xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 7490ca1e)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40 
41 void
42 xfs_count_page_state(
43 	struct page		*page,
44 	int			*delalloc,
45 	int			*unwritten)
46 {
47 	struct buffer_head	*bh, *head;
48 
49 	*delalloc = *unwritten = 0;
50 
51 	bh = head = page_buffers(page);
52 	do {
53 		if (buffer_unwritten(bh))
54 			(*unwritten) = 1;
55 		else if (buffer_delay(bh))
56 			(*delalloc) = 1;
57 	} while ((bh = bh->b_this_page) != head);
58 }
59 
60 STATIC struct block_device *
61 xfs_find_bdev_for_inode(
62 	struct inode		*inode)
63 {
64 	struct xfs_inode	*ip = XFS_I(inode);
65 	struct xfs_mount	*mp = ip->i_mount;
66 
67 	if (XFS_IS_REALTIME_INODE(ip))
68 		return mp->m_rtdev_targp->bt_bdev;
69 	else
70 		return mp->m_ddev_targp->bt_bdev;
71 }
72 
73 /*
74  * We're now finished for good with this ioend structure.
75  * Update the page state via the associated buffer_heads,
76  * release holds on the inode and bio, and finally free
77  * up memory.  Do not use the ioend after this.
78  */
79 STATIC void
80 xfs_destroy_ioend(
81 	xfs_ioend_t		*ioend)
82 {
83 	struct buffer_head	*bh, *next;
84 
85 	for (bh = ioend->io_buffer_head; bh; bh = next) {
86 		next = bh->b_private;
87 		bh->b_end_io(bh, !ioend->io_error);
88 	}
89 
90 	if (ioend->io_iocb) {
91 		if (ioend->io_isasync) {
92 			aio_complete(ioend->io_iocb, ioend->io_error ?
93 					ioend->io_error : ioend->io_result, 0);
94 		}
95 		inode_dio_done(ioend->io_inode);
96 	}
97 
98 	mempool_free(ioend, xfs_ioend_pool);
99 }
100 
101 /*
102  * If the end of the current ioend is beyond the current EOF,
103  * return the new EOF value, otherwise zero.
104  */
105 STATIC xfs_fsize_t
106 xfs_ioend_new_eof(
107 	xfs_ioend_t		*ioend)
108 {
109 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
110 	xfs_fsize_t		isize;
111 	xfs_fsize_t		bsize;
112 
113 	bsize = ioend->io_offset + ioend->io_size;
114 	isize = MIN(i_size_read(VFS_I(ip)), bsize);
115 	return isize > ip->i_d.di_size ? isize : 0;
116 }
117 
118 /*
119  * Fast and loose check if this write could update the on-disk inode size.
120  */
121 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
122 {
123 	return ioend->io_offset + ioend->io_size >
124 		XFS_I(ioend->io_inode)->i_d.di_size;
125 }
126 
127 /*
128  * Update on-disk file size now that data has been written to disk.
129  *
130  * This function does not block as blocking on the inode lock in IO completion
131  * can lead to IO completion order dependency deadlocks.. If it can't get the
132  * inode ilock it will return EAGAIN. Callers must handle this.
133  */
134 STATIC int
135 xfs_setfilesize(
136 	xfs_ioend_t		*ioend)
137 {
138 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
139 	xfs_fsize_t		isize;
140 
141 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
142 		return EAGAIN;
143 
144 	isize = xfs_ioend_new_eof(ioend);
145 	if (isize) {
146 		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
147 		ip->i_d.di_size = isize;
148 		xfs_mark_inode_dirty(ip);
149 	}
150 
151 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
152 	return 0;
153 }
154 
155 /*
156  * Schedule IO completion handling on the final put of an ioend.
157  *
158  * If there is no work to do we might as well call it a day and free the
159  * ioend right now.
160  */
161 STATIC void
162 xfs_finish_ioend(
163 	struct xfs_ioend	*ioend)
164 {
165 	if (atomic_dec_and_test(&ioend->io_remaining)) {
166 		if (ioend->io_type == IO_UNWRITTEN)
167 			queue_work(xfsconvertd_workqueue, &ioend->io_work);
168 		else if (xfs_ioend_is_append(ioend))
169 			queue_work(xfsdatad_workqueue, &ioend->io_work);
170 		else
171 			xfs_destroy_ioend(ioend);
172 	}
173 }
174 
175 /*
176  * IO write completion.
177  */
178 STATIC void
179 xfs_end_io(
180 	struct work_struct *work)
181 {
182 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
183 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
184 	int		error = 0;
185 
186 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
187 		ioend->io_error = -EIO;
188 		goto done;
189 	}
190 	if (ioend->io_error)
191 		goto done;
192 
193 	/*
194 	 * For unwritten extents we need to issue transactions to convert a
195 	 * range to normal written extens after the data I/O has finished.
196 	 */
197 	if (ioend->io_type == IO_UNWRITTEN) {
198 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
199 						 ioend->io_size);
200 		if (error) {
201 			ioend->io_error = -error;
202 			goto done;
203 		}
204 	}
205 
206 	/*
207 	 * We might have to update the on-disk file size after extending
208 	 * writes.
209 	 */
210 	error = xfs_setfilesize(ioend);
211 	ASSERT(!error || error == EAGAIN);
212 
213 done:
214 	/*
215 	 * If we didn't complete processing of the ioend, requeue it to the
216 	 * tail of the workqueue for another attempt later. Otherwise destroy
217 	 * it.
218 	 */
219 	if (error == EAGAIN) {
220 		atomic_inc(&ioend->io_remaining);
221 		xfs_finish_ioend(ioend);
222 		/* ensure we don't spin on blocked ioends */
223 		delay(1);
224 	} else {
225 		xfs_destroy_ioend(ioend);
226 	}
227 }
228 
229 /*
230  * Call IO completion handling in caller context on the final put of an ioend.
231  */
232 STATIC void
233 xfs_finish_ioend_sync(
234 	struct xfs_ioend	*ioend)
235 {
236 	if (atomic_dec_and_test(&ioend->io_remaining))
237 		xfs_end_io(&ioend->io_work);
238 }
239 
240 /*
241  * Allocate and initialise an IO completion structure.
242  * We need to track unwritten extent write completion here initially.
243  * We'll need to extend this for updating the ondisk inode size later
244  * (vs. incore size).
245  */
246 STATIC xfs_ioend_t *
247 xfs_alloc_ioend(
248 	struct inode		*inode,
249 	unsigned int		type)
250 {
251 	xfs_ioend_t		*ioend;
252 
253 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
254 
255 	/*
256 	 * Set the count to 1 initially, which will prevent an I/O
257 	 * completion callback from happening before we have started
258 	 * all the I/O from calling the completion routine too early.
259 	 */
260 	atomic_set(&ioend->io_remaining, 1);
261 	ioend->io_isasync = 0;
262 	ioend->io_error = 0;
263 	ioend->io_list = NULL;
264 	ioend->io_type = type;
265 	ioend->io_inode = inode;
266 	ioend->io_buffer_head = NULL;
267 	ioend->io_buffer_tail = NULL;
268 	ioend->io_offset = 0;
269 	ioend->io_size = 0;
270 	ioend->io_iocb = NULL;
271 	ioend->io_result = 0;
272 
273 	INIT_WORK(&ioend->io_work, xfs_end_io);
274 	return ioend;
275 }
276 
277 STATIC int
278 xfs_map_blocks(
279 	struct inode		*inode,
280 	loff_t			offset,
281 	struct xfs_bmbt_irec	*imap,
282 	int			type,
283 	int			nonblocking)
284 {
285 	struct xfs_inode	*ip = XFS_I(inode);
286 	struct xfs_mount	*mp = ip->i_mount;
287 	ssize_t			count = 1 << inode->i_blkbits;
288 	xfs_fileoff_t		offset_fsb, end_fsb;
289 	int			error = 0;
290 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
291 	int			nimaps = 1;
292 
293 	if (XFS_FORCED_SHUTDOWN(mp))
294 		return -XFS_ERROR(EIO);
295 
296 	if (type == IO_UNWRITTEN)
297 		bmapi_flags |= XFS_BMAPI_IGSTATE;
298 
299 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
300 		if (nonblocking)
301 			return -XFS_ERROR(EAGAIN);
302 		xfs_ilock(ip, XFS_ILOCK_SHARED);
303 	}
304 
305 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
306 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
307 	ASSERT(offset <= mp->m_maxioffset);
308 
309 	if (offset + count > mp->m_maxioffset)
310 		count = mp->m_maxioffset - offset;
311 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
312 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
313 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
314 				imap, &nimaps, bmapi_flags);
315 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
316 
317 	if (error)
318 		return -XFS_ERROR(error);
319 
320 	if (type == IO_DELALLOC &&
321 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
322 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
323 		if (!error)
324 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
325 		return -XFS_ERROR(error);
326 	}
327 
328 #ifdef DEBUG
329 	if (type == IO_UNWRITTEN) {
330 		ASSERT(nimaps);
331 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
332 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
333 	}
334 #endif
335 	if (nimaps)
336 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
337 	return 0;
338 }
339 
340 STATIC int
341 xfs_imap_valid(
342 	struct inode		*inode,
343 	struct xfs_bmbt_irec	*imap,
344 	xfs_off_t		offset)
345 {
346 	offset >>= inode->i_blkbits;
347 
348 	return offset >= imap->br_startoff &&
349 		offset < imap->br_startoff + imap->br_blockcount;
350 }
351 
352 /*
353  * BIO completion handler for buffered IO.
354  */
355 STATIC void
356 xfs_end_bio(
357 	struct bio		*bio,
358 	int			error)
359 {
360 	xfs_ioend_t		*ioend = bio->bi_private;
361 
362 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
363 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
364 
365 	/* Toss bio and pass work off to an xfsdatad thread */
366 	bio->bi_private = NULL;
367 	bio->bi_end_io = NULL;
368 	bio_put(bio);
369 
370 	xfs_finish_ioend(ioend);
371 }
372 
373 STATIC void
374 xfs_submit_ioend_bio(
375 	struct writeback_control *wbc,
376 	xfs_ioend_t		*ioend,
377 	struct bio		*bio)
378 {
379 	atomic_inc(&ioend->io_remaining);
380 	bio->bi_private = ioend;
381 	bio->bi_end_io = xfs_end_bio;
382 
383 	/*
384 	 * If the I/O is beyond EOF we mark the inode dirty immediately
385 	 * but don't update the inode size until I/O completion.
386 	 */
387 	if (xfs_ioend_new_eof(ioend))
388 		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
389 
390 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
391 }
392 
393 STATIC struct bio *
394 xfs_alloc_ioend_bio(
395 	struct buffer_head	*bh)
396 {
397 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
398 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
399 
400 	ASSERT(bio->bi_private == NULL);
401 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
402 	bio->bi_bdev = bh->b_bdev;
403 	return bio;
404 }
405 
406 STATIC void
407 xfs_start_buffer_writeback(
408 	struct buffer_head	*bh)
409 {
410 	ASSERT(buffer_mapped(bh));
411 	ASSERT(buffer_locked(bh));
412 	ASSERT(!buffer_delay(bh));
413 	ASSERT(!buffer_unwritten(bh));
414 
415 	mark_buffer_async_write(bh);
416 	set_buffer_uptodate(bh);
417 	clear_buffer_dirty(bh);
418 }
419 
420 STATIC void
421 xfs_start_page_writeback(
422 	struct page		*page,
423 	int			clear_dirty,
424 	int			buffers)
425 {
426 	ASSERT(PageLocked(page));
427 	ASSERT(!PageWriteback(page));
428 	if (clear_dirty)
429 		clear_page_dirty_for_io(page);
430 	set_page_writeback(page);
431 	unlock_page(page);
432 	/* If no buffers on the page are to be written, finish it here */
433 	if (!buffers)
434 		end_page_writeback(page);
435 }
436 
437 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438 {
439 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440 }
441 
442 /*
443  * Submit all of the bios for all of the ioends we have saved up, covering the
444  * initial writepage page and also any probed pages.
445  *
446  * Because we may have multiple ioends spanning a page, we need to start
447  * writeback on all the buffers before we submit them for I/O. If we mark the
448  * buffers as we got, then we can end up with a page that only has buffers
449  * marked async write and I/O complete on can occur before we mark the other
450  * buffers async write.
451  *
452  * The end result of this is that we trip a bug in end_page_writeback() because
453  * we call it twice for the one page as the code in end_buffer_async_write()
454  * assumes that all buffers on the page are started at the same time.
455  *
456  * The fix is two passes across the ioend list - one to start writeback on the
457  * buffer_heads, and then submit them for I/O on the second pass.
458  */
459 STATIC void
460 xfs_submit_ioend(
461 	struct writeback_control *wbc,
462 	xfs_ioend_t		*ioend)
463 {
464 	xfs_ioend_t		*head = ioend;
465 	xfs_ioend_t		*next;
466 	struct buffer_head	*bh;
467 	struct bio		*bio;
468 	sector_t		lastblock = 0;
469 
470 	/* Pass 1 - start writeback */
471 	do {
472 		next = ioend->io_list;
473 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
474 			xfs_start_buffer_writeback(bh);
475 	} while ((ioend = next) != NULL);
476 
477 	/* Pass 2 - submit I/O */
478 	ioend = head;
479 	do {
480 		next = ioend->io_list;
481 		bio = NULL;
482 
483 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
484 
485 			if (!bio) {
486  retry:
487 				bio = xfs_alloc_ioend_bio(bh);
488 			} else if (bh->b_blocknr != lastblock + 1) {
489 				xfs_submit_ioend_bio(wbc, ioend, bio);
490 				goto retry;
491 			}
492 
493 			if (bio_add_buffer(bio, bh) != bh->b_size) {
494 				xfs_submit_ioend_bio(wbc, ioend, bio);
495 				goto retry;
496 			}
497 
498 			lastblock = bh->b_blocknr;
499 		}
500 		if (bio)
501 			xfs_submit_ioend_bio(wbc, ioend, bio);
502 		xfs_finish_ioend(ioend);
503 	} while ((ioend = next) != NULL);
504 }
505 
506 /*
507  * Cancel submission of all buffer_heads so far in this endio.
508  * Toss the endio too.  Only ever called for the initial page
509  * in a writepage request, so only ever one page.
510  */
511 STATIC void
512 xfs_cancel_ioend(
513 	xfs_ioend_t		*ioend)
514 {
515 	xfs_ioend_t		*next;
516 	struct buffer_head	*bh, *next_bh;
517 
518 	do {
519 		next = ioend->io_list;
520 		bh = ioend->io_buffer_head;
521 		do {
522 			next_bh = bh->b_private;
523 			clear_buffer_async_write(bh);
524 			unlock_buffer(bh);
525 		} while ((bh = next_bh) != NULL);
526 
527 		mempool_free(ioend, xfs_ioend_pool);
528 	} while ((ioend = next) != NULL);
529 }
530 
531 /*
532  * Test to see if we've been building up a completion structure for
533  * earlier buffers -- if so, we try to append to this ioend if we
534  * can, otherwise we finish off any current ioend and start another.
535  * Return true if we've finished the given ioend.
536  */
537 STATIC void
538 xfs_add_to_ioend(
539 	struct inode		*inode,
540 	struct buffer_head	*bh,
541 	xfs_off_t		offset,
542 	unsigned int		type,
543 	xfs_ioend_t		**result,
544 	int			need_ioend)
545 {
546 	xfs_ioend_t		*ioend = *result;
547 
548 	if (!ioend || need_ioend || type != ioend->io_type) {
549 		xfs_ioend_t	*previous = *result;
550 
551 		ioend = xfs_alloc_ioend(inode, type);
552 		ioend->io_offset = offset;
553 		ioend->io_buffer_head = bh;
554 		ioend->io_buffer_tail = bh;
555 		if (previous)
556 			previous->io_list = ioend;
557 		*result = ioend;
558 	} else {
559 		ioend->io_buffer_tail->b_private = bh;
560 		ioend->io_buffer_tail = bh;
561 	}
562 
563 	bh->b_private = NULL;
564 	ioend->io_size += bh->b_size;
565 }
566 
567 STATIC void
568 xfs_map_buffer(
569 	struct inode		*inode,
570 	struct buffer_head	*bh,
571 	struct xfs_bmbt_irec	*imap,
572 	xfs_off_t		offset)
573 {
574 	sector_t		bn;
575 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
576 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
577 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
578 
579 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
580 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
581 
582 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
583 	      ((offset - iomap_offset) >> inode->i_blkbits);
584 
585 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
586 
587 	bh->b_blocknr = bn;
588 	set_buffer_mapped(bh);
589 }
590 
591 STATIC void
592 xfs_map_at_offset(
593 	struct inode		*inode,
594 	struct buffer_head	*bh,
595 	struct xfs_bmbt_irec	*imap,
596 	xfs_off_t		offset)
597 {
598 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
599 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
600 
601 	xfs_map_buffer(inode, bh, imap, offset);
602 	set_buffer_mapped(bh);
603 	clear_buffer_delay(bh);
604 	clear_buffer_unwritten(bh);
605 }
606 
607 /*
608  * Test if a given page is suitable for writing as part of an unwritten
609  * or delayed allocate extent.
610  */
611 STATIC int
612 xfs_is_delayed_page(
613 	struct page		*page,
614 	unsigned int		type)
615 {
616 	if (PageWriteback(page))
617 		return 0;
618 
619 	if (page->mapping && page_has_buffers(page)) {
620 		struct buffer_head	*bh, *head;
621 		int			acceptable = 0;
622 
623 		bh = head = page_buffers(page);
624 		do {
625 			if (buffer_unwritten(bh))
626 				acceptable = (type == IO_UNWRITTEN);
627 			else if (buffer_delay(bh))
628 				acceptable = (type == IO_DELALLOC);
629 			else if (buffer_dirty(bh) && buffer_mapped(bh))
630 				acceptable = (type == IO_OVERWRITE);
631 			else
632 				break;
633 		} while ((bh = bh->b_this_page) != head);
634 
635 		if (acceptable)
636 			return 1;
637 	}
638 
639 	return 0;
640 }
641 
642 /*
643  * Allocate & map buffers for page given the extent map. Write it out.
644  * except for the original page of a writepage, this is called on
645  * delalloc/unwritten pages only, for the original page it is possible
646  * that the page has no mapping at all.
647  */
648 STATIC int
649 xfs_convert_page(
650 	struct inode		*inode,
651 	struct page		*page,
652 	loff_t			tindex,
653 	struct xfs_bmbt_irec	*imap,
654 	xfs_ioend_t		**ioendp,
655 	struct writeback_control *wbc)
656 {
657 	struct buffer_head	*bh, *head;
658 	xfs_off_t		end_offset;
659 	unsigned long		p_offset;
660 	unsigned int		type;
661 	int			len, page_dirty;
662 	int			count = 0, done = 0, uptodate = 1;
663  	xfs_off_t		offset = page_offset(page);
664 
665 	if (page->index != tindex)
666 		goto fail;
667 	if (!trylock_page(page))
668 		goto fail;
669 	if (PageWriteback(page))
670 		goto fail_unlock_page;
671 	if (page->mapping != inode->i_mapping)
672 		goto fail_unlock_page;
673 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
674 		goto fail_unlock_page;
675 
676 	/*
677 	 * page_dirty is initially a count of buffers on the page before
678 	 * EOF and is decremented as we move each into a cleanable state.
679 	 *
680 	 * Derivation:
681 	 *
682 	 * End offset is the highest offset that this page should represent.
683 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
684 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
685 	 * hence give us the correct page_dirty count. On any other page,
686 	 * it will be zero and in that case we need page_dirty to be the
687 	 * count of buffers on the page.
688 	 */
689 	end_offset = min_t(unsigned long long,
690 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
691 			i_size_read(inode));
692 
693 	len = 1 << inode->i_blkbits;
694 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
695 					PAGE_CACHE_SIZE);
696 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
697 	page_dirty = p_offset / len;
698 
699 	bh = head = page_buffers(page);
700 	do {
701 		if (offset >= end_offset)
702 			break;
703 		if (!buffer_uptodate(bh))
704 			uptodate = 0;
705 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
706 			done = 1;
707 			continue;
708 		}
709 
710 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
711 		    buffer_mapped(bh)) {
712 			if (buffer_unwritten(bh))
713 				type = IO_UNWRITTEN;
714 			else if (buffer_delay(bh))
715 				type = IO_DELALLOC;
716 			else
717 				type = IO_OVERWRITE;
718 
719 			if (!xfs_imap_valid(inode, imap, offset)) {
720 				done = 1;
721 				continue;
722 			}
723 
724 			lock_buffer(bh);
725 			if (type != IO_OVERWRITE)
726 				xfs_map_at_offset(inode, bh, imap, offset);
727 			xfs_add_to_ioend(inode, bh, offset, type,
728 					 ioendp, done);
729 
730 			page_dirty--;
731 			count++;
732 		} else {
733 			done = 1;
734 		}
735 	} while (offset += len, (bh = bh->b_this_page) != head);
736 
737 	if (uptodate && bh == head)
738 		SetPageUptodate(page);
739 
740 	if (count) {
741 		if (--wbc->nr_to_write <= 0 &&
742 		    wbc->sync_mode == WB_SYNC_NONE)
743 			done = 1;
744 	}
745 	xfs_start_page_writeback(page, !page_dirty, count);
746 
747 	return done;
748  fail_unlock_page:
749 	unlock_page(page);
750  fail:
751 	return 1;
752 }
753 
754 /*
755  * Convert & write out a cluster of pages in the same extent as defined
756  * by mp and following the start page.
757  */
758 STATIC void
759 xfs_cluster_write(
760 	struct inode		*inode,
761 	pgoff_t			tindex,
762 	struct xfs_bmbt_irec	*imap,
763 	xfs_ioend_t		**ioendp,
764 	struct writeback_control *wbc,
765 	pgoff_t			tlast)
766 {
767 	struct pagevec		pvec;
768 	int			done = 0, i;
769 
770 	pagevec_init(&pvec, 0);
771 	while (!done && tindex <= tlast) {
772 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
773 
774 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
775 			break;
776 
777 		for (i = 0; i < pagevec_count(&pvec); i++) {
778 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
779 					imap, ioendp, wbc);
780 			if (done)
781 				break;
782 		}
783 
784 		pagevec_release(&pvec);
785 		cond_resched();
786 	}
787 }
788 
789 STATIC void
790 xfs_vm_invalidatepage(
791 	struct page		*page,
792 	unsigned long		offset)
793 {
794 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
795 	block_invalidatepage(page, offset);
796 }
797 
798 /*
799  * If the page has delalloc buffers on it, we need to punch them out before we
800  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
801  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
802  * is done on that same region - the delalloc extent is returned when none is
803  * supposed to be there.
804  *
805  * We prevent this by truncating away the delalloc regions on the page before
806  * invalidating it. Because they are delalloc, we can do this without needing a
807  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
808  * truncation without a transaction as there is no space left for block
809  * reservation (typically why we see a ENOSPC in writeback).
810  *
811  * This is not a performance critical path, so for now just do the punching a
812  * buffer head at a time.
813  */
814 STATIC void
815 xfs_aops_discard_page(
816 	struct page		*page)
817 {
818 	struct inode		*inode = page->mapping->host;
819 	struct xfs_inode	*ip = XFS_I(inode);
820 	struct buffer_head	*bh, *head;
821 	loff_t			offset = page_offset(page);
822 
823 	if (!xfs_is_delayed_page(page, IO_DELALLOC))
824 		goto out_invalidate;
825 
826 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
827 		goto out_invalidate;
828 
829 	xfs_alert(ip->i_mount,
830 		"page discard on page %p, inode 0x%llx, offset %llu.",
831 			page, ip->i_ino, offset);
832 
833 	xfs_ilock(ip, XFS_ILOCK_EXCL);
834 	bh = head = page_buffers(page);
835 	do {
836 		int		error;
837 		xfs_fileoff_t	start_fsb;
838 
839 		if (!buffer_delay(bh))
840 			goto next_buffer;
841 
842 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
843 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
844 		if (error) {
845 			/* something screwed, just bail */
846 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
847 				xfs_alert(ip->i_mount,
848 			"page discard unable to remove delalloc mapping.");
849 			}
850 			break;
851 		}
852 next_buffer:
853 		offset += 1 << inode->i_blkbits;
854 
855 	} while ((bh = bh->b_this_page) != head);
856 
857 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
858 out_invalidate:
859 	xfs_vm_invalidatepage(page, 0);
860 	return;
861 }
862 
863 /*
864  * Write out a dirty page.
865  *
866  * For delalloc space on the page we need to allocate space and flush it.
867  * For unwritten space on the page we need to start the conversion to
868  * regular allocated space.
869  * For any other dirty buffer heads on the page we should flush them.
870  */
871 STATIC int
872 xfs_vm_writepage(
873 	struct page		*page,
874 	struct writeback_control *wbc)
875 {
876 	struct inode		*inode = page->mapping->host;
877 	struct buffer_head	*bh, *head;
878 	struct xfs_bmbt_irec	imap;
879 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
880 	loff_t			offset;
881 	unsigned int		type;
882 	__uint64_t              end_offset;
883 	pgoff_t                 end_index, last_index;
884 	ssize_t			len;
885 	int			err, imap_valid = 0, uptodate = 1;
886 	int			count = 0;
887 	int			nonblocking = 0;
888 
889 	trace_xfs_writepage(inode, page, 0);
890 
891 	ASSERT(page_has_buffers(page));
892 
893 	/*
894 	 * Refuse to write the page out if we are called from reclaim context.
895 	 *
896 	 * This avoids stack overflows when called from deeply used stacks in
897 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
898 	 * allow reclaim from kswapd as the stack usage there is relatively low.
899 	 *
900 	 * This should never happen except in the case of a VM regression so
901 	 * warn about it.
902 	 */
903 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
904 			PF_MEMALLOC))
905 		goto redirty;
906 
907 	/*
908 	 * Given that we do not allow direct reclaim to call us, we should
909 	 * never be called while in a filesystem transaction.
910 	 */
911 	if (WARN_ON(current->flags & PF_FSTRANS))
912 		goto redirty;
913 
914 	/* Is this page beyond the end of the file? */
915 	offset = i_size_read(inode);
916 	end_index = offset >> PAGE_CACHE_SHIFT;
917 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
918 	if (page->index >= end_index) {
919 		if ((page->index >= end_index + 1) ||
920 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
921 			unlock_page(page);
922 			return 0;
923 		}
924 	}
925 
926 	end_offset = min_t(unsigned long long,
927 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
928 			offset);
929 	len = 1 << inode->i_blkbits;
930 
931 	bh = head = page_buffers(page);
932 	offset = page_offset(page);
933 	type = IO_OVERWRITE;
934 
935 	if (wbc->sync_mode == WB_SYNC_NONE)
936 		nonblocking = 1;
937 
938 	do {
939 		int new_ioend = 0;
940 
941 		if (offset >= end_offset)
942 			break;
943 		if (!buffer_uptodate(bh))
944 			uptodate = 0;
945 
946 		/*
947 		 * set_page_dirty dirties all buffers in a page, independent
948 		 * of their state.  The dirty state however is entirely
949 		 * meaningless for holes (!mapped && uptodate), so skip
950 		 * buffers covering holes here.
951 		 */
952 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
953 			imap_valid = 0;
954 			continue;
955 		}
956 
957 		if (buffer_unwritten(bh)) {
958 			if (type != IO_UNWRITTEN) {
959 				type = IO_UNWRITTEN;
960 				imap_valid = 0;
961 			}
962 		} else if (buffer_delay(bh)) {
963 			if (type != IO_DELALLOC) {
964 				type = IO_DELALLOC;
965 				imap_valid = 0;
966 			}
967 		} else if (buffer_uptodate(bh)) {
968 			if (type != IO_OVERWRITE) {
969 				type = IO_OVERWRITE;
970 				imap_valid = 0;
971 			}
972 		} else {
973 			if (PageUptodate(page)) {
974 				ASSERT(buffer_mapped(bh));
975 				imap_valid = 0;
976 			}
977 			continue;
978 		}
979 
980 		if (imap_valid)
981 			imap_valid = xfs_imap_valid(inode, &imap, offset);
982 		if (!imap_valid) {
983 			/*
984 			 * If we didn't have a valid mapping then we need to
985 			 * put the new mapping into a separate ioend structure.
986 			 * This ensures non-contiguous extents always have
987 			 * separate ioends, which is particularly important
988 			 * for unwritten extent conversion at I/O completion
989 			 * time.
990 			 */
991 			new_ioend = 1;
992 			err = xfs_map_blocks(inode, offset, &imap, type,
993 					     nonblocking);
994 			if (err)
995 				goto error;
996 			imap_valid = xfs_imap_valid(inode, &imap, offset);
997 		}
998 		if (imap_valid) {
999 			lock_buffer(bh);
1000 			if (type != IO_OVERWRITE)
1001 				xfs_map_at_offset(inode, bh, &imap, offset);
1002 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1003 					 new_ioend);
1004 			count++;
1005 		}
1006 
1007 		if (!iohead)
1008 			iohead = ioend;
1009 
1010 	} while (offset += len, ((bh = bh->b_this_page) != head));
1011 
1012 	if (uptodate && bh == head)
1013 		SetPageUptodate(page);
1014 
1015 	xfs_start_page_writeback(page, 1, count);
1016 
1017 	if (ioend && imap_valid) {
1018 		xfs_off_t		end_index;
1019 
1020 		end_index = imap.br_startoff + imap.br_blockcount;
1021 
1022 		/* to bytes */
1023 		end_index <<= inode->i_blkbits;
1024 
1025 		/* to pages */
1026 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1027 
1028 		/* check against file size */
1029 		if (end_index > last_index)
1030 			end_index = last_index;
1031 
1032 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1033 				  wbc, end_index);
1034 	}
1035 
1036 	if (iohead)
1037 		xfs_submit_ioend(wbc, iohead);
1038 
1039 	return 0;
1040 
1041 error:
1042 	if (iohead)
1043 		xfs_cancel_ioend(iohead);
1044 
1045 	if (err == -EAGAIN)
1046 		goto redirty;
1047 
1048 	xfs_aops_discard_page(page);
1049 	ClearPageUptodate(page);
1050 	unlock_page(page);
1051 	return err;
1052 
1053 redirty:
1054 	redirty_page_for_writepage(wbc, page);
1055 	unlock_page(page);
1056 	return 0;
1057 }
1058 
1059 STATIC int
1060 xfs_vm_writepages(
1061 	struct address_space	*mapping,
1062 	struct writeback_control *wbc)
1063 {
1064 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1065 	return generic_writepages(mapping, wbc);
1066 }
1067 
1068 /*
1069  * Called to move a page into cleanable state - and from there
1070  * to be released. The page should already be clean. We always
1071  * have buffer heads in this call.
1072  *
1073  * Returns 1 if the page is ok to release, 0 otherwise.
1074  */
1075 STATIC int
1076 xfs_vm_releasepage(
1077 	struct page		*page,
1078 	gfp_t			gfp_mask)
1079 {
1080 	int			delalloc, unwritten;
1081 
1082 	trace_xfs_releasepage(page->mapping->host, page, 0);
1083 
1084 	xfs_count_page_state(page, &delalloc, &unwritten);
1085 
1086 	if (WARN_ON(delalloc))
1087 		return 0;
1088 	if (WARN_ON(unwritten))
1089 		return 0;
1090 
1091 	return try_to_free_buffers(page);
1092 }
1093 
1094 STATIC int
1095 __xfs_get_blocks(
1096 	struct inode		*inode,
1097 	sector_t		iblock,
1098 	struct buffer_head	*bh_result,
1099 	int			create,
1100 	int			direct)
1101 {
1102 	struct xfs_inode	*ip = XFS_I(inode);
1103 	struct xfs_mount	*mp = ip->i_mount;
1104 	xfs_fileoff_t		offset_fsb, end_fsb;
1105 	int			error = 0;
1106 	int			lockmode = 0;
1107 	struct xfs_bmbt_irec	imap;
1108 	int			nimaps = 1;
1109 	xfs_off_t		offset;
1110 	ssize_t			size;
1111 	int			new = 0;
1112 
1113 	if (XFS_FORCED_SHUTDOWN(mp))
1114 		return -XFS_ERROR(EIO);
1115 
1116 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1117 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1118 	size = bh_result->b_size;
1119 
1120 	if (!create && direct && offset >= i_size_read(inode))
1121 		return 0;
1122 
1123 	if (create) {
1124 		lockmode = XFS_ILOCK_EXCL;
1125 		xfs_ilock(ip, lockmode);
1126 	} else {
1127 		lockmode = xfs_ilock_map_shared(ip);
1128 	}
1129 
1130 	ASSERT(offset <= mp->m_maxioffset);
1131 	if (offset + size > mp->m_maxioffset)
1132 		size = mp->m_maxioffset - offset;
1133 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1134 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1135 
1136 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1137 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1138 	if (error)
1139 		goto out_unlock;
1140 
1141 	if (create &&
1142 	    (!nimaps ||
1143 	     (imap.br_startblock == HOLESTARTBLOCK ||
1144 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1145 		if (direct) {
1146 			error = xfs_iomap_write_direct(ip, offset, size,
1147 						       &imap, nimaps);
1148 		} else {
1149 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1150 		}
1151 		if (error)
1152 			goto out_unlock;
1153 
1154 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1155 	} else if (nimaps) {
1156 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1157 	} else {
1158 		trace_xfs_get_blocks_notfound(ip, offset, size);
1159 		goto out_unlock;
1160 	}
1161 	xfs_iunlock(ip, lockmode);
1162 
1163 	if (imap.br_startblock != HOLESTARTBLOCK &&
1164 	    imap.br_startblock != DELAYSTARTBLOCK) {
1165 		/*
1166 		 * For unwritten extents do not report a disk address on
1167 		 * the read case (treat as if we're reading into a hole).
1168 		 */
1169 		if (create || !ISUNWRITTEN(&imap))
1170 			xfs_map_buffer(inode, bh_result, &imap, offset);
1171 		if (create && ISUNWRITTEN(&imap)) {
1172 			if (direct)
1173 				bh_result->b_private = inode;
1174 			set_buffer_unwritten(bh_result);
1175 		}
1176 	}
1177 
1178 	/*
1179 	 * If this is a realtime file, data may be on a different device.
1180 	 * to that pointed to from the buffer_head b_bdev currently.
1181 	 */
1182 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1183 
1184 	/*
1185 	 * If we previously allocated a block out beyond eof and we are now
1186 	 * coming back to use it then we will need to flag it as new even if it
1187 	 * has a disk address.
1188 	 *
1189 	 * With sub-block writes into unwritten extents we also need to mark
1190 	 * the buffer as new so that the unwritten parts of the buffer gets
1191 	 * correctly zeroed.
1192 	 */
1193 	if (create &&
1194 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1195 	     (offset >= i_size_read(inode)) ||
1196 	     (new || ISUNWRITTEN(&imap))))
1197 		set_buffer_new(bh_result);
1198 
1199 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1200 		BUG_ON(direct);
1201 		if (create) {
1202 			set_buffer_uptodate(bh_result);
1203 			set_buffer_mapped(bh_result);
1204 			set_buffer_delay(bh_result);
1205 		}
1206 	}
1207 
1208 	/*
1209 	 * If this is O_DIRECT or the mpage code calling tell them how large
1210 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1211 	 */
1212 	if (direct || size > (1 << inode->i_blkbits)) {
1213 		xfs_off_t		mapping_size;
1214 
1215 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1216 		mapping_size <<= inode->i_blkbits;
1217 
1218 		ASSERT(mapping_size > 0);
1219 		if (mapping_size > size)
1220 			mapping_size = size;
1221 		if (mapping_size > LONG_MAX)
1222 			mapping_size = LONG_MAX;
1223 
1224 		bh_result->b_size = mapping_size;
1225 	}
1226 
1227 	return 0;
1228 
1229 out_unlock:
1230 	xfs_iunlock(ip, lockmode);
1231 	return -error;
1232 }
1233 
1234 int
1235 xfs_get_blocks(
1236 	struct inode		*inode,
1237 	sector_t		iblock,
1238 	struct buffer_head	*bh_result,
1239 	int			create)
1240 {
1241 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1242 }
1243 
1244 STATIC int
1245 xfs_get_blocks_direct(
1246 	struct inode		*inode,
1247 	sector_t		iblock,
1248 	struct buffer_head	*bh_result,
1249 	int			create)
1250 {
1251 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1252 }
1253 
1254 /*
1255  * Complete a direct I/O write request.
1256  *
1257  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1258  * need to issue a transaction to convert the range from unwritten to written
1259  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1260  * to do this and we are done.  But in case this was a successful AIO
1261  * request this handler is called from interrupt context, from which we
1262  * can't start transactions.  In that case offload the I/O completion to
1263  * the workqueues we also use for buffered I/O completion.
1264  */
1265 STATIC void
1266 xfs_end_io_direct_write(
1267 	struct kiocb		*iocb,
1268 	loff_t			offset,
1269 	ssize_t			size,
1270 	void			*private,
1271 	int			ret,
1272 	bool			is_async)
1273 {
1274 	struct xfs_ioend	*ioend = iocb->private;
1275 
1276 	/*
1277 	 * While the generic direct I/O code updates the inode size, it does
1278 	 * so only after the end_io handler is called, which means our
1279 	 * end_io handler thinks the on-disk size is outside the in-core
1280 	 * size.  To prevent this just update it a little bit earlier here.
1281 	 */
1282 	if (offset + size > i_size_read(ioend->io_inode))
1283 		i_size_write(ioend->io_inode, offset + size);
1284 
1285 	/*
1286 	 * blockdev_direct_IO can return an error even after the I/O
1287 	 * completion handler was called.  Thus we need to protect
1288 	 * against double-freeing.
1289 	 */
1290 	iocb->private = NULL;
1291 
1292 	ioend->io_offset = offset;
1293 	ioend->io_size = size;
1294 	ioend->io_iocb = iocb;
1295 	ioend->io_result = ret;
1296 	if (private && size > 0)
1297 		ioend->io_type = IO_UNWRITTEN;
1298 
1299 	if (is_async) {
1300 		ioend->io_isasync = 1;
1301 		xfs_finish_ioend(ioend);
1302 	} else {
1303 		xfs_finish_ioend_sync(ioend);
1304 	}
1305 }
1306 
1307 STATIC ssize_t
1308 xfs_vm_direct_IO(
1309 	int			rw,
1310 	struct kiocb		*iocb,
1311 	const struct iovec	*iov,
1312 	loff_t			offset,
1313 	unsigned long		nr_segs)
1314 {
1315 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1316 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1317 	ssize_t			ret;
1318 
1319 	if (rw & WRITE) {
1320 		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1321 
1322 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1323 					    offset, nr_segs,
1324 					    xfs_get_blocks_direct,
1325 					    xfs_end_io_direct_write, NULL, 0);
1326 		if (ret != -EIOCBQUEUED && iocb->private)
1327 			xfs_destroy_ioend(iocb->private);
1328 	} else {
1329 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1330 					    offset, nr_segs,
1331 					    xfs_get_blocks_direct,
1332 					    NULL, NULL, 0);
1333 	}
1334 
1335 	return ret;
1336 }
1337 
1338 STATIC void
1339 xfs_vm_write_failed(
1340 	struct address_space	*mapping,
1341 	loff_t			to)
1342 {
1343 	struct inode		*inode = mapping->host;
1344 
1345 	if (to > inode->i_size) {
1346 		/*
1347 		 * Punch out the delalloc blocks we have already allocated.
1348 		 *
1349 		 * Don't bother with xfs_setattr given that nothing can have
1350 		 * made it to disk yet as the page is still locked at this
1351 		 * point.
1352 		 */
1353 		struct xfs_inode	*ip = XFS_I(inode);
1354 		xfs_fileoff_t		start_fsb;
1355 		xfs_fileoff_t		end_fsb;
1356 		int			error;
1357 
1358 		truncate_pagecache(inode, to, inode->i_size);
1359 
1360 		/*
1361 		 * Check if there are any blocks that are outside of i_size
1362 		 * that need to be trimmed back.
1363 		 */
1364 		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1365 		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1366 		if (end_fsb <= start_fsb)
1367 			return;
1368 
1369 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1370 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1371 							end_fsb - start_fsb);
1372 		if (error) {
1373 			/* something screwed, just bail */
1374 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1375 				xfs_alert(ip->i_mount,
1376 			"xfs_vm_write_failed: unable to clean up ino %lld",
1377 						ip->i_ino);
1378 			}
1379 		}
1380 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1381 	}
1382 }
1383 
1384 STATIC int
1385 xfs_vm_write_begin(
1386 	struct file		*file,
1387 	struct address_space	*mapping,
1388 	loff_t			pos,
1389 	unsigned		len,
1390 	unsigned		flags,
1391 	struct page		**pagep,
1392 	void			**fsdata)
1393 {
1394 	int			ret;
1395 
1396 	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1397 				pagep, xfs_get_blocks);
1398 	if (unlikely(ret))
1399 		xfs_vm_write_failed(mapping, pos + len);
1400 	return ret;
1401 }
1402 
1403 STATIC int
1404 xfs_vm_write_end(
1405 	struct file		*file,
1406 	struct address_space	*mapping,
1407 	loff_t			pos,
1408 	unsigned		len,
1409 	unsigned		copied,
1410 	struct page		*page,
1411 	void			*fsdata)
1412 {
1413 	int			ret;
1414 
1415 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1416 	if (unlikely(ret < len))
1417 		xfs_vm_write_failed(mapping, pos + len);
1418 	return ret;
1419 }
1420 
1421 STATIC sector_t
1422 xfs_vm_bmap(
1423 	struct address_space	*mapping,
1424 	sector_t		block)
1425 {
1426 	struct inode		*inode = (struct inode *)mapping->host;
1427 	struct xfs_inode	*ip = XFS_I(inode);
1428 
1429 	trace_xfs_vm_bmap(XFS_I(inode));
1430 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1431 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1432 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1433 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1434 }
1435 
1436 STATIC int
1437 xfs_vm_readpage(
1438 	struct file		*unused,
1439 	struct page		*page)
1440 {
1441 	return mpage_readpage(page, xfs_get_blocks);
1442 }
1443 
1444 STATIC int
1445 xfs_vm_readpages(
1446 	struct file		*unused,
1447 	struct address_space	*mapping,
1448 	struct list_head	*pages,
1449 	unsigned		nr_pages)
1450 {
1451 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1452 }
1453 
1454 const struct address_space_operations xfs_address_space_operations = {
1455 	.readpage		= xfs_vm_readpage,
1456 	.readpages		= xfs_vm_readpages,
1457 	.writepage		= xfs_vm_writepage,
1458 	.writepages		= xfs_vm_writepages,
1459 	.releasepage		= xfs_vm_releasepage,
1460 	.invalidatepage		= xfs_vm_invalidatepage,
1461 	.write_begin		= xfs_vm_write_begin,
1462 	.write_end		= xfs_vm_write_end,
1463 	.bmap			= xfs_vm_bmap,
1464 	.direct_IO		= xfs_vm_direct_IO,
1465 	.migratepage		= buffer_migrate_page,
1466 	.is_partially_uptodate  = block_is_partially_uptodate,
1467 	.error_remove_page	= generic_error_remove_page,
1468 };
1469