs_chain_bio( 620 struct xfs_ioend *ioend, 621 struct writeback_control *wbc, 622 struct buffer_head *bh) 623 { 624 struct bio *new; 625 626 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 627 xfs_init_bio_from_bh(new, bh); 628 629 bio_chain(ioend->io_bio, new); 630 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 631 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 632 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 633 submit_bio(ioend->io_bio); 634 ioend->io_bio = new; 635 } 636 637 /* 638 * Test to see if we've been building up a completion structure for 639 * earlier buffers -- if so, we try to append to this ioend if we 640 * can, otherwise we finish off any current ioend and start another. 641 * Return the ioend we finished off so that the caller can submit it 642 * once it has finished processing the dirty page. 643 */ 644 STATIC void 645 xfs_add_to_ioend( 646 struct inode *inode, 647 struct buffer_head *bh, 648 xfs_off_t offset, 649 struct xfs_writepage_ctx *wpc, 650 struct writeback_control *wbc, 651 struct list_head *iolist) 652 { 653 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 654 bh->b_blocknr != wpc->last_block + 1 || 655 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 656 if (wpc->ioend) 657 list_add(&wpc->ioend->io_list, iolist); 658 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 659 } 660 661 /* 662 * If the buffer doesn't fit into the bio we need to allocate a new 663 * one. This shouldn't happen more than once for a given buffer. 664 */ 665 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 666 xfs_chain_bio(wpc->ioend, wbc, bh); 667 668 wpc->ioend->io_size += bh->b_size; 669 wpc->last_block = bh->b_blocknr; 670 xfs_start_buffer_writeback(bh); 671 } 672 673 STATIC void 674 xfs_map_buffer( 675 struct inode *inode, 676 struct buffer_head *bh, 677 struct xfs_bmbt_irec *imap, 678 xfs_off_t offset) 679 { 680 sector_t bn; 681 struct xfs_mount *m = XFS_I(inode)->i_mount; 682 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 683 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 684 685 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 686 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 687 688 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 689 ((offset - iomap_offset) >> inode->i_blkbits); 690 691 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 692 693 bh->b_blocknr = bn; 694 set_buffer_mapped(bh); 695 } 696 697 STATIC void 698 xfs_map_at_offset( 699 struct inode *inode, 700 struct buffer_head *bh, 701 struct xfs_bmbt_irec *imap, 702 xfs_off_t offset) 703 { 704 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 705 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 706 707 xfs_map_buffer(inode, bh, imap, offset); 708 set_buffer_mapped(bh); 709 clear_buffer_delay(bh); 710 clear_buffer_unwritten(bh); 711 } 712 713 /* 714 * Test if a given page contains at least one buffer of a given @type. 715 * If @check_all_buffers is true, then we walk all the buffers in the page to 716 * try to find one of the type passed in. If it is not set, then the caller only 717 * needs to check the first buffer on the page for a match. 718 */ 719 STATIC bool 720 xfs_check_page_type( 721 struct page *page, 722 unsigned int type, 723 bool check_all_buffers) 724 { 725 struct buffer_head *bh; 726 struct buffer_head *head; 727 728 if (PageWriteback(page)) 729 return false; 730 if (!page->mapping) 731 return false; 732 if (!page_has_buffers(page)) 733 return false; 734 735 bh = head = page_buffers(page); 736 do { 737 if (buffer_unwritten(bh)) { 738 if (type == XFS_IO_UNWRITTEN) 739 return true; 740 } else if (buffer_delay(bh)) { 741 if (type == XFS_IO_DELALLOC) 742 return true; 743 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 744 if (type == XFS_IO_OVERWRITE) 745 return true; 746 } 747 748 /* If we are only checking the first buffer, we are done now. */ 749 if (!check_all_buffers) 750 break; 751 } while ((bh = bh->b_this_page) != head); 752 753 return false; 754 } 755 756 STATIC void 757 xfs_vm_invalidatepage( 758 struct page *page, 759 unsigned int offset, 760 unsigned int length) 761 { 762 trace_xfs_invalidatepage(page->mapping->host, page, offset, 763 length); 764 765 /* 766 * If we are invalidating the entire page, clear the dirty state from it 767 * so that we can check for attempts to release dirty cached pages in 768 * xfs_vm_releasepage(). 769 */ 770 if (offset == 0 && length >= PAGE_SIZE) 771 cancel_dirty_page(page); 772 block_invalidatepage(page, offset, length); 773 } 774 775 /* 776 * If the page has delalloc buffers on it, we need to punch them out before we 777 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 778 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 779 * is done on that same region - the delalloc extent is returned when none is 780 * supposed to be there. 781 * 782 * We prevent this by truncating away the delalloc regions on the page before 783 * invalidating it. Because they are delalloc, we can do this without needing a 784 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 785 * truncation without a transaction as there is no space left for block 786 * reservation (typically why we see a ENOSPC in writeback). 787 * 788 * This is not a performance critical path, so for now just do the punching a 789 * buffer head at a time. 790 */ 791 STATIC void 792 xfs_aops_discard_page( 793 struct page *page) 794 { 795 struct inode *inode = page->mapping->host; 796 struct xfs_inode *ip = XFS_I(inode); 797 struct buffer_head *bh, *head; 798 loff_t offset = page_offset(page); 799 800 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 801 goto out_invalidate; 802 803 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 804 goto out_invalidate; 805 806 xfs_alert(ip->i_mount, 807 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 808 page, ip->i_ino, offset); 809 810 xfs_ilock(ip, XFS_ILOCK_EXCL); 811 bh = head = page_buffers(page); 812 do { 813 int error; 814 xfs_fileoff_t start_fsb; 815 816 if (!buffer_delay(bh)) 817 goto next_buffer; 818 819 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 820 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 821 if (error) { 822 /* something screwed, just bail */ 823 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 824 xfs_alert(ip->i_mount, 825 "page discard unable to remove delalloc mapping."); 826 } 827 break; 828 } 829 next_buffer: 830 offset += i_blocksize(inode); 831 832 } while ((bh = bh->b_this_page) != head); 833 834 xfs_iunlock(ip, XFS_ILOCK_EXCL); 835 out_invalidate: 836 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 837 return; 838 } 839 840 static int 841 xfs_map_cow( 842 struct xfs_writepage_ctx *wpc, 843 struct inode *inode, 844 loff_t offset, 845 unsigned int *new_type) 846 { 847 struct xfs_inode *ip = XFS_I(inode); 848 struct xfs_bmbt_irec imap; 849 bool is_cow = false; 850 int error; 851 852 /* 853 * If we already have a valid COW mapping keep using it. 854 */ 855 if (wpc->io_type == XFS_IO_COW) { 856 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 857 if (wpc->imap_valid) { 858 *new_type = XFS_IO_COW; 859 return 0; 860 } 861 } 862 863 /* 864 * Else we need to check if there is a COW mapping at this offset. 865 */ 866 xfs_ilock(ip, XFS_ILOCK_SHARED); 867 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 868 xfs_iunlock(ip, XFS_ILOCK_SHARED); 869 870 if (!is_cow) 871 return 0; 872 873 /* 874 * And if the COW mapping has a delayed extent here we need to 875 * allocate real space for it now. 876 */ 877 if (isnullstartblock(imap.br_startblock)) { 878 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 879 &imap); 880 if (error) 881 return error; 882 } 883 884 wpc->io_type = *new_type = XFS_IO_COW; 885 wpc->imap_valid = true; 886 wpc->imap = imap; 887 return 0; 888 } 889 890 /* 891 * We implement an immediate ioend submission policy here to avoid needing to 892 * chain multiple ioends and hence nest mempool allocations which can violate 893 * forward progress guarantees we need to provide. The current ioend we are 894 * adding buffers to is cached on the writepage context, and if the new buffer 895 * does not append to the cached ioend it will create a new ioend and cache that 896 * instead. 897 * 898 * If a new ioend is created and cached, the old ioend is returned and queued 899 * locally for submission once the entire page is processed or an error has been 900 * detected. While ioends are submitted immediately after they are completed, 901 * batching optimisations are provided by higher level block plugging. 902 * 903 * At the end of a writeback pass, there will be a cached ioend remaining on the 904 * writepage context that the caller will need to submit. 905 */ 906 static int 907 xfs_writepage_map( 908 struct xfs_writepage_ctx *wpc, 909 struct writeback_control *wbc, 910 struct inode *inode, 911 struct page *page, 912 uint64_t end_offset) 913 { 914 LIST_HEAD(submit_list); 915 struct xfs_ioend *ioend, *next; 916 struct buffer_head *bh, *head; 917 ssize_t len = i_blocksize(inode); 918 uint64_t offset; 919 int error = 0; 920 int count = 0; 921 int uptodate = 1; 922 unsigned int new_type; 923 924 bh = head = page_buffers(page); 925 offset = page_offset(page); 926 do { 927 if (offset >= end_offset) 928 break; 929 if (!buffer_uptodate(bh)) 930 uptodate = 0; 931 932 /* 933 * set_page_dirty dirties all buffers in a page, independent 934 * of their state. The dirty state however is entirely 935 * meaningless for holes (!mapped && uptodate), so skip 936 * buffers covering holes here. 937 */ 938 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 939 wpc->imap_valid = false; 940 continue; 941 } 942 943 if (buffer_unwritten(bh)) 944 new_type = XFS_IO_UNWRITTEN; 945 else if (buffer_delay(bh)) 946 new_type = XFS_IO_DELALLOC; 947 else if (buffer_uptodate(bh)) 948 new_type = XFS_IO_OVERWRITE; 949 else { 950 if (PageUptodate(page)) 951 ASSERT(buffer_mapped(bh)); 952 /* 953 * This buffer is not uptodate and will not be 954 * written to disk. Ensure that we will put any 955 * subsequent writeable buffers into a new 956 * ioend. 957 */ 958 wpc->imap_valid = false; 959 continue; 960 } 961 962 if (xfs_is_reflink_inode(XFS_I(inode))) { 963 error = xfs_map_cow(wpc, inode, offset, &new_type); 964 if (error) 965 goto out; 966 } 967 968 if (wpc->io_type != new_type) { 969 wpc->io_type = new_type; 970 wpc->imap_valid = false; 971 } 972 973 if (wpc->imap_valid) 974 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 975 offset); 976 if (!wpc->imap_valid) { 977 error = xfs_map_blocks(inode, offset, &wpc->imap, 978 wpc->io_type); 979 if (error) 980 goto out; 981 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 982 offset); 983 } 984 if (wpc->imap_valid) { 985 lock_buffer(bh); 986 if (wpc->io_type != XFS_IO_OVERWRITE) 987 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 988 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 989 count++; 990 } 991 992 } while (offset += len, ((bh = bh->b_this_page) != head)); 993 994 if (uptodate && bh == head) 995 SetPageUptodate(page); 996 997 ASSERT(wpc->ioend || list_empty(&submit_list)); 998 999 out: 1000 /* 1001 * On error, we have to fail the ioend here because we have locked 1002 * buffers in the ioend. If we don't do this, we'll deadlock 1003 * invalidating the page as that tries to lock the buffers on the page. 1004 * Also, because we may have set pages under writeback, we have to make 1005 * sure we run IO completion to mark the error state of the IO 1006 * appropriately, so we can't cancel the ioend directly here. That means 1007 * we have to mark this page as under writeback if we included any 1008 * buffers from it in the ioend chain so that completion treats it 1009 * correctly. 1010 * 1011 * If we didn't include the page in the ioend, the on error we can 1012 * simply discard and unlock it as there are no other users of the page 1013 * or it's buffers right now. The caller will still need to trigger 1014 * submission of outstanding ioends on the writepage context so they are 1015 * treated correctly on error. 1016 */ 1017 if (count) { 1018 xfs_start_page_writeback(page, !error); 1019 1020 /* 1021 * Preserve the original error if there was one, otherwise catch 1022 * submission errors here and propagate into subsequent ioend 1023 * submissions. 1024 */ 1025 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 1026 int error2; 1027 1028 list_del_init(&ioend->io_list); 1029 error2 = xfs_submit_ioend(wbc, ioend, error); 1030 if (error2 && !error) 1031 error = error2; 1032 } 1033 } else if (error) { 1034 xfs_aops_discard_page(page); 1035 ClearPageUptodate(page); 1036 unlock_page(page); 1037 } else { 1038 /* 1039 * We can end up here with no error and nothing to write if we 1040 * race with a partial page truncate on a sub-page block sized 1041 * filesystem. In that case we need to mark the page clean. 1042 */ 1043 xfs_start_page_writeback(page, 1); 1044 end_page_writeback(page); 1045 } 1046 1047 mapping_set_error(page->mapping, error); 1048 return error; 1049 } 1050 1051 /* 1052 * Write out a dirty page. 1053 * 1054 * For delalloc space on the page we need to allocate space and flush it. 1055 * For unwritten space on the page we need to start the conversion to 1056 * regular allocated space. 1057 * For any other dirty buffer heads on the page we should flush them. 1058 */ 1059 STATIC int 1060 xfs_do_writepage( 1061 struct page *page, 1062 struct writeback_control *wbc, 1063 void *data) 1064 { 1065 struct xfs_writepage_ctx *wpc = data; 1066 struct inode *inode = page->mapping->host; 1067 loff_t offset; 1068 uint64_t end_offset; 1069 pgoff_t end_index; 1070 1071 trace_xfs_writepage(inode, page, 0, 0); 1072 1073 ASSERT(page_has_buffers(page)); 1074 1075 /* 1076 * Refuse to write the page out if we are called from reclaim context. 1077 * 1078 * This avoids stack overflows when called from deeply used stacks in 1079 * random callers for direct reclaim or memcg reclaim. We explicitly 1080 * allow reclaim from kswapd as the stack usage there is relatively low. 1081 * 1082 * This should never happen except in the case of a VM regression so 1083 * warn about it. 1084 */ 1085 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1086 PF_MEMALLOC)) 1087 goto redirty; 1088 1089 /* 1090 * Given that we do not allow direct reclaim to call us, we should 1091 * never be called while in a filesystem transaction. 1092 */ 1093 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1094 goto redirty; 1095 1096 /* 1097 * Is this page beyond the end of the file? 1098 * 1099 * The page index is less than the end_index, adjust the end_offset 1100 * to the highest offset that this page should represent. 1101 * ----------------------------------------------------- 1102 * | file mapping | <EOF> | 1103 * ----------------------------------------------------- 1104 * | Page ... | Page N-2 | Page N-1 | Page N | | 1105 * ^--------------------------------^----------|-------- 1106 * | desired writeback range | see else | 1107 * ---------------------------------^------------------| 1108 */ 1109 offset = i_size_read(inode); 1110 end_index = offset >> PAGE_SHIFT; 1111 if (page->index < end_index) 1112 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1113 else { 1114 /* 1115 * Check whether the page to write out is beyond or straddles 1116 * i_size or not. 1117 * ------------------------------------------------------- 1118 * | file mapping | <EOF> | 1119 * ------------------------------------------------------- 1120 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1121 * ^--------------------------------^-----------|--------- 1122 * | | Straddles | 1123 * ---------------------------------^-----------|--------| 1124 */ 1125 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1126 1127 /* 1128 * Skip the page if it is fully outside i_size, e.g. due to a 1129 * truncate operation that is in progress. We must redirty the 1130 * page so that reclaim stops reclaiming it. Otherwise 1131 * xfs_vm_releasepage() is called on it and gets confused. 1132 * 1133 * Note that the end_index is unsigned long, it would overflow 1134 * if the given offset is greater than 16TB on 32-bit system 1135 * and if we do check the page is fully outside i_size or not 1136 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1137 * will be evaluated to 0. Hence this page will be redirtied 1138 * and be written out repeatedly which would result in an 1139 * infinite loop, the user program that perform this operation 1140 * will hang. Instead, we can verify this situation by checking 1141 * if the page to write is totally beyond the i_size or if it's 1142 * offset is just equal to the EOF. 1143 */ 1144 if (page->index > end_index || 1145 (page->index == end_index && offset_into_page == 0)) 1146 goto redirty; 1147 1148 /* 1149 * The page straddles i_size. It must be zeroed out on each 1150 * and every writepage invocation because it may be mmapped. 1151 * "A file is mapped in multiples of the page size. For a file 1152 * that is not a multiple of the page size, the remaining 1153 * memory is zeroed when mapped, and writes to that region are 1154 * not written out to the file." 1155 */ 1156 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1157 1158 /* Adjust the end_offset to the end of file */ 1159 end_offset = offset; 1160 } 1161 1162 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1163 1164 redirty: 1165 redirty_page_for_writepage(wbc, page); 1166 unlock_page(page); 1167 return 0; 1168 } 1169 1170 STATIC int 1171 xfs_vm_writepage( 1172 struct page *page, 1173 struct writeback_control *wbc) 1174 { 1175 struct xfs_writepage_ctx wpc = { 1176 .io_type = XFS_IO_INVALID, 1177 }; 1178 int ret; 1179 1180 ret = xfs_do_writepage(page, wbc, &wpc); 1181 if (wpc.ioend) 1182 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1183 return ret; 1184 } 1185 1186 STATIC int 1187 xfs_vm_writepages( 1188 struct address_space *mapping, 1189 struct writeback_control *wbc) 1190 { 1191 struct xfs_writepage_ctx wpc = { 1192 .io_type = XFS_IO_INVALID, 1193 }; 1194 int ret; 1195 1196 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1197 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1198 if (wpc.ioend) 1199 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1200 return ret; 1201 } 1202 1203 STATIC int 1204 xfs_dax_writepages( 1205 struct address_space *mapping, 1206 struct writeback_control *wbc) 1207 { 1208 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1209 return dax_writeback_mapping_range(mapping, 1210 xfs_find_bdev_for_inode(mapping->host), wbc); 1211 } 1212 1213 /* 1214 * Called to move a page into cleanable state - and from there 1215 * to be released. The page should already be clean. We always 1216 * have buffer heads in this call. 1217 * 1218 * Returns 1 if the page is ok to release, 0 otherwise. 1219 */ 1220 STATIC int 1221 xfs_vm_releasepage( 1222 struct page *page, 1223 gfp_t gfp_mask) 1224 { 1225 int delalloc, unwritten; 1226 1227 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1228 1229 /* 1230 * mm accommodates an old ext3 case where clean pages might not have had 1231 * the dirty bit cleared. Thus, it can send actual dirty pages to 1232 * ->releasepage() via shrink_active_list(). Conversely, 1233 * block_invalidatepage() can send pages that are still marked dirty but 1234 * otherwise have invalidated buffers. 1235 * 1236 * We want to release the latter to avoid unnecessary buildup of the 1237 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages 1238 * that are entirely invalidated and need to be released. Hence the 1239 * only time we should get dirty pages here is through 1240 * shrink_active_list() and so we can simply skip those now. 1241 * 1242 * warn if we've left any lingering delalloc/unwritten buffers on clean 1243 * or invalidated pages we are about to release. 1244 */ 1245 if (PageDirty(page)) 1246 return 0; 1247 1248 xfs_count_page_state(page, &delalloc, &unwritten); 1249 1250 if (WARN_ON_ONCE(delalloc)) 1251 return 0; 1252 if (WARN_ON_ONCE(unwritten)) 1253 return 0; 1254 1255 return try_to_free_buffers(page); 1256 } 1257 1258 /* 1259 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1260 * is, so that we can avoid repeated get_blocks calls. 1261 * 1262 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1263 * for blocks beyond EOF must be marked new so that sub block regions can be 1264 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1265 * was just allocated or is unwritten, otherwise the callers would overwrite 1266 * existing data with zeros. Hence we have to split the mapping into a range up 1267 * to and including EOF, and a second mapping for beyond EOF. 1268 */ 1269 static void 1270 xfs_map_trim_size( 1271 struct inode *inode, 1272 sector_t iblock, 1273 struct buffer_head *bh_result, 1274 struct xfs_bmbt_irec *imap, 1275 xfs_off_t offset, 1276 ssize_t size) 1277 { 1278 xfs_off_t mapping_size; 1279 1280 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1281 mapping_size <<= inode->i_blkbits; 1282 1283 ASSERT(mapping_size > 0); 1284 if (mapping_size > size) 1285 mapping_size = size; 1286 if (offset < i_size_read(inode) && 1287 (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) { 1288 /* limit mapping to block that spans EOF */ 1289 mapping_size = roundup_64(i_size_read(inode) - offset, 1290 i_blocksize(inode)); 1291 } 1292 if (mapping_size > LONG_MAX) 1293 mapping_size = LONG_MAX; 1294 1295 bh_result->b_size = mapping_size; 1296 } 1297 1298 static int 1299 xfs_get_blocks( 1300 struct inode *inode, 1301 sector_t iblock, 1302 struct buffer_head *bh_result, 1303 int create) 1304 { 1305 struct xfs_inode *ip = XFS_I(inode); 1306 struct xfs_mount *mp = ip->i_mount; 1307 xfs_fileoff_t offset_fsb, end_fsb; 1308 int error = 0; 1309 int lockmode = 0; 1310 struct xfs_bmbt_irec imap; 1311 int nimaps = 1; 1312 xfs_off_t offset; 1313 ssize_t size; 1314 1315 BUG_ON(create); 1316 1317 if (XFS_FORCED_SHUTDOWN(mp)) 1318 return -EIO; 1319 1320 offset = (xfs_off_t)iblock << inode->i_blkbits; 1321 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1322 size = bh_result->b_size; 1323 1324 if (offset >= i_size_read(inode)) 1325 return 0; 1326 1327 /* 1328 * Direct I/O is usually done on preallocated files, so try getting 1329 * a block mapping without an exclusive lock first. 1330 */ 1331 lockmode = xfs_ilock_data_map_shared(ip); 1332 1333 ASSERT(offset <= mp->m_super->s_maxbytes); 1334 if (offset > mp->m_super->s_maxbytes - size) 1335 size = mp->m_super->s_maxbytes - offset; 1336 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1337 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1338 1339 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap, 1340 &nimaps, 0); 1341 if (error) 1342 goto out_unlock; 1343 if (!nimaps) { 1344 trace_xfs_get_blocks_notfound(ip, offset, size); 1345 goto out_unlock; 1346 } 1347 1348 trace_xfs_get_blocks_found(ip, offset, size, 1349 imap.br_state == XFS_EXT_UNWRITTEN ? 1350 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1351 xfs_iunlock(ip, lockmode); 1352 1353 /* trim mapping down to size requested */ 1354 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1355 1356 /* 1357 * For unwritten extents do not report a disk address in the buffered 1358 * read case (treat as if we're reading into a hole). 1359 */ 1360 if (xfs_bmap_is_real_extent(&imap)) 1361 xfs_map_buffer(inode, bh_result, &imap, offset); 1362 1363 /* 1364 * If this is a realtime file, data may be on a different device. 1365 * to that pointed to from the buffer_head b_bdev currently. 1366 */ 1367 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1368 return 0; 1369 1370 out_unlock: 1371 xfs_iunlock(ip, lockmode); 1372 return error; 1373 } 1374 1375 STATIC sector_t 1376 xfs_vm_bmap( 1377 struct address_space *mapping, 1378 sector_t block) 1379 { 1380 struct xfs_inode *ip = XFS_I(mapping->host); 1381 1382 trace_xfs_vm_bmap(ip); 1383 1384 /* 1385 * The swap code (ab-)uses ->bmap to get a block mapping and then 1386 * bypasses the file system for actual I/O. We really can't allow 1387 * that on reflinks inodes, so we have to skip out here. And yes, 1388 * 0 is the magic code for a bmap error. 1389 * 1390 * Since we don't pass back blockdev info, we can't return bmap 1391 * information for rt files either. 1392 */ 1393 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1394 return 0; 1395 return iomap_bmap(mapping, block, &xfs_iomap_ops); 1396 } 1397 1398 STATIC int 1399 xfs_vm_readpage( 1400 struct file *unused, 1401 struct page *page) 1402 { 1403 trace_xfs_vm_readpage(page->mapping->host, 1); 1404 return mpage_readpage(page, xfs_get_blocks); 1405 } 1406 1407 STATIC int 1408 xfs_vm_readpages( 1409 struct file *unused, 1410 struct address_space *mapping, 1411 struct list_head *pages, 1412 unsigned nr_pages) 1413 { 1414 trace_xfs_vm_readpages(mapping->host, nr_pages); 1415 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1416 } 1417 1418 /* 1419 * This is basically a copy of __set_page_dirty_buffers() with one 1420 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1421 * dirty, we'll never be able to clean them because we don't write buffers 1422 * beyond EOF, and that means we can't invalidate pages that span EOF 1423 * that have been marked dirty. Further, the dirty state can leak into 1424 * the file interior if the file is extended, resulting in all sorts of 1425 * bad things happening as the state does not match the underlying data. 1426 * 1427 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1428 * this only exist because of bufferheads and how the generic code manages them. 1429 */ 1430 STATIC int 1431 xfs_vm_set_page_dirty( 1432 struct page *page) 1433 { 1434 struct address_space *mapping = page->mapping; 1435 struct inode *inode = mapping->host; 1436 loff_t end_offset; 1437 loff_t offset; 1438 int newly_dirty; 1439 1440 if (unlikely(!mapping)) 1441 return !TestSetPageDirty(page); 1442 1443 end_offset = i_size_read(inode); 1444 offset = page_offset(page); 1445 1446 spin_lock(&mapping->private_lock); 1447 if (page_has_buffers(page)) { 1448 struct buffer_head *head = page_buffers(page); 1449 struct buffer_head *bh = head; 1450 1451 do { 1452 if (offset < end_offset) 1453 set_buffer_dirty(bh); 1454 bh = bh->b_this_page; 1455 offset += i_blocksize(inode); 1456 } while (bh != head); 1457 } 1458 /* 1459 * Lock out page->mem_cgroup migration to keep PageDirty 1460 * synchronized with per-memcg dirty page counters. 1461 */ 1462 lock_page_memcg(page); 1463 newly_dirty = !TestSetPageDirty(page); 1464 spin_unlock(&mapping->private_lock); 1465 1466 if (newly_dirty) 1467 __set_page_dirty(page, mapping, 1); 1468 unlock_page_memcg(page); 1469 if (newly_dirty) 1470 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1471 return newly_dirty; 1472 } 1473 1474 static int 1475 xfs_iomap_swapfile_activate( 1476 struct swap_info_struct *sis, 1477 struct file *swap_file, 1478 sector_t *span) 1479 { 1480 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); 1481 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); 1482 } 1483 1484 const struct address_space_operations xfs_address_space_operations = { 1485 .readpage = xfs_vm_readpage, 1486 .readpages = xfs_vm_readpages, 1487 .writepage = xfs_vm_writepage, 1488 .writepages = xfs_vm_writepages, 1489 .set_page_dirty = xfs_vm_set_page_dirty, 1490 .releasepage = xfs_vm_releasepage, 1491 .invalidatepage = xfs_vm_invalidatepage, 1492 .bmap = xfs_vm_bmap, 1493 .direct_IO = noop_direct_IO, 1494 .migratepage = buffer_migrate_page, 1495 .is_partially_uptodate = block_is_partially_uptodate, 1496 .error_remove_page = generic_error_remove_page, 1497 .swap_activate = xfs_iomap_swapfile_activate, 1498 }; 1499 1500 const struct address_space_operations xfs_dax_aops = { 1501 .writepages = xfs_dax_writepages, 1502 .direct_IO = noop_direct_IO, 1503 .set_page_dirty = noop_set_page_dirty, 1504 .invalidatepage = noop_invalidatepage, 1505 .swap_activate = xfs_iomap_swapfile_activate, 1506 }; 1507