xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 7587eb18)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
41 #define XFS_DIO_FLAG_APPEND	(1 << 1)
42 
43 /*
44  * structure owned by writepages passed to individual writepage calls
45  */
46 struct xfs_writepage_ctx {
47 	struct xfs_bmbt_irec    imap;
48 	bool			imap_valid;
49 	unsigned int		io_type;
50 	struct xfs_ioend	*ioend;
51 	sector_t		last_block;
52 };
53 
54 void
55 xfs_count_page_state(
56 	struct page		*page,
57 	int			*delalloc,
58 	int			*unwritten)
59 {
60 	struct buffer_head	*bh, *head;
61 
62 	*delalloc = *unwritten = 0;
63 
64 	bh = head = page_buffers(page);
65 	do {
66 		if (buffer_unwritten(bh))
67 			(*unwritten) = 1;
68 		else if (buffer_delay(bh))
69 			(*delalloc) = 1;
70 	} while ((bh = bh->b_this_page) != head);
71 }
72 
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 	struct inode		*inode)
76 {
77 	struct xfs_inode	*ip = XFS_I(inode);
78 	struct xfs_mount	*mp = ip->i_mount;
79 
80 	if (XFS_IS_REALTIME_INODE(ip))
81 		return mp->m_rtdev_targp->bt_bdev;
82 	else
83 		return mp->m_ddev_targp->bt_bdev;
84 }
85 
86 /*
87  * We're now finished for good with this page.  Update the page state via the
88  * associated buffer_heads, paying attention to the start and end offsets that
89  * we need to process on the page.
90  */
91 static void
92 xfs_finish_page_writeback(
93 	struct inode		*inode,
94 	struct bio_vec		*bvec,
95 	int			error)
96 {
97 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
98 	struct buffer_head	*head, *bh;
99 	unsigned int		off = 0;
100 
101 	ASSERT(bvec->bv_offset < PAGE_SIZE);
102 	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
103 	ASSERT(end < PAGE_SIZE);
104 	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
105 
106 	bh = head = page_buffers(bvec->bv_page);
107 
108 	do {
109 		if (off < bvec->bv_offset)
110 			goto next_bh;
111 		if (off > end)
112 			break;
113 		bh->b_end_io(bh, !error);
114 next_bh:
115 		off += bh->b_size;
116 	} while ((bh = bh->b_this_page) != head);
117 }
118 
119 /*
120  * We're now finished for good with this ioend structure.  Update the page
121  * state, release holds on bios, and finally free up memory.  Do not use the
122  * ioend after this.
123  */
124 STATIC void
125 xfs_destroy_ioend(
126 	struct xfs_ioend	*ioend,
127 	int			error)
128 {
129 	struct inode		*inode = ioend->io_inode;
130 	struct bio		*last = ioend->io_bio;
131 	struct bio		*bio, *next;
132 
133 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
134 		struct bio_vec	*bvec;
135 		int		i;
136 
137 		/*
138 		 * For the last bio, bi_private points to the ioend, so we
139 		 * need to explicitly end the iteration here.
140 		 */
141 		if (bio == last)
142 			next = NULL;
143 		else
144 			next = bio->bi_private;
145 
146 		/* walk each page on bio, ending page IO on them */
147 		bio_for_each_segment_all(bvec, bio, i)
148 			xfs_finish_page_writeback(inode, bvec, error);
149 
150 		bio_put(bio);
151 	}
152 }
153 
154 /*
155  * Fast and loose check if this write could update the on-disk inode size.
156  */
157 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
158 {
159 	return ioend->io_offset + ioend->io_size >
160 		XFS_I(ioend->io_inode)->i_d.di_size;
161 }
162 
163 STATIC int
164 xfs_setfilesize_trans_alloc(
165 	struct xfs_ioend	*ioend)
166 {
167 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
168 	struct xfs_trans	*tp;
169 	int			error;
170 
171 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
172 	if (error)
173 		return error;
174 
175 	ioend->io_append_trans = tp;
176 
177 	/*
178 	 * We may pass freeze protection with a transaction.  So tell lockdep
179 	 * we released it.
180 	 */
181 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
182 	/*
183 	 * We hand off the transaction to the completion thread now, so
184 	 * clear the flag here.
185 	 */
186 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
187 	return 0;
188 }
189 
190 /*
191  * Update on-disk file size now that data has been written to disk.
192  */
193 STATIC int
194 xfs_setfilesize(
195 	struct xfs_inode	*ip,
196 	struct xfs_trans	*tp,
197 	xfs_off_t		offset,
198 	size_t			size)
199 {
200 	xfs_fsize_t		isize;
201 
202 	xfs_ilock(ip, XFS_ILOCK_EXCL);
203 	isize = xfs_new_eof(ip, offset + size);
204 	if (!isize) {
205 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
206 		xfs_trans_cancel(tp);
207 		return 0;
208 	}
209 
210 	trace_xfs_setfilesize(ip, offset, size);
211 
212 	ip->i_d.di_size = isize;
213 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
214 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
215 
216 	return xfs_trans_commit(tp);
217 }
218 
219 STATIC int
220 xfs_setfilesize_ioend(
221 	struct xfs_ioend	*ioend,
222 	int			error)
223 {
224 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
225 	struct xfs_trans	*tp = ioend->io_append_trans;
226 
227 	/*
228 	 * The transaction may have been allocated in the I/O submission thread,
229 	 * thus we need to mark ourselves as being in a transaction manually.
230 	 * Similarly for freeze protection.
231 	 */
232 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
233 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
234 
235 	/* we abort the update if there was an IO error */
236 	if (error) {
237 		xfs_trans_cancel(tp);
238 		return error;
239 	}
240 
241 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
242 }
243 
244 /*
245  * IO write completion.
246  */
247 STATIC void
248 xfs_end_io(
249 	struct work_struct *work)
250 {
251 	struct xfs_ioend	*ioend =
252 		container_of(work, struct xfs_ioend, io_work);
253 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
254 	int			error = ioend->io_bio->bi_error;
255 
256 	/*
257 	 * Set an error if the mount has shut down and proceed with end I/O
258 	 * processing so it can perform whatever cleanups are necessary.
259 	 */
260 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
261 		error = -EIO;
262 
263 	/*
264 	 * For unwritten extents we need to issue transactions to convert a
265 	 * range to normal written extens after the data I/O has finished.
266 	 * Detecting and handling completion IO errors is done individually
267 	 * for each case as different cleanup operations need to be performed
268 	 * on error.
269 	 */
270 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
271 		if (error)
272 			goto done;
273 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
274 						  ioend->io_size);
275 	} else if (ioend->io_append_trans) {
276 		error = xfs_setfilesize_ioend(ioend, error);
277 	} else {
278 		ASSERT(!xfs_ioend_is_append(ioend));
279 	}
280 
281 done:
282 	xfs_destroy_ioend(ioend, error);
283 }
284 
285 STATIC void
286 xfs_end_bio(
287 	struct bio		*bio)
288 {
289 	struct xfs_ioend	*ioend = bio->bi_private;
290 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
291 
292 	if (ioend->io_type == XFS_IO_UNWRITTEN)
293 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
294 	else if (ioend->io_append_trans)
295 		queue_work(mp->m_data_workqueue, &ioend->io_work);
296 	else
297 		xfs_destroy_ioend(ioend, bio->bi_error);
298 }
299 
300 STATIC int
301 xfs_map_blocks(
302 	struct inode		*inode,
303 	loff_t			offset,
304 	struct xfs_bmbt_irec	*imap,
305 	int			type)
306 {
307 	struct xfs_inode	*ip = XFS_I(inode);
308 	struct xfs_mount	*mp = ip->i_mount;
309 	ssize_t			count = 1 << inode->i_blkbits;
310 	xfs_fileoff_t		offset_fsb, end_fsb;
311 	int			error = 0;
312 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
313 	int			nimaps = 1;
314 
315 	if (XFS_FORCED_SHUTDOWN(mp))
316 		return -EIO;
317 
318 	if (type == XFS_IO_UNWRITTEN)
319 		bmapi_flags |= XFS_BMAPI_IGSTATE;
320 
321 	xfs_ilock(ip, XFS_ILOCK_SHARED);
322 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
324 	ASSERT(offset <= mp->m_super->s_maxbytes);
325 
326 	if (offset + count > mp->m_super->s_maxbytes)
327 		count = mp->m_super->s_maxbytes - offset;
328 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
330 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 				imap, &nimaps, bmapi_flags);
332 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
333 
334 	if (error)
335 		return error;
336 
337 	if (type == XFS_IO_DELALLOC &&
338 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
339 		error = xfs_iomap_write_allocate(ip, offset, imap);
340 		if (!error)
341 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
342 		return error;
343 	}
344 
345 #ifdef DEBUG
346 	if (type == XFS_IO_UNWRITTEN) {
347 		ASSERT(nimaps);
348 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
350 	}
351 #endif
352 	if (nimaps)
353 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 	return 0;
355 }
356 
357 STATIC bool
358 xfs_imap_valid(
359 	struct inode		*inode,
360 	struct xfs_bmbt_irec	*imap,
361 	xfs_off_t		offset)
362 {
363 	offset >>= inode->i_blkbits;
364 
365 	return offset >= imap->br_startoff &&
366 		offset < imap->br_startoff + imap->br_blockcount;
367 }
368 
369 STATIC void
370 xfs_start_buffer_writeback(
371 	struct buffer_head	*bh)
372 {
373 	ASSERT(buffer_mapped(bh));
374 	ASSERT(buffer_locked(bh));
375 	ASSERT(!buffer_delay(bh));
376 	ASSERT(!buffer_unwritten(bh));
377 
378 	mark_buffer_async_write(bh);
379 	set_buffer_uptodate(bh);
380 	clear_buffer_dirty(bh);
381 }
382 
383 STATIC void
384 xfs_start_page_writeback(
385 	struct page		*page,
386 	int			clear_dirty)
387 {
388 	ASSERT(PageLocked(page));
389 	ASSERT(!PageWriteback(page));
390 
391 	/*
392 	 * if the page was not fully cleaned, we need to ensure that the higher
393 	 * layers come back to it correctly. That means we need to keep the page
394 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
395 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
396 	 * write this page in this writeback sweep will be made.
397 	 */
398 	if (clear_dirty) {
399 		clear_page_dirty_for_io(page);
400 		set_page_writeback(page);
401 	} else
402 		set_page_writeback_keepwrite(page);
403 
404 	unlock_page(page);
405 }
406 
407 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
408 {
409 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
410 }
411 
412 /*
413  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
414  * it, and we submit that bio. The ioend may be used for multiple bio
415  * submissions, so we only want to allocate an append transaction for the ioend
416  * once. In the case of multiple bio submission, each bio will take an IO
417  * reference to the ioend to ensure that the ioend completion is only done once
418  * all bios have been submitted and the ioend is really done.
419  *
420  * If @fail is non-zero, it means that we have a situation where some part of
421  * the submission process has failed after we have marked paged for writeback
422  * and unlocked them. In this situation, we need to fail the bio and ioend
423  * rather than submit it to IO. This typically only happens on a filesystem
424  * shutdown.
425  */
426 STATIC int
427 xfs_submit_ioend(
428 	struct writeback_control *wbc,
429 	struct xfs_ioend	*ioend,
430 	int			status)
431 {
432 	/* Reserve log space if we might write beyond the on-disk inode size. */
433 	if (!status &&
434 	    ioend->io_type != XFS_IO_UNWRITTEN &&
435 	    xfs_ioend_is_append(ioend) &&
436 	    !ioend->io_append_trans)
437 		status = xfs_setfilesize_trans_alloc(ioend);
438 
439 	ioend->io_bio->bi_private = ioend;
440 	ioend->io_bio->bi_end_io = xfs_end_bio;
441 
442 	/*
443 	 * If we are failing the IO now, just mark the ioend with an
444 	 * error and finish it. This will run IO completion immediately
445 	 * as there is only one reference to the ioend at this point in
446 	 * time.
447 	 */
448 	if (status) {
449 		ioend->io_bio->bi_error = status;
450 		bio_endio(ioend->io_bio);
451 		return status;
452 	}
453 
454 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
455 		   ioend->io_bio);
456 	return 0;
457 }
458 
459 static void
460 xfs_init_bio_from_bh(
461 	struct bio		*bio,
462 	struct buffer_head	*bh)
463 {
464 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
465 	bio->bi_bdev = bh->b_bdev;
466 }
467 
468 static struct xfs_ioend *
469 xfs_alloc_ioend(
470 	struct inode		*inode,
471 	unsigned int		type,
472 	xfs_off_t		offset,
473 	struct buffer_head	*bh)
474 {
475 	struct xfs_ioend	*ioend;
476 	struct bio		*bio;
477 
478 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
479 	xfs_init_bio_from_bh(bio, bh);
480 
481 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
482 	INIT_LIST_HEAD(&ioend->io_list);
483 	ioend->io_type = type;
484 	ioend->io_inode = inode;
485 	ioend->io_size = 0;
486 	ioend->io_offset = offset;
487 	INIT_WORK(&ioend->io_work, xfs_end_io);
488 	ioend->io_append_trans = NULL;
489 	ioend->io_bio = bio;
490 	return ioend;
491 }
492 
493 /*
494  * Allocate a new bio, and chain the old bio to the new one.
495  *
496  * Note that we have to do perform the chaining in this unintuitive order
497  * so that the bi_private linkage is set up in the right direction for the
498  * traversal in xfs_destroy_ioend().
499  */
500 static void
501 xfs_chain_bio(
502 	struct xfs_ioend	*ioend,
503 	struct writeback_control *wbc,
504 	struct buffer_head	*bh)
505 {
506 	struct bio *new;
507 
508 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
509 	xfs_init_bio_from_bh(new, bh);
510 
511 	bio_chain(ioend->io_bio, new);
512 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
513 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
514 		   ioend->io_bio);
515 	ioend->io_bio = new;
516 }
517 
518 /*
519  * Test to see if we've been building up a completion structure for
520  * earlier buffers -- if so, we try to append to this ioend if we
521  * can, otherwise we finish off any current ioend and start another.
522  * Return the ioend we finished off so that the caller can submit it
523  * once it has finished processing the dirty page.
524  */
525 STATIC void
526 xfs_add_to_ioend(
527 	struct inode		*inode,
528 	struct buffer_head	*bh,
529 	xfs_off_t		offset,
530 	struct xfs_writepage_ctx *wpc,
531 	struct writeback_control *wbc,
532 	struct list_head	*iolist)
533 {
534 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
535 	    bh->b_blocknr != wpc->last_block + 1 ||
536 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
537 		if (wpc->ioend)
538 			list_add(&wpc->ioend->io_list, iolist);
539 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
540 	}
541 
542 	/*
543 	 * If the buffer doesn't fit into the bio we need to allocate a new
544 	 * one.  This shouldn't happen more than once for a given buffer.
545 	 */
546 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
547 		xfs_chain_bio(wpc->ioend, wbc, bh);
548 
549 	wpc->ioend->io_size += bh->b_size;
550 	wpc->last_block = bh->b_blocknr;
551 	xfs_start_buffer_writeback(bh);
552 }
553 
554 STATIC void
555 xfs_map_buffer(
556 	struct inode		*inode,
557 	struct buffer_head	*bh,
558 	struct xfs_bmbt_irec	*imap,
559 	xfs_off_t		offset)
560 {
561 	sector_t		bn;
562 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
563 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
564 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
565 
566 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
567 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
568 
569 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
570 	      ((offset - iomap_offset) >> inode->i_blkbits);
571 
572 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
573 
574 	bh->b_blocknr = bn;
575 	set_buffer_mapped(bh);
576 }
577 
578 STATIC void
579 xfs_map_at_offset(
580 	struct inode		*inode,
581 	struct buffer_head	*bh,
582 	struct xfs_bmbt_irec	*imap,
583 	xfs_off_t		offset)
584 {
585 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
586 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
587 
588 	xfs_map_buffer(inode, bh, imap, offset);
589 	set_buffer_mapped(bh);
590 	clear_buffer_delay(bh);
591 	clear_buffer_unwritten(bh);
592 }
593 
594 /*
595  * Test if a given page contains at least one buffer of a given @type.
596  * If @check_all_buffers is true, then we walk all the buffers in the page to
597  * try to find one of the type passed in. If it is not set, then the caller only
598  * needs to check the first buffer on the page for a match.
599  */
600 STATIC bool
601 xfs_check_page_type(
602 	struct page		*page,
603 	unsigned int		type,
604 	bool			check_all_buffers)
605 {
606 	struct buffer_head	*bh;
607 	struct buffer_head	*head;
608 
609 	if (PageWriteback(page))
610 		return false;
611 	if (!page->mapping)
612 		return false;
613 	if (!page_has_buffers(page))
614 		return false;
615 
616 	bh = head = page_buffers(page);
617 	do {
618 		if (buffer_unwritten(bh)) {
619 			if (type == XFS_IO_UNWRITTEN)
620 				return true;
621 		} else if (buffer_delay(bh)) {
622 			if (type == XFS_IO_DELALLOC)
623 				return true;
624 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
625 			if (type == XFS_IO_OVERWRITE)
626 				return true;
627 		}
628 
629 		/* If we are only checking the first buffer, we are done now. */
630 		if (!check_all_buffers)
631 			break;
632 	} while ((bh = bh->b_this_page) != head);
633 
634 	return false;
635 }
636 
637 STATIC void
638 xfs_vm_invalidatepage(
639 	struct page		*page,
640 	unsigned int		offset,
641 	unsigned int		length)
642 {
643 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
644 				 length);
645 	block_invalidatepage(page, offset, length);
646 }
647 
648 /*
649  * If the page has delalloc buffers on it, we need to punch them out before we
650  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
651  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
652  * is done on that same region - the delalloc extent is returned when none is
653  * supposed to be there.
654  *
655  * We prevent this by truncating away the delalloc regions on the page before
656  * invalidating it. Because they are delalloc, we can do this without needing a
657  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
658  * truncation without a transaction as there is no space left for block
659  * reservation (typically why we see a ENOSPC in writeback).
660  *
661  * This is not a performance critical path, so for now just do the punching a
662  * buffer head at a time.
663  */
664 STATIC void
665 xfs_aops_discard_page(
666 	struct page		*page)
667 {
668 	struct inode		*inode = page->mapping->host;
669 	struct xfs_inode	*ip = XFS_I(inode);
670 	struct buffer_head	*bh, *head;
671 	loff_t			offset = page_offset(page);
672 
673 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
674 		goto out_invalidate;
675 
676 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
677 		goto out_invalidate;
678 
679 	xfs_alert(ip->i_mount,
680 		"page discard on page %p, inode 0x%llx, offset %llu.",
681 			page, ip->i_ino, offset);
682 
683 	xfs_ilock(ip, XFS_ILOCK_EXCL);
684 	bh = head = page_buffers(page);
685 	do {
686 		int		error;
687 		xfs_fileoff_t	start_fsb;
688 
689 		if (!buffer_delay(bh))
690 			goto next_buffer;
691 
692 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
693 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
694 		if (error) {
695 			/* something screwed, just bail */
696 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
697 				xfs_alert(ip->i_mount,
698 			"page discard unable to remove delalloc mapping.");
699 			}
700 			break;
701 		}
702 next_buffer:
703 		offset += 1 << inode->i_blkbits;
704 
705 	} while ((bh = bh->b_this_page) != head);
706 
707 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
708 out_invalidate:
709 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
710 	return;
711 }
712 
713 /*
714  * We implement an immediate ioend submission policy here to avoid needing to
715  * chain multiple ioends and hence nest mempool allocations which can violate
716  * forward progress guarantees we need to provide. The current ioend we are
717  * adding buffers to is cached on the writepage context, and if the new buffer
718  * does not append to the cached ioend it will create a new ioend and cache that
719  * instead.
720  *
721  * If a new ioend is created and cached, the old ioend is returned and queued
722  * locally for submission once the entire page is processed or an error has been
723  * detected.  While ioends are submitted immediately after they are completed,
724  * batching optimisations are provided by higher level block plugging.
725  *
726  * At the end of a writeback pass, there will be a cached ioend remaining on the
727  * writepage context that the caller will need to submit.
728  */
729 static int
730 xfs_writepage_map(
731 	struct xfs_writepage_ctx *wpc,
732 	struct writeback_control *wbc,
733 	struct inode		*inode,
734 	struct page		*page,
735 	loff_t			offset,
736 	__uint64_t              end_offset)
737 {
738 	LIST_HEAD(submit_list);
739 	struct xfs_ioend	*ioend, *next;
740 	struct buffer_head	*bh, *head;
741 	ssize_t			len = 1 << inode->i_blkbits;
742 	int			error = 0;
743 	int			count = 0;
744 	int			uptodate = 1;
745 
746 	bh = head = page_buffers(page);
747 	offset = page_offset(page);
748 	do {
749 		if (offset >= end_offset)
750 			break;
751 		if (!buffer_uptodate(bh))
752 			uptodate = 0;
753 
754 		/*
755 		 * set_page_dirty dirties all buffers in a page, independent
756 		 * of their state.  The dirty state however is entirely
757 		 * meaningless for holes (!mapped && uptodate), so skip
758 		 * buffers covering holes here.
759 		 */
760 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
761 			wpc->imap_valid = false;
762 			continue;
763 		}
764 
765 		if (buffer_unwritten(bh)) {
766 			if (wpc->io_type != XFS_IO_UNWRITTEN) {
767 				wpc->io_type = XFS_IO_UNWRITTEN;
768 				wpc->imap_valid = false;
769 			}
770 		} else if (buffer_delay(bh)) {
771 			if (wpc->io_type != XFS_IO_DELALLOC) {
772 				wpc->io_type = XFS_IO_DELALLOC;
773 				wpc->imap_valid = false;
774 			}
775 		} else if (buffer_uptodate(bh)) {
776 			if (wpc->io_type != XFS_IO_OVERWRITE) {
777 				wpc->io_type = XFS_IO_OVERWRITE;
778 				wpc->imap_valid = false;
779 			}
780 		} else {
781 			if (PageUptodate(page))
782 				ASSERT(buffer_mapped(bh));
783 			/*
784 			 * This buffer is not uptodate and will not be
785 			 * written to disk.  Ensure that we will put any
786 			 * subsequent writeable buffers into a new
787 			 * ioend.
788 			 */
789 			wpc->imap_valid = false;
790 			continue;
791 		}
792 
793 		if (wpc->imap_valid)
794 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
795 							 offset);
796 		if (!wpc->imap_valid) {
797 			error = xfs_map_blocks(inode, offset, &wpc->imap,
798 					     wpc->io_type);
799 			if (error)
800 				goto out;
801 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
802 							 offset);
803 		}
804 		if (wpc->imap_valid) {
805 			lock_buffer(bh);
806 			if (wpc->io_type != XFS_IO_OVERWRITE)
807 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
808 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
809 			count++;
810 		}
811 
812 	} while (offset += len, ((bh = bh->b_this_page) != head));
813 
814 	if (uptodate && bh == head)
815 		SetPageUptodate(page);
816 
817 	ASSERT(wpc->ioend || list_empty(&submit_list));
818 
819 out:
820 	/*
821 	 * On error, we have to fail the ioend here because we have locked
822 	 * buffers in the ioend. If we don't do this, we'll deadlock
823 	 * invalidating the page as that tries to lock the buffers on the page.
824 	 * Also, because we may have set pages under writeback, we have to make
825 	 * sure we run IO completion to mark the error state of the IO
826 	 * appropriately, so we can't cancel the ioend directly here. That means
827 	 * we have to mark this page as under writeback if we included any
828 	 * buffers from it in the ioend chain so that completion treats it
829 	 * correctly.
830 	 *
831 	 * If we didn't include the page in the ioend, the on error we can
832 	 * simply discard and unlock it as there are no other users of the page
833 	 * or it's buffers right now. The caller will still need to trigger
834 	 * submission of outstanding ioends on the writepage context so they are
835 	 * treated correctly on error.
836 	 */
837 	if (count) {
838 		xfs_start_page_writeback(page, !error);
839 
840 		/*
841 		 * Preserve the original error if there was one, otherwise catch
842 		 * submission errors here and propagate into subsequent ioend
843 		 * submissions.
844 		 */
845 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
846 			int error2;
847 
848 			list_del_init(&ioend->io_list);
849 			error2 = xfs_submit_ioend(wbc, ioend, error);
850 			if (error2 && !error)
851 				error = error2;
852 		}
853 	} else if (error) {
854 		xfs_aops_discard_page(page);
855 		ClearPageUptodate(page);
856 		unlock_page(page);
857 	} else {
858 		/*
859 		 * We can end up here with no error and nothing to write if we
860 		 * race with a partial page truncate on a sub-page block sized
861 		 * filesystem. In that case we need to mark the page clean.
862 		 */
863 		xfs_start_page_writeback(page, 1);
864 		end_page_writeback(page);
865 	}
866 
867 	mapping_set_error(page->mapping, error);
868 	return error;
869 }
870 
871 /*
872  * Write out a dirty page.
873  *
874  * For delalloc space on the page we need to allocate space and flush it.
875  * For unwritten space on the page we need to start the conversion to
876  * regular allocated space.
877  * For any other dirty buffer heads on the page we should flush them.
878  */
879 STATIC int
880 xfs_do_writepage(
881 	struct page		*page,
882 	struct writeback_control *wbc,
883 	void			*data)
884 {
885 	struct xfs_writepage_ctx *wpc = data;
886 	struct inode		*inode = page->mapping->host;
887 	loff_t			offset;
888 	__uint64_t              end_offset;
889 	pgoff_t                 end_index;
890 
891 	trace_xfs_writepage(inode, page, 0, 0);
892 
893 	ASSERT(page_has_buffers(page));
894 
895 	/*
896 	 * Refuse to write the page out if we are called from reclaim context.
897 	 *
898 	 * This avoids stack overflows when called from deeply used stacks in
899 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
900 	 * allow reclaim from kswapd as the stack usage there is relatively low.
901 	 *
902 	 * This should never happen except in the case of a VM regression so
903 	 * warn about it.
904 	 */
905 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
906 			PF_MEMALLOC))
907 		goto redirty;
908 
909 	/*
910 	 * Given that we do not allow direct reclaim to call us, we should
911 	 * never be called while in a filesystem transaction.
912 	 */
913 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
914 		goto redirty;
915 
916 	/*
917 	 * Is this page beyond the end of the file?
918 	 *
919 	 * The page index is less than the end_index, adjust the end_offset
920 	 * to the highest offset that this page should represent.
921 	 * -----------------------------------------------------
922 	 * |			file mapping	       | <EOF> |
923 	 * -----------------------------------------------------
924 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
925 	 * ^--------------------------------^----------|--------
926 	 * |     desired writeback range    |      see else    |
927 	 * ---------------------------------^------------------|
928 	 */
929 	offset = i_size_read(inode);
930 	end_index = offset >> PAGE_SHIFT;
931 	if (page->index < end_index)
932 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
933 	else {
934 		/*
935 		 * Check whether the page to write out is beyond or straddles
936 		 * i_size or not.
937 		 * -------------------------------------------------------
938 		 * |		file mapping		        | <EOF>  |
939 		 * -------------------------------------------------------
940 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
941 		 * ^--------------------------------^-----------|---------
942 		 * |				    |      Straddles     |
943 		 * ---------------------------------^-----------|--------|
944 		 */
945 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
946 
947 		/*
948 		 * Skip the page if it is fully outside i_size, e.g. due to a
949 		 * truncate operation that is in progress. We must redirty the
950 		 * page so that reclaim stops reclaiming it. Otherwise
951 		 * xfs_vm_releasepage() is called on it and gets confused.
952 		 *
953 		 * Note that the end_index is unsigned long, it would overflow
954 		 * if the given offset is greater than 16TB on 32-bit system
955 		 * and if we do check the page is fully outside i_size or not
956 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
957 		 * will be evaluated to 0.  Hence this page will be redirtied
958 		 * and be written out repeatedly which would result in an
959 		 * infinite loop, the user program that perform this operation
960 		 * will hang.  Instead, we can verify this situation by checking
961 		 * if the page to write is totally beyond the i_size or if it's
962 		 * offset is just equal to the EOF.
963 		 */
964 		if (page->index > end_index ||
965 		    (page->index == end_index && offset_into_page == 0))
966 			goto redirty;
967 
968 		/*
969 		 * The page straddles i_size.  It must be zeroed out on each
970 		 * and every writepage invocation because it may be mmapped.
971 		 * "A file is mapped in multiples of the page size.  For a file
972 		 * that is not a multiple of the page size, the remaining
973 		 * memory is zeroed when mapped, and writes to that region are
974 		 * not written out to the file."
975 		 */
976 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
977 
978 		/* Adjust the end_offset to the end of file */
979 		end_offset = offset;
980 	}
981 
982 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
983 
984 redirty:
985 	redirty_page_for_writepage(wbc, page);
986 	unlock_page(page);
987 	return 0;
988 }
989 
990 STATIC int
991 xfs_vm_writepage(
992 	struct page		*page,
993 	struct writeback_control *wbc)
994 {
995 	struct xfs_writepage_ctx wpc = {
996 		.io_type = XFS_IO_INVALID,
997 	};
998 	int			ret;
999 
1000 	ret = xfs_do_writepage(page, wbc, &wpc);
1001 	if (wpc.ioend)
1002 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1003 	return ret;
1004 }
1005 
1006 STATIC int
1007 xfs_vm_writepages(
1008 	struct address_space	*mapping,
1009 	struct writeback_control *wbc)
1010 {
1011 	struct xfs_writepage_ctx wpc = {
1012 		.io_type = XFS_IO_INVALID,
1013 	};
1014 	int			ret;
1015 
1016 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1017 	if (dax_mapping(mapping))
1018 		return dax_writeback_mapping_range(mapping,
1019 				xfs_find_bdev_for_inode(mapping->host), wbc);
1020 
1021 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1022 	if (wpc.ioend)
1023 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1024 	return ret;
1025 }
1026 
1027 /*
1028  * Called to move a page into cleanable state - and from there
1029  * to be released. The page should already be clean. We always
1030  * have buffer heads in this call.
1031  *
1032  * Returns 1 if the page is ok to release, 0 otherwise.
1033  */
1034 STATIC int
1035 xfs_vm_releasepage(
1036 	struct page		*page,
1037 	gfp_t			gfp_mask)
1038 {
1039 	int			delalloc, unwritten;
1040 
1041 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1042 
1043 	xfs_count_page_state(page, &delalloc, &unwritten);
1044 
1045 	if (WARN_ON_ONCE(delalloc))
1046 		return 0;
1047 	if (WARN_ON_ONCE(unwritten))
1048 		return 0;
1049 
1050 	return try_to_free_buffers(page);
1051 }
1052 
1053 /*
1054  * When we map a DIO buffer, we may need to pass flags to
1055  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1056  *
1057  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1058  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1059  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1060  * extending the file size. We won't know for sure until IO completion is run
1061  * and the actual max write offset is communicated to the IO completion
1062  * routine.
1063  */
1064 static void
1065 xfs_map_direct(
1066 	struct inode		*inode,
1067 	struct buffer_head	*bh_result,
1068 	struct xfs_bmbt_irec	*imap,
1069 	xfs_off_t		offset)
1070 {
1071 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1072 	xfs_off_t		size = bh_result->b_size;
1073 
1074 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1075 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1076 
1077 	if (ISUNWRITTEN(imap)) {
1078 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1079 		set_buffer_defer_completion(bh_result);
1080 	} else if (offset + size > i_size_read(inode) || offset + size < 0) {
1081 		*flags |= XFS_DIO_FLAG_APPEND;
1082 		set_buffer_defer_completion(bh_result);
1083 	}
1084 }
1085 
1086 /*
1087  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1088  * is, so that we can avoid repeated get_blocks calls.
1089  *
1090  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1091  * for blocks beyond EOF must be marked new so that sub block regions can be
1092  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1093  * was just allocated or is unwritten, otherwise the callers would overwrite
1094  * existing data with zeros. Hence we have to split the mapping into a range up
1095  * to and including EOF, and a second mapping for beyond EOF.
1096  */
1097 static void
1098 xfs_map_trim_size(
1099 	struct inode		*inode,
1100 	sector_t		iblock,
1101 	struct buffer_head	*bh_result,
1102 	struct xfs_bmbt_irec	*imap,
1103 	xfs_off_t		offset,
1104 	ssize_t			size)
1105 {
1106 	xfs_off_t		mapping_size;
1107 
1108 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1109 	mapping_size <<= inode->i_blkbits;
1110 
1111 	ASSERT(mapping_size > 0);
1112 	if (mapping_size > size)
1113 		mapping_size = size;
1114 	if (offset < i_size_read(inode) &&
1115 	    offset + mapping_size >= i_size_read(inode)) {
1116 		/* limit mapping to block that spans EOF */
1117 		mapping_size = roundup_64(i_size_read(inode) - offset,
1118 					  1 << inode->i_blkbits);
1119 	}
1120 	if (mapping_size > LONG_MAX)
1121 		mapping_size = LONG_MAX;
1122 
1123 	bh_result->b_size = mapping_size;
1124 }
1125 
1126 STATIC int
1127 __xfs_get_blocks(
1128 	struct inode		*inode,
1129 	sector_t		iblock,
1130 	struct buffer_head	*bh_result,
1131 	int			create,
1132 	bool			direct,
1133 	bool			dax_fault)
1134 {
1135 	struct xfs_inode	*ip = XFS_I(inode);
1136 	struct xfs_mount	*mp = ip->i_mount;
1137 	xfs_fileoff_t		offset_fsb, end_fsb;
1138 	int			error = 0;
1139 	int			lockmode = 0;
1140 	struct xfs_bmbt_irec	imap;
1141 	int			nimaps = 1;
1142 	xfs_off_t		offset;
1143 	ssize_t			size;
1144 	int			new = 0;
1145 
1146 	if (XFS_FORCED_SHUTDOWN(mp))
1147 		return -EIO;
1148 
1149 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1150 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1151 	size = bh_result->b_size;
1152 
1153 	if (!create && direct && offset >= i_size_read(inode))
1154 		return 0;
1155 
1156 	/*
1157 	 * Direct I/O is usually done on preallocated files, so try getting
1158 	 * a block mapping without an exclusive lock first.  For buffered
1159 	 * writes we already have the exclusive iolock anyway, so avoiding
1160 	 * a lock roundtrip here by taking the ilock exclusive from the
1161 	 * beginning is a useful micro optimization.
1162 	 */
1163 	if (create && !direct) {
1164 		lockmode = XFS_ILOCK_EXCL;
1165 		xfs_ilock(ip, lockmode);
1166 	} else {
1167 		lockmode = xfs_ilock_data_map_shared(ip);
1168 	}
1169 
1170 	ASSERT(offset <= mp->m_super->s_maxbytes);
1171 	if (offset + size > mp->m_super->s_maxbytes)
1172 		size = mp->m_super->s_maxbytes - offset;
1173 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1174 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1175 
1176 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1177 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1178 	if (error)
1179 		goto out_unlock;
1180 
1181 	/* for DAX, we convert unwritten extents directly */
1182 	if (create &&
1183 	    (!nimaps ||
1184 	     (imap.br_startblock == HOLESTARTBLOCK ||
1185 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1186 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1187 		if (direct || xfs_get_extsz_hint(ip)) {
1188 			/*
1189 			 * xfs_iomap_write_direct() expects the shared lock. It
1190 			 * is unlocked on return.
1191 			 */
1192 			if (lockmode == XFS_ILOCK_EXCL)
1193 				xfs_ilock_demote(ip, lockmode);
1194 
1195 			error = xfs_iomap_write_direct(ip, offset, size,
1196 						       &imap, nimaps);
1197 			if (error)
1198 				return error;
1199 			new = 1;
1200 
1201 		} else {
1202 			/*
1203 			 * Delalloc reservations do not require a transaction,
1204 			 * we can go on without dropping the lock here. If we
1205 			 * are allocating a new delalloc block, make sure that
1206 			 * we set the new flag so that we mark the buffer new so
1207 			 * that we know that it is newly allocated if the write
1208 			 * fails.
1209 			 */
1210 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1211 				new = 1;
1212 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1213 			if (error)
1214 				goto out_unlock;
1215 
1216 			xfs_iunlock(ip, lockmode);
1217 		}
1218 		trace_xfs_get_blocks_alloc(ip, offset, size,
1219 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1220 						   : XFS_IO_DELALLOC, &imap);
1221 	} else if (nimaps) {
1222 		trace_xfs_get_blocks_found(ip, offset, size,
1223 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1224 						   : XFS_IO_OVERWRITE, &imap);
1225 		xfs_iunlock(ip, lockmode);
1226 	} else {
1227 		trace_xfs_get_blocks_notfound(ip, offset, size);
1228 		goto out_unlock;
1229 	}
1230 
1231 	if (IS_DAX(inode) && create) {
1232 		ASSERT(!ISUNWRITTEN(&imap));
1233 		/* zeroing is not needed at a higher layer */
1234 		new = 0;
1235 	}
1236 
1237 	/* trim mapping down to size requested */
1238 	if (direct || size > (1 << inode->i_blkbits))
1239 		xfs_map_trim_size(inode, iblock, bh_result,
1240 				  &imap, offset, size);
1241 
1242 	/*
1243 	 * For unwritten extents do not report a disk address in the buffered
1244 	 * read case (treat as if we're reading into a hole).
1245 	 */
1246 	if (imap.br_startblock != HOLESTARTBLOCK &&
1247 	    imap.br_startblock != DELAYSTARTBLOCK &&
1248 	    (create || !ISUNWRITTEN(&imap))) {
1249 		xfs_map_buffer(inode, bh_result, &imap, offset);
1250 		if (ISUNWRITTEN(&imap))
1251 			set_buffer_unwritten(bh_result);
1252 		/* direct IO needs special help */
1253 		if (create && direct) {
1254 			if (dax_fault)
1255 				ASSERT(!ISUNWRITTEN(&imap));
1256 			else
1257 				xfs_map_direct(inode, bh_result, &imap, offset);
1258 		}
1259 	}
1260 
1261 	/*
1262 	 * If this is a realtime file, data may be on a different device.
1263 	 * to that pointed to from the buffer_head b_bdev currently.
1264 	 */
1265 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1266 
1267 	/*
1268 	 * If we previously allocated a block out beyond eof and we are now
1269 	 * coming back to use it then we will need to flag it as new even if it
1270 	 * has a disk address.
1271 	 *
1272 	 * With sub-block writes into unwritten extents we also need to mark
1273 	 * the buffer as new so that the unwritten parts of the buffer gets
1274 	 * correctly zeroed.
1275 	 */
1276 	if (create &&
1277 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1278 	     (offset >= i_size_read(inode)) ||
1279 	     (new || ISUNWRITTEN(&imap))))
1280 		set_buffer_new(bh_result);
1281 
1282 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1283 		BUG_ON(direct);
1284 		if (create) {
1285 			set_buffer_uptodate(bh_result);
1286 			set_buffer_mapped(bh_result);
1287 			set_buffer_delay(bh_result);
1288 		}
1289 	}
1290 
1291 	return 0;
1292 
1293 out_unlock:
1294 	xfs_iunlock(ip, lockmode);
1295 	return error;
1296 }
1297 
1298 int
1299 xfs_get_blocks(
1300 	struct inode		*inode,
1301 	sector_t		iblock,
1302 	struct buffer_head	*bh_result,
1303 	int			create)
1304 {
1305 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1306 }
1307 
1308 int
1309 xfs_get_blocks_direct(
1310 	struct inode		*inode,
1311 	sector_t		iblock,
1312 	struct buffer_head	*bh_result,
1313 	int			create)
1314 {
1315 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1316 }
1317 
1318 int
1319 xfs_get_blocks_dax_fault(
1320 	struct inode		*inode,
1321 	sector_t		iblock,
1322 	struct buffer_head	*bh_result,
1323 	int			create)
1324 {
1325 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1326 }
1327 
1328 /*
1329  * Complete a direct I/O write request.
1330  *
1331  * xfs_map_direct passes us some flags in the private data to tell us what to
1332  * do.  If no flags are set, then the write IO is an overwrite wholly within
1333  * the existing allocated file size and so there is nothing for us to do.
1334  *
1335  * Note that in this case the completion can be called in interrupt context,
1336  * whereas if we have flags set we will always be called in task context
1337  * (i.e. from a workqueue).
1338  */
1339 STATIC int
1340 xfs_end_io_direct_write(
1341 	struct kiocb		*iocb,
1342 	loff_t			offset,
1343 	ssize_t			size,
1344 	void			*private)
1345 {
1346 	struct inode		*inode = file_inode(iocb->ki_filp);
1347 	struct xfs_inode	*ip = XFS_I(inode);
1348 	struct xfs_mount	*mp = ip->i_mount;
1349 	uintptr_t		flags = (uintptr_t)private;
1350 	int			error = 0;
1351 
1352 	trace_xfs_end_io_direct_write(ip, offset, size);
1353 
1354 	if (XFS_FORCED_SHUTDOWN(mp))
1355 		return -EIO;
1356 
1357 	if (size <= 0)
1358 		return size;
1359 
1360 	/*
1361 	 * The flags tell us whether we are doing unwritten extent conversions
1362 	 * or an append transaction that updates the on-disk file size. These
1363 	 * cases are the only cases where we should *potentially* be needing
1364 	 * to update the VFS inode size.
1365 	 */
1366 	if (flags == 0) {
1367 		ASSERT(offset + size <= i_size_read(inode));
1368 		return 0;
1369 	}
1370 
1371 	/*
1372 	 * We need to update the in-core inode size here so that we don't end up
1373 	 * with the on-disk inode size being outside the in-core inode size. We
1374 	 * have no other method of updating EOF for AIO, so always do it here
1375 	 * if necessary.
1376 	 *
1377 	 * We need to lock the test/set EOF update as we can be racing with
1378 	 * other IO completions here to update the EOF. Failing to serialise
1379 	 * here can result in EOF moving backwards and Bad Things Happen when
1380 	 * that occurs.
1381 	 */
1382 	spin_lock(&ip->i_flags_lock);
1383 	if (offset + size > i_size_read(inode))
1384 		i_size_write(inode, offset + size);
1385 	spin_unlock(&ip->i_flags_lock);
1386 
1387 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1388 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1389 
1390 		error = xfs_iomap_write_unwritten(ip, offset, size);
1391 	} else if (flags & XFS_DIO_FLAG_APPEND) {
1392 		struct xfs_trans *tp;
1393 
1394 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1395 
1396 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0,
1397 				&tp);
1398 		if (!error)
1399 			error = xfs_setfilesize(ip, tp, offset, size);
1400 	}
1401 
1402 	return error;
1403 }
1404 
1405 STATIC ssize_t
1406 xfs_vm_direct_IO(
1407 	struct kiocb		*iocb,
1408 	struct iov_iter		*iter)
1409 {
1410 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1411 	dio_iodone_t		*endio = NULL;
1412 	int			flags = 0;
1413 	struct block_device	*bdev;
1414 
1415 	if (iov_iter_rw(iter) == WRITE) {
1416 		endio = xfs_end_io_direct_write;
1417 		flags = DIO_ASYNC_EXTEND;
1418 	}
1419 
1420 	if (IS_DAX(inode)) {
1421 		return dax_do_io(iocb, inode, iter,
1422 				 xfs_get_blocks_direct, endio, 0);
1423 	}
1424 
1425 	bdev = xfs_find_bdev_for_inode(inode);
1426 	return  __blockdev_direct_IO(iocb, inode, bdev, iter,
1427 			xfs_get_blocks_direct, endio, NULL, flags);
1428 }
1429 
1430 /*
1431  * Punch out the delalloc blocks we have already allocated.
1432  *
1433  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1434  * as the page is still locked at this point.
1435  */
1436 STATIC void
1437 xfs_vm_kill_delalloc_range(
1438 	struct inode		*inode,
1439 	loff_t			start,
1440 	loff_t			end)
1441 {
1442 	struct xfs_inode	*ip = XFS_I(inode);
1443 	xfs_fileoff_t		start_fsb;
1444 	xfs_fileoff_t		end_fsb;
1445 	int			error;
1446 
1447 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1448 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1449 	if (end_fsb <= start_fsb)
1450 		return;
1451 
1452 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1453 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1454 						end_fsb - start_fsb);
1455 	if (error) {
1456 		/* something screwed, just bail */
1457 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1458 			xfs_alert(ip->i_mount,
1459 		"xfs_vm_write_failed: unable to clean up ino %lld",
1460 					ip->i_ino);
1461 		}
1462 	}
1463 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1464 }
1465 
1466 STATIC void
1467 xfs_vm_write_failed(
1468 	struct inode		*inode,
1469 	struct page		*page,
1470 	loff_t			pos,
1471 	unsigned		len)
1472 {
1473 	loff_t			block_offset;
1474 	loff_t			block_start;
1475 	loff_t			block_end;
1476 	loff_t			from = pos & (PAGE_SIZE - 1);
1477 	loff_t			to = from + len;
1478 	struct buffer_head	*bh, *head;
1479 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1480 
1481 	/*
1482 	 * The request pos offset might be 32 or 64 bit, this is all fine
1483 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1484 	 * platform, the high 32-bit will be masked off if we evaluate the
1485 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1486 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1487 	 * which could cause the following ASSERT failed in most cases.
1488 	 * In order to avoid this, we can evaluate the block_offset of the
1489 	 * start of the page by using shifts rather than masks the mismatch
1490 	 * problem.
1491 	 */
1492 	block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1493 
1494 	ASSERT(block_offset + from == pos);
1495 
1496 	head = page_buffers(page);
1497 	block_start = 0;
1498 	for (bh = head; bh != head || !block_start;
1499 	     bh = bh->b_this_page, block_start = block_end,
1500 				   block_offset += bh->b_size) {
1501 		block_end = block_start + bh->b_size;
1502 
1503 		/* skip buffers before the write */
1504 		if (block_end <= from)
1505 			continue;
1506 
1507 		/* if the buffer is after the write, we're done */
1508 		if (block_start >= to)
1509 			break;
1510 
1511 		/*
1512 		 * Process delalloc and unwritten buffers beyond EOF. We can
1513 		 * encounter unwritten buffers in the event that a file has
1514 		 * post-EOF unwritten extents and an extending write happens to
1515 		 * fail (e.g., an unaligned write that also involves a delalloc
1516 		 * to the same page).
1517 		 */
1518 		if (!buffer_delay(bh) && !buffer_unwritten(bh))
1519 			continue;
1520 
1521 		if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1522 		    block_offset < i_size_read(inode))
1523 			continue;
1524 
1525 		if (buffer_delay(bh))
1526 			xfs_vm_kill_delalloc_range(inode, block_offset,
1527 						   block_offset + bh->b_size);
1528 
1529 		/*
1530 		 * This buffer does not contain data anymore. make sure anyone
1531 		 * who finds it knows that for certain.
1532 		 */
1533 		clear_buffer_delay(bh);
1534 		clear_buffer_uptodate(bh);
1535 		clear_buffer_mapped(bh);
1536 		clear_buffer_new(bh);
1537 		clear_buffer_dirty(bh);
1538 		clear_buffer_unwritten(bh);
1539 	}
1540 
1541 }
1542 
1543 /*
1544  * This used to call block_write_begin(), but it unlocks and releases the page
1545  * on error, and we need that page to be able to punch stale delalloc blocks out
1546  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1547  * the appropriate point.
1548  */
1549 STATIC int
1550 xfs_vm_write_begin(
1551 	struct file		*file,
1552 	struct address_space	*mapping,
1553 	loff_t			pos,
1554 	unsigned		len,
1555 	unsigned		flags,
1556 	struct page		**pagep,
1557 	void			**fsdata)
1558 {
1559 	pgoff_t			index = pos >> PAGE_SHIFT;
1560 	struct page		*page;
1561 	int			status;
1562 	struct xfs_mount	*mp = XFS_I(mapping->host)->i_mount;
1563 
1564 	ASSERT(len <= PAGE_SIZE);
1565 
1566 	page = grab_cache_page_write_begin(mapping, index, flags);
1567 	if (!page)
1568 		return -ENOMEM;
1569 
1570 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1571 	if (xfs_mp_fail_writes(mp))
1572 		status = -EIO;
1573 	if (unlikely(status)) {
1574 		struct inode	*inode = mapping->host;
1575 		size_t		isize = i_size_read(inode);
1576 
1577 		xfs_vm_write_failed(inode, page, pos, len);
1578 		unlock_page(page);
1579 
1580 		/*
1581 		 * If the write is beyond EOF, we only want to kill blocks
1582 		 * allocated in this write, not blocks that were previously
1583 		 * written successfully.
1584 		 */
1585 		if (xfs_mp_fail_writes(mp))
1586 			isize = 0;
1587 		if (pos + len > isize) {
1588 			ssize_t start = max_t(ssize_t, pos, isize);
1589 
1590 			truncate_pagecache_range(inode, start, pos + len);
1591 		}
1592 
1593 		put_page(page);
1594 		page = NULL;
1595 	}
1596 
1597 	*pagep = page;
1598 	return status;
1599 }
1600 
1601 /*
1602  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1603  * this specific write because they will never be written. Previous writes
1604  * beyond EOF where block allocation succeeded do not need to be trashed, so
1605  * only new blocks from this write should be trashed. For blocks within
1606  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1607  * written with all the other valid data.
1608  */
1609 STATIC int
1610 xfs_vm_write_end(
1611 	struct file		*file,
1612 	struct address_space	*mapping,
1613 	loff_t			pos,
1614 	unsigned		len,
1615 	unsigned		copied,
1616 	struct page		*page,
1617 	void			*fsdata)
1618 {
1619 	int			ret;
1620 
1621 	ASSERT(len <= PAGE_SIZE);
1622 
1623 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1624 	if (unlikely(ret < len)) {
1625 		struct inode	*inode = mapping->host;
1626 		size_t		isize = i_size_read(inode);
1627 		loff_t		to = pos + len;
1628 
1629 		if (to > isize) {
1630 			/* only kill blocks in this write beyond EOF */
1631 			if (pos > isize)
1632 				isize = pos;
1633 			xfs_vm_kill_delalloc_range(inode, isize, to);
1634 			truncate_pagecache_range(inode, isize, to);
1635 		}
1636 	}
1637 	return ret;
1638 }
1639 
1640 STATIC sector_t
1641 xfs_vm_bmap(
1642 	struct address_space	*mapping,
1643 	sector_t		block)
1644 {
1645 	struct inode		*inode = (struct inode *)mapping->host;
1646 	struct xfs_inode	*ip = XFS_I(inode);
1647 
1648 	trace_xfs_vm_bmap(XFS_I(inode));
1649 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1650 	filemap_write_and_wait(mapping);
1651 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1652 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1653 }
1654 
1655 STATIC int
1656 xfs_vm_readpage(
1657 	struct file		*unused,
1658 	struct page		*page)
1659 {
1660 	trace_xfs_vm_readpage(page->mapping->host, 1);
1661 	return mpage_readpage(page, xfs_get_blocks);
1662 }
1663 
1664 STATIC int
1665 xfs_vm_readpages(
1666 	struct file		*unused,
1667 	struct address_space	*mapping,
1668 	struct list_head	*pages,
1669 	unsigned		nr_pages)
1670 {
1671 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1672 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1673 }
1674 
1675 /*
1676  * This is basically a copy of __set_page_dirty_buffers() with one
1677  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1678  * dirty, we'll never be able to clean them because we don't write buffers
1679  * beyond EOF, and that means we can't invalidate pages that span EOF
1680  * that have been marked dirty. Further, the dirty state can leak into
1681  * the file interior if the file is extended, resulting in all sorts of
1682  * bad things happening as the state does not match the underlying data.
1683  *
1684  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1685  * this only exist because of bufferheads and how the generic code manages them.
1686  */
1687 STATIC int
1688 xfs_vm_set_page_dirty(
1689 	struct page		*page)
1690 {
1691 	struct address_space	*mapping = page->mapping;
1692 	struct inode		*inode = mapping->host;
1693 	loff_t			end_offset;
1694 	loff_t			offset;
1695 	int			newly_dirty;
1696 
1697 	if (unlikely(!mapping))
1698 		return !TestSetPageDirty(page);
1699 
1700 	end_offset = i_size_read(inode);
1701 	offset = page_offset(page);
1702 
1703 	spin_lock(&mapping->private_lock);
1704 	if (page_has_buffers(page)) {
1705 		struct buffer_head *head = page_buffers(page);
1706 		struct buffer_head *bh = head;
1707 
1708 		do {
1709 			if (offset < end_offset)
1710 				set_buffer_dirty(bh);
1711 			bh = bh->b_this_page;
1712 			offset += 1 << inode->i_blkbits;
1713 		} while (bh != head);
1714 	}
1715 	/*
1716 	 * Lock out page->mem_cgroup migration to keep PageDirty
1717 	 * synchronized with per-memcg dirty page counters.
1718 	 */
1719 	lock_page_memcg(page);
1720 	newly_dirty = !TestSetPageDirty(page);
1721 	spin_unlock(&mapping->private_lock);
1722 
1723 	if (newly_dirty) {
1724 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1725 		unsigned long flags;
1726 
1727 		spin_lock_irqsave(&mapping->tree_lock, flags);
1728 		if (page->mapping) {	/* Race with truncate? */
1729 			WARN_ON_ONCE(!PageUptodate(page));
1730 			account_page_dirtied(page, mapping);
1731 			radix_tree_tag_set(&mapping->page_tree,
1732 					page_index(page), PAGECACHE_TAG_DIRTY);
1733 		}
1734 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1735 	}
1736 	unlock_page_memcg(page);
1737 	if (newly_dirty)
1738 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1739 	return newly_dirty;
1740 }
1741 
1742 const struct address_space_operations xfs_address_space_operations = {
1743 	.readpage		= xfs_vm_readpage,
1744 	.readpages		= xfs_vm_readpages,
1745 	.writepage		= xfs_vm_writepage,
1746 	.writepages		= xfs_vm_writepages,
1747 	.set_page_dirty		= xfs_vm_set_page_dirty,
1748 	.releasepage		= xfs_vm_releasepage,
1749 	.invalidatepage		= xfs_vm_invalidatepage,
1750 	.write_begin		= xfs_vm_write_begin,
1751 	.write_end		= xfs_vm_write_end,
1752 	.bmap			= xfs_vm_bmap,
1753 	.direct_IO		= xfs_vm_direct_IO,
1754 	.migratepage		= buffer_migrate_page,
1755 	.is_partially_uptodate  = block_is_partially_uptodate,
1756 	.error_remove_page	= generic_error_remove_page,
1757 };
1758