1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_alloc.h" 17 #include "xfs_error.h" 18 #include "xfs_iomap.h" 19 #include "xfs_trace.h" 20 #include "xfs_bmap.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_bmap_btree.h" 23 #include "xfs_reflink.h" 24 #include <linux/writeback.h> 25 26 /* 27 * structure owned by writepages passed to individual writepage calls 28 */ 29 struct xfs_writepage_ctx { 30 struct xfs_bmbt_irec imap; 31 int fork; 32 unsigned int data_seq; 33 unsigned int cow_seq; 34 struct xfs_ioend *ioend; 35 }; 36 37 struct block_device * 38 xfs_find_bdev_for_inode( 39 struct inode *inode) 40 { 41 struct xfs_inode *ip = XFS_I(inode); 42 struct xfs_mount *mp = ip->i_mount; 43 44 if (XFS_IS_REALTIME_INODE(ip)) 45 return mp->m_rtdev_targp->bt_bdev; 46 else 47 return mp->m_ddev_targp->bt_bdev; 48 } 49 50 struct dax_device * 51 xfs_find_daxdev_for_inode( 52 struct inode *inode) 53 { 54 struct xfs_inode *ip = XFS_I(inode); 55 struct xfs_mount *mp = ip->i_mount; 56 57 if (XFS_IS_REALTIME_INODE(ip)) 58 return mp->m_rtdev_targp->bt_daxdev; 59 else 60 return mp->m_ddev_targp->bt_daxdev; 61 } 62 63 static void 64 xfs_finish_page_writeback( 65 struct inode *inode, 66 struct bio_vec *bvec, 67 int error) 68 { 69 struct iomap_page *iop = to_iomap_page(bvec->bv_page); 70 71 if (error) { 72 SetPageError(bvec->bv_page); 73 mapping_set_error(inode->i_mapping, -EIO); 74 } 75 76 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 77 ASSERT(!iop || atomic_read(&iop->write_count) > 0); 78 79 if (!iop || atomic_dec_and_test(&iop->write_count)) 80 end_page_writeback(bvec->bv_page); 81 } 82 83 /* 84 * We're now finished for good with this ioend structure. Update the page 85 * state, release holds on bios, and finally free up memory. Do not use the 86 * ioend after this. 87 */ 88 STATIC void 89 xfs_destroy_ioend( 90 struct xfs_ioend *ioend, 91 int error) 92 { 93 struct inode *inode = ioend->io_inode; 94 struct bio *bio = &ioend->io_inline_bio; 95 struct bio *last = ioend->io_bio, *next; 96 u64 start = bio->bi_iter.bi_sector; 97 bool quiet = bio_flagged(bio, BIO_QUIET); 98 99 for (bio = &ioend->io_inline_bio; bio; bio = next) { 100 struct bio_vec *bvec; 101 struct bvec_iter_all iter_all; 102 103 /* 104 * For the last bio, bi_private points to the ioend, so we 105 * need to explicitly end the iteration here. 106 */ 107 if (bio == last) 108 next = NULL; 109 else 110 next = bio->bi_private; 111 112 /* walk each page on bio, ending page IO on them */ 113 bio_for_each_segment_all(bvec, bio, iter_all) 114 xfs_finish_page_writeback(inode, bvec, error); 115 bio_put(bio); 116 } 117 118 if (unlikely(error && !quiet)) { 119 xfs_err_ratelimited(XFS_I(inode)->i_mount, 120 "writeback error on sector %llu", start); 121 } 122 } 123 124 /* 125 * Fast and loose check if this write could update the on-disk inode size. 126 */ 127 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 128 { 129 return ioend->io_offset + ioend->io_size > 130 XFS_I(ioend->io_inode)->i_d.di_size; 131 } 132 133 STATIC int 134 xfs_setfilesize_trans_alloc( 135 struct xfs_ioend *ioend) 136 { 137 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 138 struct xfs_trans *tp; 139 int error; 140 141 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 142 XFS_TRANS_NOFS, &tp); 143 if (error) 144 return error; 145 146 ioend->io_append_trans = tp; 147 148 /* 149 * We may pass freeze protection with a transaction. So tell lockdep 150 * we released it. 151 */ 152 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 153 /* 154 * We hand off the transaction to the completion thread now, so 155 * clear the flag here. 156 */ 157 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 158 return 0; 159 } 160 161 /* 162 * Update on-disk file size now that data has been written to disk. 163 */ 164 STATIC int 165 __xfs_setfilesize( 166 struct xfs_inode *ip, 167 struct xfs_trans *tp, 168 xfs_off_t offset, 169 size_t size) 170 { 171 xfs_fsize_t isize; 172 173 xfs_ilock(ip, XFS_ILOCK_EXCL); 174 isize = xfs_new_eof(ip, offset + size); 175 if (!isize) { 176 xfs_iunlock(ip, XFS_ILOCK_EXCL); 177 xfs_trans_cancel(tp); 178 return 0; 179 } 180 181 trace_xfs_setfilesize(ip, offset, size); 182 183 ip->i_d.di_size = isize; 184 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 185 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 186 187 return xfs_trans_commit(tp); 188 } 189 190 int 191 xfs_setfilesize( 192 struct xfs_inode *ip, 193 xfs_off_t offset, 194 size_t size) 195 { 196 struct xfs_mount *mp = ip->i_mount; 197 struct xfs_trans *tp; 198 int error; 199 200 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 201 if (error) 202 return error; 203 204 return __xfs_setfilesize(ip, tp, offset, size); 205 } 206 207 STATIC int 208 xfs_setfilesize_ioend( 209 struct xfs_ioend *ioend, 210 int error) 211 { 212 struct xfs_inode *ip = XFS_I(ioend->io_inode); 213 struct xfs_trans *tp = ioend->io_append_trans; 214 215 /* 216 * The transaction may have been allocated in the I/O submission thread, 217 * thus we need to mark ourselves as being in a transaction manually. 218 * Similarly for freeze protection. 219 */ 220 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 221 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 222 223 /* we abort the update if there was an IO error */ 224 if (error) { 225 xfs_trans_cancel(tp); 226 return error; 227 } 228 229 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 230 } 231 232 /* 233 * IO write completion. 234 */ 235 STATIC void 236 xfs_end_ioend( 237 struct xfs_ioend *ioend) 238 { 239 struct list_head ioend_list; 240 struct xfs_inode *ip = XFS_I(ioend->io_inode); 241 xfs_off_t offset = ioend->io_offset; 242 size_t size = ioend->io_size; 243 int error; 244 245 /* 246 * Just clean up the in-memory strutures if the fs has been shut down. 247 */ 248 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 249 error = -EIO; 250 goto done; 251 } 252 253 /* 254 * Clean up any COW blocks on an I/O error. 255 */ 256 error = blk_status_to_errno(ioend->io_bio->bi_status); 257 if (unlikely(error)) { 258 if (ioend->io_fork == XFS_COW_FORK) 259 xfs_reflink_cancel_cow_range(ip, offset, size, true); 260 goto done; 261 } 262 263 /* 264 * Success: commit the COW or unwritten blocks if needed. 265 */ 266 if (ioend->io_fork == XFS_COW_FORK) 267 error = xfs_reflink_end_cow(ip, offset, size); 268 else if (ioend->io_state == XFS_EXT_UNWRITTEN) 269 error = xfs_iomap_write_unwritten(ip, offset, size, false); 270 else 271 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 272 273 done: 274 if (ioend->io_append_trans) 275 error = xfs_setfilesize_ioend(ioend, error); 276 list_replace_init(&ioend->io_list, &ioend_list); 277 xfs_destroy_ioend(ioend, error); 278 279 while (!list_empty(&ioend_list)) { 280 ioend = list_first_entry(&ioend_list, struct xfs_ioend, 281 io_list); 282 list_del_init(&ioend->io_list); 283 xfs_destroy_ioend(ioend, error); 284 } 285 } 286 287 /* 288 * We can merge two adjacent ioends if they have the same set of work to do. 289 */ 290 static bool 291 xfs_ioend_can_merge( 292 struct xfs_ioend *ioend, 293 int ioend_error, 294 struct xfs_ioend *next) 295 { 296 int next_error; 297 298 next_error = blk_status_to_errno(next->io_bio->bi_status); 299 if (ioend_error != next_error) 300 return false; 301 if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK)) 302 return false; 303 if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^ 304 (next->io_state == XFS_EXT_UNWRITTEN)) 305 return false; 306 if (ioend->io_offset + ioend->io_size != next->io_offset) 307 return false; 308 if (xfs_ioend_is_append(ioend) != xfs_ioend_is_append(next)) 309 return false; 310 return true; 311 } 312 313 /* Try to merge adjacent completions. */ 314 STATIC void 315 xfs_ioend_try_merge( 316 struct xfs_ioend *ioend, 317 struct list_head *more_ioends) 318 { 319 struct xfs_ioend *next_ioend; 320 int ioend_error; 321 int error; 322 323 if (list_empty(more_ioends)) 324 return; 325 326 ioend_error = blk_status_to_errno(ioend->io_bio->bi_status); 327 328 while (!list_empty(more_ioends)) { 329 next_ioend = list_first_entry(more_ioends, struct xfs_ioend, 330 io_list); 331 if (!xfs_ioend_can_merge(ioend, ioend_error, next_ioend)) 332 break; 333 list_move_tail(&next_ioend->io_list, &ioend->io_list); 334 ioend->io_size += next_ioend->io_size; 335 if (ioend->io_append_trans) { 336 error = xfs_setfilesize_ioend(next_ioend, 1); 337 ASSERT(error == 1); 338 } 339 } 340 } 341 342 /* list_sort compare function for ioends */ 343 static int 344 xfs_ioend_compare( 345 void *priv, 346 struct list_head *a, 347 struct list_head *b) 348 { 349 struct xfs_ioend *ia; 350 struct xfs_ioend *ib; 351 352 ia = container_of(a, struct xfs_ioend, io_list); 353 ib = container_of(b, struct xfs_ioend, io_list); 354 if (ia->io_offset < ib->io_offset) 355 return -1; 356 else if (ia->io_offset > ib->io_offset) 357 return 1; 358 return 0; 359 } 360 361 /* Finish all pending io completions. */ 362 void 363 xfs_end_io( 364 struct work_struct *work) 365 { 366 struct xfs_inode *ip; 367 struct xfs_ioend *ioend; 368 struct list_head completion_list; 369 unsigned long flags; 370 371 ip = container_of(work, struct xfs_inode, i_ioend_work); 372 373 spin_lock_irqsave(&ip->i_ioend_lock, flags); 374 list_replace_init(&ip->i_ioend_list, &completion_list); 375 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 376 377 list_sort(NULL, &completion_list, xfs_ioend_compare); 378 379 while (!list_empty(&completion_list)) { 380 ioend = list_first_entry(&completion_list, struct xfs_ioend, 381 io_list); 382 list_del_init(&ioend->io_list); 383 xfs_ioend_try_merge(ioend, &completion_list); 384 xfs_end_ioend(ioend); 385 } 386 } 387 388 STATIC void 389 xfs_end_bio( 390 struct bio *bio) 391 { 392 struct xfs_ioend *ioend = bio->bi_private; 393 struct xfs_inode *ip = XFS_I(ioend->io_inode); 394 struct xfs_mount *mp = ip->i_mount; 395 unsigned long flags; 396 397 if (ioend->io_fork == XFS_COW_FORK || 398 ioend->io_state == XFS_EXT_UNWRITTEN || 399 ioend->io_append_trans != NULL) { 400 spin_lock_irqsave(&ip->i_ioend_lock, flags); 401 if (list_empty(&ip->i_ioend_list)) 402 WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue, 403 &ip->i_ioend_work)); 404 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 405 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 406 } else 407 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 408 } 409 410 /* 411 * Fast revalidation of the cached writeback mapping. Return true if the current 412 * mapping is valid, false otherwise. 413 */ 414 static bool 415 xfs_imap_valid( 416 struct xfs_writepage_ctx *wpc, 417 struct xfs_inode *ip, 418 xfs_fileoff_t offset_fsb) 419 { 420 if (offset_fsb < wpc->imap.br_startoff || 421 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount) 422 return false; 423 /* 424 * If this is a COW mapping, it is sufficient to check that the mapping 425 * covers the offset. Be careful to check this first because the caller 426 * can revalidate a COW mapping without updating the data seqno. 427 */ 428 if (wpc->fork == XFS_COW_FORK) 429 return true; 430 431 /* 432 * This is not a COW mapping. Check the sequence number of the data fork 433 * because concurrent changes could have invalidated the extent. Check 434 * the COW fork because concurrent changes since the last time we 435 * checked (and found nothing at this offset) could have added 436 * overlapping blocks. 437 */ 438 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq)) 439 return false; 440 if (xfs_inode_has_cow_data(ip) && 441 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 442 return false; 443 return true; 444 } 445 446 /* 447 * Pass in a dellalloc extent and convert it to real extents, return the real 448 * extent that maps offset_fsb in wpc->imap. 449 * 450 * The current page is held locked so nothing could have removed the block 451 * backing offset_fsb, although it could have moved from the COW to the data 452 * fork by another thread. 453 */ 454 static int 455 xfs_convert_blocks( 456 struct xfs_writepage_ctx *wpc, 457 struct xfs_inode *ip, 458 xfs_fileoff_t offset_fsb) 459 { 460 int error; 461 462 /* 463 * Attempt to allocate whatever delalloc extent currently backs 464 * offset_fsb and put the result into wpc->imap. Allocate in a loop 465 * because it may take several attempts to allocate real blocks for a 466 * contiguous delalloc extent if free space is sufficiently fragmented. 467 */ 468 do { 469 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb, 470 &wpc->imap, wpc->fork == XFS_COW_FORK ? 471 &wpc->cow_seq : &wpc->data_seq); 472 if (error) 473 return error; 474 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb); 475 476 return 0; 477 } 478 479 STATIC int 480 xfs_map_blocks( 481 struct xfs_writepage_ctx *wpc, 482 struct inode *inode, 483 loff_t offset) 484 { 485 struct xfs_inode *ip = XFS_I(inode); 486 struct xfs_mount *mp = ip->i_mount; 487 ssize_t count = i_blocksize(inode); 488 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 489 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 490 xfs_fileoff_t cow_fsb = NULLFILEOFF; 491 struct xfs_bmbt_irec imap; 492 struct xfs_iext_cursor icur; 493 int retries = 0; 494 int error = 0; 495 496 if (XFS_FORCED_SHUTDOWN(mp)) 497 return -EIO; 498 499 /* 500 * COW fork blocks can overlap data fork blocks even if the blocks 501 * aren't shared. COW I/O always takes precedent, so we must always 502 * check for overlap on reflink inodes unless the mapping is already a 503 * COW one, or the COW fork hasn't changed from the last time we looked 504 * at it. 505 * 506 * It's safe to check the COW fork if_seq here without the ILOCK because 507 * we've indirectly protected against concurrent updates: writeback has 508 * the page locked, which prevents concurrent invalidations by reflink 509 * and directio and prevents concurrent buffered writes to the same 510 * page. Changes to if_seq always happen under i_lock, which protects 511 * against concurrent updates and provides a memory barrier on the way 512 * out that ensures that we always see the current value. 513 */ 514 if (xfs_imap_valid(wpc, ip, offset_fsb)) 515 return 0; 516 517 /* 518 * If we don't have a valid map, now it's time to get a new one for this 519 * offset. This will convert delayed allocations (including COW ones) 520 * into real extents. If we return without a valid map, it means we 521 * landed in a hole and we skip the block. 522 */ 523 retry: 524 xfs_ilock(ip, XFS_ILOCK_SHARED); 525 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 526 (ip->i_df.if_flags & XFS_IFEXTENTS)); 527 528 /* 529 * Check if this is offset is covered by a COW extents, and if yes use 530 * it directly instead of looking up anything in the data fork. 531 */ 532 if (xfs_inode_has_cow_data(ip) && 533 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 534 cow_fsb = imap.br_startoff; 535 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 536 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 537 xfs_iunlock(ip, XFS_ILOCK_SHARED); 538 539 wpc->fork = XFS_COW_FORK; 540 goto allocate_blocks; 541 } 542 543 /* 544 * No COW extent overlap. Revalidate now that we may have updated 545 * ->cow_seq. If the data mapping is still valid, we're done. 546 */ 547 if (xfs_imap_valid(wpc, ip, offset_fsb)) { 548 xfs_iunlock(ip, XFS_ILOCK_SHARED); 549 return 0; 550 } 551 552 /* 553 * If we don't have a valid map, now it's time to get a new one for this 554 * offset. This will convert delayed allocations (including COW ones) 555 * into real extents. 556 */ 557 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 558 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 559 wpc->data_seq = READ_ONCE(ip->i_df.if_seq); 560 xfs_iunlock(ip, XFS_ILOCK_SHARED); 561 562 wpc->fork = XFS_DATA_FORK; 563 564 /* landed in a hole or beyond EOF? */ 565 if (imap.br_startoff > offset_fsb) { 566 imap.br_blockcount = imap.br_startoff - offset_fsb; 567 imap.br_startoff = offset_fsb; 568 imap.br_startblock = HOLESTARTBLOCK; 569 imap.br_state = XFS_EXT_NORM; 570 } 571 572 /* 573 * Truncate to the next COW extent if there is one. This is the only 574 * opportunity to do this because we can skip COW fork lookups for the 575 * subsequent blocks in the mapping; however, the requirement to treat 576 * the COW range separately remains. 577 */ 578 if (cow_fsb != NULLFILEOFF && 579 cow_fsb < imap.br_startoff + imap.br_blockcount) 580 imap.br_blockcount = cow_fsb - imap.br_startoff; 581 582 /* got a delalloc extent? */ 583 if (imap.br_startblock != HOLESTARTBLOCK && 584 isnullstartblock(imap.br_startblock)) 585 goto allocate_blocks; 586 587 wpc->imap = imap; 588 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap); 589 return 0; 590 allocate_blocks: 591 error = xfs_convert_blocks(wpc, ip, offset_fsb); 592 if (error) { 593 /* 594 * If we failed to find the extent in the COW fork we might have 595 * raced with a COW to data fork conversion or truncate. 596 * Restart the lookup to catch the extent in the data fork for 597 * the former case, but prevent additional retries to avoid 598 * looping forever for the latter case. 599 */ 600 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++) 601 goto retry; 602 ASSERT(error != -EAGAIN); 603 return error; 604 } 605 606 /* 607 * Due to merging the return real extent might be larger than the 608 * original delalloc one. Trim the return extent to the next COW 609 * boundary again to force a re-lookup. 610 */ 611 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF && 612 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount) 613 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff; 614 615 ASSERT(wpc->imap.br_startoff <= offset_fsb); 616 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb); 617 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap); 618 return 0; 619 } 620 621 /* 622 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 623 * it, and we submit that bio. The ioend may be used for multiple bio 624 * submissions, so we only want to allocate an append transaction for the ioend 625 * once. In the case of multiple bio submission, each bio will take an IO 626 * reference to the ioend to ensure that the ioend completion is only done once 627 * all bios have been submitted and the ioend is really done. 628 * 629 * If @fail is non-zero, it means that we have a situation where some part of 630 * the submission process has failed after we have marked paged for writeback 631 * and unlocked them. In this situation, we need to fail the bio and ioend 632 * rather than submit it to IO. This typically only happens on a filesystem 633 * shutdown. 634 */ 635 STATIC int 636 xfs_submit_ioend( 637 struct writeback_control *wbc, 638 struct xfs_ioend *ioend, 639 int status) 640 { 641 /* Convert CoW extents to regular */ 642 if (!status && ioend->io_fork == XFS_COW_FORK) { 643 /* 644 * Yuk. This can do memory allocation, but is not a 645 * transactional operation so everything is done in GFP_KERNEL 646 * context. That can deadlock, because we hold pages in 647 * writeback state and GFP_KERNEL allocations can block on them. 648 * Hence we must operate in nofs conditions here. 649 */ 650 unsigned nofs_flag; 651 652 nofs_flag = memalloc_nofs_save(); 653 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 654 ioend->io_offset, ioend->io_size); 655 memalloc_nofs_restore(nofs_flag); 656 } 657 658 /* Reserve log space if we might write beyond the on-disk inode size. */ 659 if (!status && 660 (ioend->io_fork == XFS_COW_FORK || 661 ioend->io_state != XFS_EXT_UNWRITTEN) && 662 xfs_ioend_is_append(ioend) && 663 !ioend->io_append_trans) 664 status = xfs_setfilesize_trans_alloc(ioend); 665 666 ioend->io_bio->bi_private = ioend; 667 ioend->io_bio->bi_end_io = xfs_end_bio; 668 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 669 670 /* 671 * If we are failing the IO now, just mark the ioend with an 672 * error and finish it. This will run IO completion immediately 673 * as there is only one reference to the ioend at this point in 674 * time. 675 */ 676 if (status) { 677 ioend->io_bio->bi_status = errno_to_blk_status(status); 678 bio_endio(ioend->io_bio); 679 return status; 680 } 681 682 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 683 submit_bio(ioend->io_bio); 684 return 0; 685 } 686 687 static struct xfs_ioend * 688 xfs_alloc_ioend( 689 struct inode *inode, 690 int fork, 691 xfs_exntst_t state, 692 xfs_off_t offset, 693 struct block_device *bdev, 694 sector_t sector) 695 { 696 struct xfs_ioend *ioend; 697 struct bio *bio; 698 699 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); 700 bio_set_dev(bio, bdev); 701 bio->bi_iter.bi_sector = sector; 702 703 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 704 INIT_LIST_HEAD(&ioend->io_list); 705 ioend->io_fork = fork; 706 ioend->io_state = state; 707 ioend->io_inode = inode; 708 ioend->io_size = 0; 709 ioend->io_offset = offset; 710 ioend->io_append_trans = NULL; 711 ioend->io_bio = bio; 712 return ioend; 713 } 714 715 /* 716 * Allocate a new bio, and chain the old bio to the new one. 717 * 718 * Note that we have to do perform the chaining in this unintuitive order 719 * so that the bi_private linkage is set up in the right direction for the 720 * traversal in xfs_destroy_ioend(). 721 */ 722 static void 723 xfs_chain_bio( 724 struct xfs_ioend *ioend, 725 struct writeback_control *wbc, 726 struct block_device *bdev, 727 sector_t sector) 728 { 729 struct bio *new; 730 731 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 732 bio_set_dev(new, bdev); 733 new->bi_iter.bi_sector = sector; 734 bio_chain(ioend->io_bio, new); 735 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 736 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 737 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 738 submit_bio(ioend->io_bio); 739 ioend->io_bio = new; 740 } 741 742 /* 743 * Test to see if we have an existing ioend structure that we could append to 744 * first, otherwise finish off the current ioend and start another. 745 */ 746 STATIC void 747 xfs_add_to_ioend( 748 struct inode *inode, 749 xfs_off_t offset, 750 struct page *page, 751 struct iomap_page *iop, 752 struct xfs_writepage_ctx *wpc, 753 struct writeback_control *wbc, 754 struct list_head *iolist) 755 { 756 struct xfs_inode *ip = XFS_I(inode); 757 struct xfs_mount *mp = ip->i_mount; 758 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 759 unsigned len = i_blocksize(inode); 760 unsigned poff = offset & (PAGE_SIZE - 1); 761 bool merged, same_page = false; 762 sector_t sector; 763 764 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + 765 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); 766 767 if (!wpc->ioend || 768 wpc->fork != wpc->ioend->io_fork || 769 wpc->imap.br_state != wpc->ioend->io_state || 770 sector != bio_end_sector(wpc->ioend->io_bio) || 771 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 772 if (wpc->ioend) 773 list_add(&wpc->ioend->io_list, iolist); 774 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork, 775 wpc->imap.br_state, offset, bdev, sector); 776 } 777 778 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, 779 &same_page); 780 781 if (iop && !same_page) 782 atomic_inc(&iop->write_count); 783 784 if (!merged) { 785 if (bio_full(wpc->ioend->io_bio)) 786 xfs_chain_bio(wpc->ioend, wbc, bdev, sector); 787 bio_add_page(wpc->ioend->io_bio, page, len, poff); 788 } 789 790 wpc->ioend->io_size += len; 791 } 792 793 STATIC void 794 xfs_vm_invalidatepage( 795 struct page *page, 796 unsigned int offset, 797 unsigned int length) 798 { 799 trace_xfs_invalidatepage(page->mapping->host, page, offset, length); 800 iomap_invalidatepage(page, offset, length); 801 } 802 803 /* 804 * If the page has delalloc blocks on it, we need to punch them out before we 805 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 806 * inode that can trip up a later direct I/O read operation on the same region. 807 * 808 * We prevent this by truncating away the delalloc regions on the page. Because 809 * they are delalloc, we can do this without needing a transaction. Indeed - if 810 * we get ENOSPC errors, we have to be able to do this truncation without a 811 * transaction as there is no space left for block reservation (typically why we 812 * see a ENOSPC in writeback). 813 */ 814 STATIC void 815 xfs_aops_discard_page( 816 struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct xfs_inode *ip = XFS_I(inode); 820 struct xfs_mount *mp = ip->i_mount; 821 loff_t offset = page_offset(page); 822 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); 823 int error; 824 825 if (XFS_FORCED_SHUTDOWN(mp)) 826 goto out_invalidate; 827 828 xfs_alert(mp, 829 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 830 page, ip->i_ino, offset); 831 832 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 833 PAGE_SIZE / i_blocksize(inode)); 834 if (error && !XFS_FORCED_SHUTDOWN(mp)) 835 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 836 out_invalidate: 837 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 838 } 839 840 /* 841 * We implement an immediate ioend submission policy here to avoid needing to 842 * chain multiple ioends and hence nest mempool allocations which can violate 843 * forward progress guarantees we need to provide. The current ioend we are 844 * adding blocks to is cached on the writepage context, and if the new block 845 * does not append to the cached ioend it will create a new ioend and cache that 846 * instead. 847 * 848 * If a new ioend is created and cached, the old ioend is returned and queued 849 * locally for submission once the entire page is processed or an error has been 850 * detected. While ioends are submitted immediately after they are completed, 851 * batching optimisations are provided by higher level block plugging. 852 * 853 * At the end of a writeback pass, there will be a cached ioend remaining on the 854 * writepage context that the caller will need to submit. 855 */ 856 static int 857 xfs_writepage_map( 858 struct xfs_writepage_ctx *wpc, 859 struct writeback_control *wbc, 860 struct inode *inode, 861 struct page *page, 862 uint64_t end_offset) 863 { 864 LIST_HEAD(submit_list); 865 struct iomap_page *iop = to_iomap_page(page); 866 unsigned len = i_blocksize(inode); 867 struct xfs_ioend *ioend, *next; 868 uint64_t file_offset; /* file offset of page */ 869 int error = 0, count = 0, i; 870 871 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 872 ASSERT(!iop || atomic_read(&iop->write_count) == 0); 873 874 /* 875 * Walk through the page to find areas to write back. If we run off the 876 * end of the current map or find the current map invalid, grab a new 877 * one. 878 */ 879 for (i = 0, file_offset = page_offset(page); 880 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 881 i++, file_offset += len) { 882 if (iop && !test_bit(i, iop->uptodate)) 883 continue; 884 885 error = xfs_map_blocks(wpc, inode, file_offset); 886 if (error) 887 break; 888 if (wpc->imap.br_startblock == HOLESTARTBLOCK) 889 continue; 890 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 891 &submit_list); 892 count++; 893 } 894 895 ASSERT(wpc->ioend || list_empty(&submit_list)); 896 ASSERT(PageLocked(page)); 897 ASSERT(!PageWriteback(page)); 898 899 /* 900 * On error, we have to fail the ioend here because we may have set 901 * pages under writeback, we have to make sure we run IO completion to 902 * mark the error state of the IO appropriately, so we can't cancel the 903 * ioend directly here. That means we have to mark this page as under 904 * writeback if we included any blocks from it in the ioend chain so 905 * that completion treats it correctly. 906 * 907 * If we didn't include the page in the ioend, the on error we can 908 * simply discard and unlock it as there are no other users of the page 909 * now. The caller will still need to trigger submission of outstanding 910 * ioends on the writepage context so they are treated correctly on 911 * error. 912 */ 913 if (unlikely(error)) { 914 if (!count) { 915 xfs_aops_discard_page(page); 916 ClearPageUptodate(page); 917 unlock_page(page); 918 goto done; 919 } 920 921 /* 922 * If the page was not fully cleaned, we need to ensure that the 923 * higher layers come back to it correctly. That means we need 924 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 925 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 926 * so another attempt to write this page in this writeback sweep 927 * will be made. 928 */ 929 set_page_writeback_keepwrite(page); 930 } else { 931 clear_page_dirty_for_io(page); 932 set_page_writeback(page); 933 } 934 935 unlock_page(page); 936 937 /* 938 * Preserve the original error if there was one, otherwise catch 939 * submission errors here and propagate into subsequent ioend 940 * submissions. 941 */ 942 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 943 int error2; 944 945 list_del_init(&ioend->io_list); 946 error2 = xfs_submit_ioend(wbc, ioend, error); 947 if (error2 && !error) 948 error = error2; 949 } 950 951 /* 952 * We can end up here with no error and nothing to write only if we race 953 * with a partial page truncate on a sub-page block sized filesystem. 954 */ 955 if (!count) 956 end_page_writeback(page); 957 done: 958 mapping_set_error(page->mapping, error); 959 return error; 960 } 961 962 /* 963 * Write out a dirty page. 964 * 965 * For delalloc space on the page we need to allocate space and flush it. 966 * For unwritten space on the page we need to start the conversion to 967 * regular allocated space. 968 */ 969 STATIC int 970 xfs_do_writepage( 971 struct page *page, 972 struct writeback_control *wbc, 973 void *data) 974 { 975 struct xfs_writepage_ctx *wpc = data; 976 struct inode *inode = page->mapping->host; 977 loff_t offset; 978 uint64_t end_offset; 979 pgoff_t end_index; 980 981 trace_xfs_writepage(inode, page, 0, 0); 982 983 /* 984 * Refuse to write the page out if we are called from reclaim context. 985 * 986 * This avoids stack overflows when called from deeply used stacks in 987 * random callers for direct reclaim or memcg reclaim. We explicitly 988 * allow reclaim from kswapd as the stack usage there is relatively low. 989 * 990 * This should never happen except in the case of a VM regression so 991 * warn about it. 992 */ 993 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 994 PF_MEMALLOC)) 995 goto redirty; 996 997 /* 998 * Given that we do not allow direct reclaim to call us, we should 999 * never be called while in a filesystem transaction. 1000 */ 1001 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1002 goto redirty; 1003 1004 /* 1005 * Is this page beyond the end of the file? 1006 * 1007 * The page index is less than the end_index, adjust the end_offset 1008 * to the highest offset that this page should represent. 1009 * ----------------------------------------------------- 1010 * | file mapping | <EOF> | 1011 * ----------------------------------------------------- 1012 * | Page ... | Page N-2 | Page N-1 | Page N | | 1013 * ^--------------------------------^----------|-------- 1014 * | desired writeback range | see else | 1015 * ---------------------------------^------------------| 1016 */ 1017 offset = i_size_read(inode); 1018 end_index = offset >> PAGE_SHIFT; 1019 if (page->index < end_index) 1020 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1021 else { 1022 /* 1023 * Check whether the page to write out is beyond or straddles 1024 * i_size or not. 1025 * ------------------------------------------------------- 1026 * | file mapping | <EOF> | 1027 * ------------------------------------------------------- 1028 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1029 * ^--------------------------------^-----------|--------- 1030 * | | Straddles | 1031 * ---------------------------------^-----------|--------| 1032 */ 1033 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1034 1035 /* 1036 * Skip the page if it is fully outside i_size, e.g. due to a 1037 * truncate operation that is in progress. We must redirty the 1038 * page so that reclaim stops reclaiming it. Otherwise 1039 * xfs_vm_releasepage() is called on it and gets confused. 1040 * 1041 * Note that the end_index is unsigned long, it would overflow 1042 * if the given offset is greater than 16TB on 32-bit system 1043 * and if we do check the page is fully outside i_size or not 1044 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1045 * will be evaluated to 0. Hence this page will be redirtied 1046 * and be written out repeatedly which would result in an 1047 * infinite loop, the user program that perform this operation 1048 * will hang. Instead, we can verify this situation by checking 1049 * if the page to write is totally beyond the i_size or if it's 1050 * offset is just equal to the EOF. 1051 */ 1052 if (page->index > end_index || 1053 (page->index == end_index && offset_into_page == 0)) 1054 goto redirty; 1055 1056 /* 1057 * The page straddles i_size. It must be zeroed out on each 1058 * and every writepage invocation because it may be mmapped. 1059 * "A file is mapped in multiples of the page size. For a file 1060 * that is not a multiple of the page size, the remaining 1061 * memory is zeroed when mapped, and writes to that region are 1062 * not written out to the file." 1063 */ 1064 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1065 1066 /* Adjust the end_offset to the end of file */ 1067 end_offset = offset; 1068 } 1069 1070 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 1071 1072 redirty: 1073 redirty_page_for_writepage(wbc, page); 1074 unlock_page(page); 1075 return 0; 1076 } 1077 1078 STATIC int 1079 xfs_vm_writepage( 1080 struct page *page, 1081 struct writeback_control *wbc) 1082 { 1083 struct xfs_writepage_ctx wpc = { }; 1084 int ret; 1085 1086 ret = xfs_do_writepage(page, wbc, &wpc); 1087 if (wpc.ioend) 1088 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1089 return ret; 1090 } 1091 1092 STATIC int 1093 xfs_vm_writepages( 1094 struct address_space *mapping, 1095 struct writeback_control *wbc) 1096 { 1097 struct xfs_writepage_ctx wpc = { }; 1098 int ret; 1099 1100 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1101 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1102 if (wpc.ioend) 1103 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1104 return ret; 1105 } 1106 1107 STATIC int 1108 xfs_dax_writepages( 1109 struct address_space *mapping, 1110 struct writeback_control *wbc) 1111 { 1112 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1113 return dax_writeback_mapping_range(mapping, 1114 xfs_find_bdev_for_inode(mapping->host), wbc); 1115 } 1116 1117 STATIC int 1118 xfs_vm_releasepage( 1119 struct page *page, 1120 gfp_t gfp_mask) 1121 { 1122 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1123 return iomap_releasepage(page, gfp_mask); 1124 } 1125 1126 STATIC sector_t 1127 xfs_vm_bmap( 1128 struct address_space *mapping, 1129 sector_t block) 1130 { 1131 struct xfs_inode *ip = XFS_I(mapping->host); 1132 1133 trace_xfs_vm_bmap(ip); 1134 1135 /* 1136 * The swap code (ab-)uses ->bmap to get a block mapping and then 1137 * bypasses the file system for actual I/O. We really can't allow 1138 * that on reflinks inodes, so we have to skip out here. And yes, 1139 * 0 is the magic code for a bmap error. 1140 * 1141 * Since we don't pass back blockdev info, we can't return bmap 1142 * information for rt files either. 1143 */ 1144 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1145 return 0; 1146 return iomap_bmap(mapping, block, &xfs_iomap_ops); 1147 } 1148 1149 STATIC int 1150 xfs_vm_readpage( 1151 struct file *unused, 1152 struct page *page) 1153 { 1154 trace_xfs_vm_readpage(page->mapping->host, 1); 1155 return iomap_readpage(page, &xfs_iomap_ops); 1156 } 1157 1158 STATIC int 1159 xfs_vm_readpages( 1160 struct file *unused, 1161 struct address_space *mapping, 1162 struct list_head *pages, 1163 unsigned nr_pages) 1164 { 1165 trace_xfs_vm_readpages(mapping->host, nr_pages); 1166 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); 1167 } 1168 1169 static int 1170 xfs_iomap_swapfile_activate( 1171 struct swap_info_struct *sis, 1172 struct file *swap_file, 1173 sector_t *span) 1174 { 1175 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); 1176 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); 1177 } 1178 1179 const struct address_space_operations xfs_address_space_operations = { 1180 .readpage = xfs_vm_readpage, 1181 .readpages = xfs_vm_readpages, 1182 .writepage = xfs_vm_writepage, 1183 .writepages = xfs_vm_writepages, 1184 .set_page_dirty = iomap_set_page_dirty, 1185 .releasepage = xfs_vm_releasepage, 1186 .invalidatepage = xfs_vm_invalidatepage, 1187 .bmap = xfs_vm_bmap, 1188 .direct_IO = noop_direct_IO, 1189 .migratepage = iomap_migrate_page, 1190 .is_partially_uptodate = iomap_is_partially_uptodate, 1191 .error_remove_page = generic_error_remove_page, 1192 .swap_activate = xfs_iomap_swapfile_activate, 1193 }; 1194 1195 const struct address_space_operations xfs_dax_aops = { 1196 .writepages = xfs_dax_writepages, 1197 .direct_IO = noop_direct_IO, 1198 .set_page_dirty = noop_set_page_dirty, 1199 .invalidatepage = noop_invalidatepage, 1200 .swap_activate = xfs_iomap_swapfile_activate, 1201 }; 1202