1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include "xfs_reflink.h" 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 /* 41 * structure owned by writepages passed to individual writepage calls 42 */ 43 struct xfs_writepage_ctx { 44 struct xfs_bmbt_irec imap; 45 bool imap_valid; 46 unsigned int io_type; 47 struct xfs_ioend *ioend; 48 sector_t last_block; 49 }; 50 51 void 52 xfs_count_page_state( 53 struct page *page, 54 int *delalloc, 55 int *unwritten) 56 { 57 struct buffer_head *bh, *head; 58 59 *delalloc = *unwritten = 0; 60 61 bh = head = page_buffers(page); 62 do { 63 if (buffer_unwritten(bh)) 64 (*unwritten) = 1; 65 else if (buffer_delay(bh)) 66 (*delalloc) = 1; 67 } while ((bh = bh->b_this_page) != head); 68 } 69 70 struct block_device * 71 xfs_find_bdev_for_inode( 72 struct inode *inode) 73 { 74 struct xfs_inode *ip = XFS_I(inode); 75 struct xfs_mount *mp = ip->i_mount; 76 77 if (XFS_IS_REALTIME_INODE(ip)) 78 return mp->m_rtdev_targp->bt_bdev; 79 else 80 return mp->m_ddev_targp->bt_bdev; 81 } 82 83 struct dax_device * 84 xfs_find_daxdev_for_inode( 85 struct inode *inode) 86 { 87 struct xfs_inode *ip = XFS_I(inode); 88 struct xfs_mount *mp = ip->i_mount; 89 90 if (XFS_IS_REALTIME_INODE(ip)) 91 return mp->m_rtdev_targp->bt_daxdev; 92 else 93 return mp->m_ddev_targp->bt_daxdev; 94 } 95 96 /* 97 * We're now finished for good with this page. Update the page state via the 98 * associated buffer_heads, paying attention to the start and end offsets that 99 * we need to process on the page. 100 * 101 * Note that we open code the action in end_buffer_async_write here so that we 102 * only have to iterate over the buffers attached to the page once. This is not 103 * only more efficient, but also ensures that we only calls end_page_writeback 104 * at the end of the iteration, and thus avoids the pitfall of having the page 105 * and buffers potentially freed after every call to end_buffer_async_write. 106 */ 107 static void 108 xfs_finish_page_writeback( 109 struct inode *inode, 110 struct bio_vec *bvec, 111 int error) 112 { 113 struct buffer_head *head = page_buffers(bvec->bv_page), *bh = head; 114 bool busy = false; 115 unsigned int off = 0; 116 unsigned long flags; 117 118 ASSERT(bvec->bv_offset < PAGE_SIZE); 119 ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0); 120 ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE); 121 ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0); 122 123 local_irq_save(flags); 124 bit_spin_lock(BH_Uptodate_Lock, &head->b_state); 125 do { 126 if (off >= bvec->bv_offset && 127 off < bvec->bv_offset + bvec->bv_len) { 128 ASSERT(buffer_async_write(bh)); 129 ASSERT(bh->b_end_io == NULL); 130 131 if (error) { 132 mark_buffer_write_io_error(bh); 133 clear_buffer_uptodate(bh); 134 SetPageError(bvec->bv_page); 135 } else { 136 set_buffer_uptodate(bh); 137 } 138 clear_buffer_async_write(bh); 139 unlock_buffer(bh); 140 } else if (buffer_async_write(bh)) { 141 ASSERT(buffer_locked(bh)); 142 busy = true; 143 } 144 off += bh->b_size; 145 } while ((bh = bh->b_this_page) != head); 146 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); 147 local_irq_restore(flags); 148 149 if (!busy) 150 end_page_writeback(bvec->bv_page); 151 } 152 153 /* 154 * We're now finished for good with this ioend structure. Update the page 155 * state, release holds on bios, and finally free up memory. Do not use the 156 * ioend after this. 157 */ 158 STATIC void 159 xfs_destroy_ioend( 160 struct xfs_ioend *ioend, 161 int error) 162 { 163 struct inode *inode = ioend->io_inode; 164 struct bio *bio = &ioend->io_inline_bio; 165 struct bio *last = ioend->io_bio, *next; 166 u64 start = bio->bi_iter.bi_sector; 167 bool quiet = bio_flagged(bio, BIO_QUIET); 168 169 for (bio = &ioend->io_inline_bio; bio; bio = next) { 170 struct bio_vec *bvec; 171 int i; 172 173 /* 174 * For the last bio, bi_private points to the ioend, so we 175 * need to explicitly end the iteration here. 176 */ 177 if (bio == last) 178 next = NULL; 179 else 180 next = bio->bi_private; 181 182 /* walk each page on bio, ending page IO on them */ 183 bio_for_each_segment_all(bvec, bio, i) 184 xfs_finish_page_writeback(inode, bvec, error); 185 186 bio_put(bio); 187 } 188 189 if (unlikely(error && !quiet)) { 190 xfs_err_ratelimited(XFS_I(inode)->i_mount, 191 "writeback error on sector %llu", start); 192 } 193 } 194 195 /* 196 * Fast and loose check if this write could update the on-disk inode size. 197 */ 198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 199 { 200 return ioend->io_offset + ioend->io_size > 201 XFS_I(ioend->io_inode)->i_d.di_size; 202 } 203 204 STATIC int 205 xfs_setfilesize_trans_alloc( 206 struct xfs_ioend *ioend) 207 { 208 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 209 struct xfs_trans *tp; 210 int error; 211 212 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 213 if (error) 214 return error; 215 216 ioend->io_append_trans = tp; 217 218 /* 219 * We may pass freeze protection with a transaction. So tell lockdep 220 * we released it. 221 */ 222 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 223 /* 224 * We hand off the transaction to the completion thread now, so 225 * clear the flag here. 226 */ 227 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 228 return 0; 229 } 230 231 /* 232 * Update on-disk file size now that data has been written to disk. 233 */ 234 STATIC int 235 __xfs_setfilesize( 236 struct xfs_inode *ip, 237 struct xfs_trans *tp, 238 xfs_off_t offset, 239 size_t size) 240 { 241 xfs_fsize_t isize; 242 243 xfs_ilock(ip, XFS_ILOCK_EXCL); 244 isize = xfs_new_eof(ip, offset + size); 245 if (!isize) { 246 xfs_iunlock(ip, XFS_ILOCK_EXCL); 247 xfs_trans_cancel(tp); 248 return 0; 249 } 250 251 trace_xfs_setfilesize(ip, offset, size); 252 253 ip->i_d.di_size = isize; 254 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 255 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 256 257 return xfs_trans_commit(tp); 258 } 259 260 int 261 xfs_setfilesize( 262 struct xfs_inode *ip, 263 xfs_off_t offset, 264 size_t size) 265 { 266 struct xfs_mount *mp = ip->i_mount; 267 struct xfs_trans *tp; 268 int error; 269 270 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 271 if (error) 272 return error; 273 274 return __xfs_setfilesize(ip, tp, offset, size); 275 } 276 277 STATIC int 278 xfs_setfilesize_ioend( 279 struct xfs_ioend *ioend, 280 int error) 281 { 282 struct xfs_inode *ip = XFS_I(ioend->io_inode); 283 struct xfs_trans *tp = ioend->io_append_trans; 284 285 /* 286 * The transaction may have been allocated in the I/O submission thread, 287 * thus we need to mark ourselves as being in a transaction manually. 288 * Similarly for freeze protection. 289 */ 290 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 291 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 292 293 /* we abort the update if there was an IO error */ 294 if (error) { 295 xfs_trans_cancel(tp); 296 return error; 297 } 298 299 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 300 } 301 302 /* 303 * IO write completion. 304 */ 305 STATIC void 306 xfs_end_io( 307 struct work_struct *work) 308 { 309 struct xfs_ioend *ioend = 310 container_of(work, struct xfs_ioend, io_work); 311 struct xfs_inode *ip = XFS_I(ioend->io_inode); 312 xfs_off_t offset = ioend->io_offset; 313 size_t size = ioend->io_size; 314 int error; 315 316 /* 317 * Just clean up the in-memory strutures if the fs has been shut down. 318 */ 319 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 320 error = -EIO; 321 goto done; 322 } 323 324 /* 325 * Clean up any COW blocks on an I/O error. 326 */ 327 error = blk_status_to_errno(ioend->io_bio->bi_status); 328 if (unlikely(error)) { 329 switch (ioend->io_type) { 330 case XFS_IO_COW: 331 xfs_reflink_cancel_cow_range(ip, offset, size, true); 332 break; 333 } 334 335 goto done; 336 } 337 338 /* 339 * Success: commit the COW or unwritten blocks if needed. 340 */ 341 switch (ioend->io_type) { 342 case XFS_IO_COW: 343 error = xfs_reflink_end_cow(ip, offset, size); 344 break; 345 case XFS_IO_UNWRITTEN: 346 error = xfs_iomap_write_unwritten(ip, offset, size); 347 break; 348 default: 349 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 350 break; 351 } 352 353 done: 354 if (ioend->io_append_trans) 355 error = xfs_setfilesize_ioend(ioend, error); 356 xfs_destroy_ioend(ioend, error); 357 } 358 359 STATIC void 360 xfs_end_bio( 361 struct bio *bio) 362 { 363 struct xfs_ioend *ioend = bio->bi_private; 364 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 365 366 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW) 367 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 368 else if (ioend->io_append_trans) 369 queue_work(mp->m_data_workqueue, &ioend->io_work); 370 else 371 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 372 } 373 374 STATIC int 375 xfs_map_blocks( 376 struct inode *inode, 377 loff_t offset, 378 struct xfs_bmbt_irec *imap, 379 int type) 380 { 381 struct xfs_inode *ip = XFS_I(inode); 382 struct xfs_mount *mp = ip->i_mount; 383 ssize_t count = i_blocksize(inode); 384 xfs_fileoff_t offset_fsb, end_fsb; 385 int error = 0; 386 int bmapi_flags = XFS_BMAPI_ENTIRE; 387 int nimaps = 1; 388 389 if (XFS_FORCED_SHUTDOWN(mp)) 390 return -EIO; 391 392 ASSERT(type != XFS_IO_COW); 393 if (type == XFS_IO_UNWRITTEN) 394 bmapi_flags |= XFS_BMAPI_IGSTATE; 395 396 xfs_ilock(ip, XFS_ILOCK_SHARED); 397 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 398 (ip->i_df.if_flags & XFS_IFEXTENTS)); 399 ASSERT(offset <= mp->m_super->s_maxbytes); 400 401 if (offset + count > mp->m_super->s_maxbytes) 402 count = mp->m_super->s_maxbytes - offset; 403 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 404 offset_fsb = XFS_B_TO_FSBT(mp, offset); 405 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 406 imap, &nimaps, bmapi_flags); 407 /* 408 * Truncate an overwrite extent if there's a pending CoW 409 * reservation before the end of this extent. This forces us 410 * to come back to writepage to take care of the CoW. 411 */ 412 if (nimaps && type == XFS_IO_OVERWRITE) 413 xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap); 414 xfs_iunlock(ip, XFS_ILOCK_SHARED); 415 416 if (error) 417 return error; 418 419 if (type == XFS_IO_DELALLOC && 420 (!nimaps || isnullstartblock(imap->br_startblock))) { 421 error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset, 422 imap); 423 if (!error) 424 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 425 return error; 426 } 427 428 #ifdef DEBUG 429 if (type == XFS_IO_UNWRITTEN) { 430 ASSERT(nimaps); 431 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 432 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 433 } 434 #endif 435 if (nimaps) 436 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 437 return 0; 438 } 439 440 STATIC bool 441 xfs_imap_valid( 442 struct inode *inode, 443 struct xfs_bmbt_irec *imap, 444 xfs_off_t offset) 445 { 446 offset >>= inode->i_blkbits; 447 448 return offset >= imap->br_startoff && 449 offset < imap->br_startoff + imap->br_blockcount; 450 } 451 452 STATIC void 453 xfs_start_buffer_writeback( 454 struct buffer_head *bh) 455 { 456 ASSERT(buffer_mapped(bh)); 457 ASSERT(buffer_locked(bh)); 458 ASSERT(!buffer_delay(bh)); 459 ASSERT(!buffer_unwritten(bh)); 460 461 bh->b_end_io = NULL; 462 set_buffer_async_write(bh); 463 set_buffer_uptodate(bh); 464 clear_buffer_dirty(bh); 465 } 466 467 STATIC void 468 xfs_start_page_writeback( 469 struct page *page, 470 int clear_dirty) 471 { 472 ASSERT(PageLocked(page)); 473 ASSERT(!PageWriteback(page)); 474 475 /* 476 * if the page was not fully cleaned, we need to ensure that the higher 477 * layers come back to it correctly. That means we need to keep the page 478 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 479 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 480 * write this page in this writeback sweep will be made. 481 */ 482 if (clear_dirty) { 483 clear_page_dirty_for_io(page); 484 set_page_writeback(page); 485 } else 486 set_page_writeback_keepwrite(page); 487 488 unlock_page(page); 489 } 490 491 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 492 { 493 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 494 } 495 496 /* 497 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 498 * it, and we submit that bio. The ioend may be used for multiple bio 499 * submissions, so we only want to allocate an append transaction for the ioend 500 * once. In the case of multiple bio submission, each bio will take an IO 501 * reference to the ioend to ensure that the ioend completion is only done once 502 * all bios have been submitted and the ioend is really done. 503 * 504 * If @fail is non-zero, it means that we have a situation where some part of 505 * the submission process has failed after we have marked paged for writeback 506 * and unlocked them. In this situation, we need to fail the bio and ioend 507 * rather than submit it to IO. This typically only happens on a filesystem 508 * shutdown. 509 */ 510 STATIC int 511 xfs_submit_ioend( 512 struct writeback_control *wbc, 513 struct xfs_ioend *ioend, 514 int status) 515 { 516 /* Convert CoW extents to regular */ 517 if (!status && ioend->io_type == XFS_IO_COW) { 518 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 519 ioend->io_offset, ioend->io_size); 520 } 521 522 /* Reserve log space if we might write beyond the on-disk inode size. */ 523 if (!status && 524 ioend->io_type != XFS_IO_UNWRITTEN && 525 xfs_ioend_is_append(ioend) && 526 !ioend->io_append_trans) 527 status = xfs_setfilesize_trans_alloc(ioend); 528 529 ioend->io_bio->bi_private = ioend; 530 ioend->io_bio->bi_end_io = xfs_end_bio; 531 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 532 533 /* 534 * If we are failing the IO now, just mark the ioend with an 535 * error and finish it. This will run IO completion immediately 536 * as there is only one reference to the ioend at this point in 537 * time. 538 */ 539 if (status) { 540 ioend->io_bio->bi_status = errno_to_blk_status(status); 541 bio_endio(ioend->io_bio); 542 return status; 543 } 544 545 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 546 submit_bio(ioend->io_bio); 547 return 0; 548 } 549 550 static void 551 xfs_init_bio_from_bh( 552 struct bio *bio, 553 struct buffer_head *bh) 554 { 555 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 556 bio_set_dev(bio, bh->b_bdev); 557 } 558 559 static struct xfs_ioend * 560 xfs_alloc_ioend( 561 struct inode *inode, 562 unsigned int type, 563 xfs_off_t offset, 564 struct buffer_head *bh) 565 { 566 struct xfs_ioend *ioend; 567 struct bio *bio; 568 569 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 570 xfs_init_bio_from_bh(bio, bh); 571 572 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 573 INIT_LIST_HEAD(&ioend->io_list); 574 ioend->io_type = type; 575 ioend->io_inode = inode; 576 ioend->io_size = 0; 577 ioend->io_offset = offset; 578 INIT_WORK(&ioend->io_work, xfs_end_io); 579 ioend->io_append_trans = NULL; 580 ioend->io_bio = bio; 581 return ioend; 582 } 583 584 /* 585 * Allocate a new bio, and chain the old bio to the new one. 586 * 587 * Note that we have to do perform the chaining in this unintuitive order 588 * so that the bi_private linkage is set up in the right direction for the 589 * traversal in xfs_destroy_ioend(). 590 */ 591 static void 592 xfs_chain_bio( 593 struct xfs_ioend *ioend, 594 struct writeback_control *wbc, 595 struct buffer_head *bh) 596 { 597 struct bio *new; 598 599 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 600 xfs_init_bio_from_bh(new, bh); 601 602 bio_chain(ioend->io_bio, new); 603 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 604 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 605 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 606 submit_bio(ioend->io_bio); 607 ioend->io_bio = new; 608 } 609 610 /* 611 * Test to see if we've been building up a completion structure for 612 * earlier buffers -- if so, we try to append to this ioend if we 613 * can, otherwise we finish off any current ioend and start another. 614 * Return the ioend we finished off so that the caller can submit it 615 * once it has finished processing the dirty page. 616 */ 617 STATIC void 618 xfs_add_to_ioend( 619 struct inode *inode, 620 struct buffer_head *bh, 621 xfs_off_t offset, 622 struct xfs_writepage_ctx *wpc, 623 struct writeback_control *wbc, 624 struct list_head *iolist) 625 { 626 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 627 bh->b_blocknr != wpc->last_block + 1 || 628 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 629 if (wpc->ioend) 630 list_add(&wpc->ioend->io_list, iolist); 631 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 632 } 633 634 /* 635 * If the buffer doesn't fit into the bio we need to allocate a new 636 * one. This shouldn't happen more than once for a given buffer. 637 */ 638 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 639 xfs_chain_bio(wpc->ioend, wbc, bh); 640 641 wpc->ioend->io_size += bh->b_size; 642 wpc->last_block = bh->b_blocknr; 643 xfs_start_buffer_writeback(bh); 644 } 645 646 STATIC void 647 xfs_map_buffer( 648 struct inode *inode, 649 struct buffer_head *bh, 650 struct xfs_bmbt_irec *imap, 651 xfs_off_t offset) 652 { 653 sector_t bn; 654 struct xfs_mount *m = XFS_I(inode)->i_mount; 655 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 656 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 657 658 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 659 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 660 661 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 662 ((offset - iomap_offset) >> inode->i_blkbits); 663 664 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 665 666 bh->b_blocknr = bn; 667 set_buffer_mapped(bh); 668 } 669 670 STATIC void 671 xfs_map_at_offset( 672 struct inode *inode, 673 struct buffer_head *bh, 674 struct xfs_bmbt_irec *imap, 675 xfs_off_t offset) 676 { 677 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 678 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 679 680 xfs_map_buffer(inode, bh, imap, offset); 681 set_buffer_mapped(bh); 682 clear_buffer_delay(bh); 683 clear_buffer_unwritten(bh); 684 } 685 686 /* 687 * Test if a given page contains at least one buffer of a given @type. 688 * If @check_all_buffers is true, then we walk all the buffers in the page to 689 * try to find one of the type passed in. If it is not set, then the caller only 690 * needs to check the first buffer on the page for a match. 691 */ 692 STATIC bool 693 xfs_check_page_type( 694 struct page *page, 695 unsigned int type, 696 bool check_all_buffers) 697 { 698 struct buffer_head *bh; 699 struct buffer_head *head; 700 701 if (PageWriteback(page)) 702 return false; 703 if (!page->mapping) 704 return false; 705 if (!page_has_buffers(page)) 706 return false; 707 708 bh = head = page_buffers(page); 709 do { 710 if (buffer_unwritten(bh)) { 711 if (type == XFS_IO_UNWRITTEN) 712 return true; 713 } else if (buffer_delay(bh)) { 714 if (type == XFS_IO_DELALLOC) 715 return true; 716 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 717 if (type == XFS_IO_OVERWRITE) 718 return true; 719 } 720 721 /* If we are only checking the first buffer, we are done now. */ 722 if (!check_all_buffers) 723 break; 724 } while ((bh = bh->b_this_page) != head); 725 726 return false; 727 } 728 729 STATIC void 730 xfs_vm_invalidatepage( 731 struct page *page, 732 unsigned int offset, 733 unsigned int length) 734 { 735 trace_xfs_invalidatepage(page->mapping->host, page, offset, 736 length); 737 block_invalidatepage(page, offset, length); 738 } 739 740 /* 741 * If the page has delalloc buffers on it, we need to punch them out before we 742 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 743 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 744 * is done on that same region - the delalloc extent is returned when none is 745 * supposed to be there. 746 * 747 * We prevent this by truncating away the delalloc regions on the page before 748 * invalidating it. Because they are delalloc, we can do this without needing a 749 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 750 * truncation without a transaction as there is no space left for block 751 * reservation (typically why we see a ENOSPC in writeback). 752 * 753 * This is not a performance critical path, so for now just do the punching a 754 * buffer head at a time. 755 */ 756 STATIC void 757 xfs_aops_discard_page( 758 struct page *page) 759 { 760 struct inode *inode = page->mapping->host; 761 struct xfs_inode *ip = XFS_I(inode); 762 struct buffer_head *bh, *head; 763 loff_t offset = page_offset(page); 764 765 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 766 goto out_invalidate; 767 768 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 769 goto out_invalidate; 770 771 xfs_alert(ip->i_mount, 772 "page discard on page %p, inode 0x%llx, offset %llu.", 773 page, ip->i_ino, offset); 774 775 xfs_ilock(ip, XFS_ILOCK_EXCL); 776 bh = head = page_buffers(page); 777 do { 778 int error; 779 xfs_fileoff_t start_fsb; 780 781 if (!buffer_delay(bh)) 782 goto next_buffer; 783 784 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 785 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 786 if (error) { 787 /* something screwed, just bail */ 788 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 789 xfs_alert(ip->i_mount, 790 "page discard unable to remove delalloc mapping."); 791 } 792 break; 793 } 794 next_buffer: 795 offset += i_blocksize(inode); 796 797 } while ((bh = bh->b_this_page) != head); 798 799 xfs_iunlock(ip, XFS_ILOCK_EXCL); 800 out_invalidate: 801 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 802 return; 803 } 804 805 static int 806 xfs_map_cow( 807 struct xfs_writepage_ctx *wpc, 808 struct inode *inode, 809 loff_t offset, 810 unsigned int *new_type) 811 { 812 struct xfs_inode *ip = XFS_I(inode); 813 struct xfs_bmbt_irec imap; 814 bool is_cow = false; 815 int error; 816 817 /* 818 * If we already have a valid COW mapping keep using it. 819 */ 820 if (wpc->io_type == XFS_IO_COW) { 821 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset); 822 if (wpc->imap_valid) { 823 *new_type = XFS_IO_COW; 824 return 0; 825 } 826 } 827 828 /* 829 * Else we need to check if there is a COW mapping at this offset. 830 */ 831 xfs_ilock(ip, XFS_ILOCK_SHARED); 832 is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap); 833 xfs_iunlock(ip, XFS_ILOCK_SHARED); 834 835 if (!is_cow) 836 return 0; 837 838 /* 839 * And if the COW mapping has a delayed extent here we need to 840 * allocate real space for it now. 841 */ 842 if (isnullstartblock(imap.br_startblock)) { 843 error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset, 844 &imap); 845 if (error) 846 return error; 847 } 848 849 wpc->io_type = *new_type = XFS_IO_COW; 850 wpc->imap_valid = true; 851 wpc->imap = imap; 852 return 0; 853 } 854 855 /* 856 * We implement an immediate ioend submission policy here to avoid needing to 857 * chain multiple ioends and hence nest mempool allocations which can violate 858 * forward progress guarantees we need to provide. The current ioend we are 859 * adding buffers to is cached on the writepage context, and if the new buffer 860 * does not append to the cached ioend it will create a new ioend and cache that 861 * instead. 862 * 863 * If a new ioend is created and cached, the old ioend is returned and queued 864 * locally for submission once the entire page is processed or an error has been 865 * detected. While ioends are submitted immediately after they are completed, 866 * batching optimisations are provided by higher level block plugging. 867 * 868 * At the end of a writeback pass, there will be a cached ioend remaining on the 869 * writepage context that the caller will need to submit. 870 */ 871 static int 872 xfs_writepage_map( 873 struct xfs_writepage_ctx *wpc, 874 struct writeback_control *wbc, 875 struct inode *inode, 876 struct page *page, 877 loff_t offset, 878 uint64_t end_offset) 879 { 880 LIST_HEAD(submit_list); 881 struct xfs_ioend *ioend, *next; 882 struct buffer_head *bh, *head; 883 ssize_t len = i_blocksize(inode); 884 int error = 0; 885 int count = 0; 886 int uptodate = 1; 887 unsigned int new_type; 888 889 bh = head = page_buffers(page); 890 offset = page_offset(page); 891 do { 892 if (offset >= end_offset) 893 break; 894 if (!buffer_uptodate(bh)) 895 uptodate = 0; 896 897 /* 898 * set_page_dirty dirties all buffers in a page, independent 899 * of their state. The dirty state however is entirely 900 * meaningless for holes (!mapped && uptodate), so skip 901 * buffers covering holes here. 902 */ 903 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 904 wpc->imap_valid = false; 905 continue; 906 } 907 908 if (buffer_unwritten(bh)) 909 new_type = XFS_IO_UNWRITTEN; 910 else if (buffer_delay(bh)) 911 new_type = XFS_IO_DELALLOC; 912 else if (buffer_uptodate(bh)) 913 new_type = XFS_IO_OVERWRITE; 914 else { 915 if (PageUptodate(page)) 916 ASSERT(buffer_mapped(bh)); 917 /* 918 * This buffer is not uptodate and will not be 919 * written to disk. Ensure that we will put any 920 * subsequent writeable buffers into a new 921 * ioend. 922 */ 923 wpc->imap_valid = false; 924 continue; 925 } 926 927 if (xfs_is_reflink_inode(XFS_I(inode))) { 928 error = xfs_map_cow(wpc, inode, offset, &new_type); 929 if (error) 930 goto out; 931 } 932 933 if (wpc->io_type != new_type) { 934 wpc->io_type = new_type; 935 wpc->imap_valid = false; 936 } 937 938 if (wpc->imap_valid) 939 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 940 offset); 941 if (!wpc->imap_valid) { 942 error = xfs_map_blocks(inode, offset, &wpc->imap, 943 wpc->io_type); 944 if (error) 945 goto out; 946 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 947 offset); 948 } 949 if (wpc->imap_valid) { 950 lock_buffer(bh); 951 if (wpc->io_type != XFS_IO_OVERWRITE) 952 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 953 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 954 count++; 955 } 956 957 } while (offset += len, ((bh = bh->b_this_page) != head)); 958 959 if (uptodate && bh == head) 960 SetPageUptodate(page); 961 962 ASSERT(wpc->ioend || list_empty(&submit_list)); 963 964 out: 965 /* 966 * On error, we have to fail the ioend here because we have locked 967 * buffers in the ioend. If we don't do this, we'll deadlock 968 * invalidating the page as that tries to lock the buffers on the page. 969 * Also, because we may have set pages under writeback, we have to make 970 * sure we run IO completion to mark the error state of the IO 971 * appropriately, so we can't cancel the ioend directly here. That means 972 * we have to mark this page as under writeback if we included any 973 * buffers from it in the ioend chain so that completion treats it 974 * correctly. 975 * 976 * If we didn't include the page in the ioend, the on error we can 977 * simply discard and unlock it as there are no other users of the page 978 * or it's buffers right now. The caller will still need to trigger 979 * submission of outstanding ioends on the writepage context so they are 980 * treated correctly on error. 981 */ 982 if (count) { 983 xfs_start_page_writeback(page, !error); 984 985 /* 986 * Preserve the original error if there was one, otherwise catch 987 * submission errors here and propagate into subsequent ioend 988 * submissions. 989 */ 990 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 991 int error2; 992 993 list_del_init(&ioend->io_list); 994 error2 = xfs_submit_ioend(wbc, ioend, error); 995 if (error2 && !error) 996 error = error2; 997 } 998 } else if (error) { 999 xfs_aops_discard_page(page); 1000 ClearPageUptodate(page); 1001 unlock_page(page); 1002 } else { 1003 /* 1004 * We can end up here with no error and nothing to write if we 1005 * race with a partial page truncate on a sub-page block sized 1006 * filesystem. In that case we need to mark the page clean. 1007 */ 1008 xfs_start_page_writeback(page, 1); 1009 end_page_writeback(page); 1010 } 1011 1012 mapping_set_error(page->mapping, error); 1013 return error; 1014 } 1015 1016 /* 1017 * Write out a dirty page. 1018 * 1019 * For delalloc space on the page we need to allocate space and flush it. 1020 * For unwritten space on the page we need to start the conversion to 1021 * regular allocated space. 1022 * For any other dirty buffer heads on the page we should flush them. 1023 */ 1024 STATIC int 1025 xfs_do_writepage( 1026 struct page *page, 1027 struct writeback_control *wbc, 1028 void *data) 1029 { 1030 struct xfs_writepage_ctx *wpc = data; 1031 struct inode *inode = page->mapping->host; 1032 loff_t offset; 1033 uint64_t end_offset; 1034 pgoff_t end_index; 1035 1036 trace_xfs_writepage(inode, page, 0, 0); 1037 1038 ASSERT(page_has_buffers(page)); 1039 1040 /* 1041 * Refuse to write the page out if we are called from reclaim context. 1042 * 1043 * This avoids stack overflows when called from deeply used stacks in 1044 * random callers for direct reclaim or memcg reclaim. We explicitly 1045 * allow reclaim from kswapd as the stack usage there is relatively low. 1046 * 1047 * This should never happen except in the case of a VM regression so 1048 * warn about it. 1049 */ 1050 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 1051 PF_MEMALLOC)) 1052 goto redirty; 1053 1054 /* 1055 * Given that we do not allow direct reclaim to call us, we should 1056 * never be called while in a filesystem transaction. 1057 */ 1058 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 1059 goto redirty; 1060 1061 /* 1062 * Is this page beyond the end of the file? 1063 * 1064 * The page index is less than the end_index, adjust the end_offset 1065 * to the highest offset that this page should represent. 1066 * ----------------------------------------------------- 1067 * | file mapping | <EOF> | 1068 * ----------------------------------------------------- 1069 * | Page ... | Page N-2 | Page N-1 | Page N | | 1070 * ^--------------------------------^----------|-------- 1071 * | desired writeback range | see else | 1072 * ---------------------------------^------------------| 1073 */ 1074 offset = i_size_read(inode); 1075 end_index = offset >> PAGE_SHIFT; 1076 if (page->index < end_index) 1077 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 1078 else { 1079 /* 1080 * Check whether the page to write out is beyond or straddles 1081 * i_size or not. 1082 * ------------------------------------------------------- 1083 * | file mapping | <EOF> | 1084 * ------------------------------------------------------- 1085 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1086 * ^--------------------------------^-----------|--------- 1087 * | | Straddles | 1088 * ---------------------------------^-----------|--------| 1089 */ 1090 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 1091 1092 /* 1093 * Skip the page if it is fully outside i_size, e.g. due to a 1094 * truncate operation that is in progress. We must redirty the 1095 * page so that reclaim stops reclaiming it. Otherwise 1096 * xfs_vm_releasepage() is called on it and gets confused. 1097 * 1098 * Note that the end_index is unsigned long, it would overflow 1099 * if the given offset is greater than 16TB on 32-bit system 1100 * and if we do check the page is fully outside i_size or not 1101 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1102 * will be evaluated to 0. Hence this page will be redirtied 1103 * and be written out repeatedly which would result in an 1104 * infinite loop, the user program that perform this operation 1105 * will hang. Instead, we can verify this situation by checking 1106 * if the page to write is totally beyond the i_size or if it's 1107 * offset is just equal to the EOF. 1108 */ 1109 if (page->index > end_index || 1110 (page->index == end_index && offset_into_page == 0)) 1111 goto redirty; 1112 1113 /* 1114 * The page straddles i_size. It must be zeroed out on each 1115 * and every writepage invocation because it may be mmapped. 1116 * "A file is mapped in multiples of the page size. For a file 1117 * that is not a multiple of the page size, the remaining 1118 * memory is zeroed when mapped, and writes to that region are 1119 * not written out to the file." 1120 */ 1121 zero_user_segment(page, offset_into_page, PAGE_SIZE); 1122 1123 /* Adjust the end_offset to the end of file */ 1124 end_offset = offset; 1125 } 1126 1127 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 1128 1129 redirty: 1130 redirty_page_for_writepage(wbc, page); 1131 unlock_page(page); 1132 return 0; 1133 } 1134 1135 STATIC int 1136 xfs_vm_writepage( 1137 struct page *page, 1138 struct writeback_control *wbc) 1139 { 1140 struct xfs_writepage_ctx wpc = { 1141 .io_type = XFS_IO_INVALID, 1142 }; 1143 int ret; 1144 1145 ret = xfs_do_writepage(page, wbc, &wpc); 1146 if (wpc.ioend) 1147 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1148 return ret; 1149 } 1150 1151 STATIC int 1152 xfs_vm_writepages( 1153 struct address_space *mapping, 1154 struct writeback_control *wbc) 1155 { 1156 struct xfs_writepage_ctx wpc = { 1157 .io_type = XFS_IO_INVALID, 1158 }; 1159 int ret; 1160 1161 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1162 if (dax_mapping(mapping)) 1163 return dax_writeback_mapping_range(mapping, 1164 xfs_find_bdev_for_inode(mapping->host), wbc); 1165 1166 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1167 if (wpc.ioend) 1168 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1169 return ret; 1170 } 1171 1172 /* 1173 * Called to move a page into cleanable state - and from there 1174 * to be released. The page should already be clean. We always 1175 * have buffer heads in this call. 1176 * 1177 * Returns 1 if the page is ok to release, 0 otherwise. 1178 */ 1179 STATIC int 1180 xfs_vm_releasepage( 1181 struct page *page, 1182 gfp_t gfp_mask) 1183 { 1184 int delalloc, unwritten; 1185 1186 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1187 1188 /* 1189 * mm accommodates an old ext3 case where clean pages might not have had 1190 * the dirty bit cleared. Thus, it can send actual dirty pages to 1191 * ->releasepage() via shrink_active_list(). Conversely, 1192 * block_invalidatepage() can send pages that are still marked dirty 1193 * but otherwise have invalidated buffers. 1194 * 1195 * We want to release the latter to avoid unnecessary buildup of the 1196 * LRU, skip the former and warn if we've left any lingering 1197 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc 1198 * or unwritten buffers and warn if the page is not dirty. Otherwise 1199 * try to release the buffers. 1200 */ 1201 xfs_count_page_state(page, &delalloc, &unwritten); 1202 1203 if (delalloc) { 1204 WARN_ON_ONCE(!PageDirty(page)); 1205 return 0; 1206 } 1207 if (unwritten) { 1208 WARN_ON_ONCE(!PageDirty(page)); 1209 return 0; 1210 } 1211 1212 return try_to_free_buffers(page); 1213 } 1214 1215 /* 1216 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1217 * is, so that we can avoid repeated get_blocks calls. 1218 * 1219 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1220 * for blocks beyond EOF must be marked new so that sub block regions can be 1221 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1222 * was just allocated or is unwritten, otherwise the callers would overwrite 1223 * existing data with zeros. Hence we have to split the mapping into a range up 1224 * to and including EOF, and a second mapping for beyond EOF. 1225 */ 1226 static void 1227 xfs_map_trim_size( 1228 struct inode *inode, 1229 sector_t iblock, 1230 struct buffer_head *bh_result, 1231 struct xfs_bmbt_irec *imap, 1232 xfs_off_t offset, 1233 ssize_t size) 1234 { 1235 xfs_off_t mapping_size; 1236 1237 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1238 mapping_size <<= inode->i_blkbits; 1239 1240 ASSERT(mapping_size > 0); 1241 if (mapping_size > size) 1242 mapping_size = size; 1243 if (offset < i_size_read(inode) && 1244 offset + mapping_size >= i_size_read(inode)) { 1245 /* limit mapping to block that spans EOF */ 1246 mapping_size = roundup_64(i_size_read(inode) - offset, 1247 i_blocksize(inode)); 1248 } 1249 if (mapping_size > LONG_MAX) 1250 mapping_size = LONG_MAX; 1251 1252 bh_result->b_size = mapping_size; 1253 } 1254 1255 static int 1256 xfs_get_blocks( 1257 struct inode *inode, 1258 sector_t iblock, 1259 struct buffer_head *bh_result, 1260 int create) 1261 { 1262 struct xfs_inode *ip = XFS_I(inode); 1263 struct xfs_mount *mp = ip->i_mount; 1264 xfs_fileoff_t offset_fsb, end_fsb; 1265 int error = 0; 1266 int lockmode = 0; 1267 struct xfs_bmbt_irec imap; 1268 int nimaps = 1; 1269 xfs_off_t offset; 1270 ssize_t size; 1271 1272 BUG_ON(create); 1273 1274 if (XFS_FORCED_SHUTDOWN(mp)) 1275 return -EIO; 1276 1277 offset = (xfs_off_t)iblock << inode->i_blkbits; 1278 ASSERT(bh_result->b_size >= i_blocksize(inode)); 1279 size = bh_result->b_size; 1280 1281 if (offset >= i_size_read(inode)) 1282 return 0; 1283 1284 /* 1285 * Direct I/O is usually done on preallocated files, so try getting 1286 * a block mapping without an exclusive lock first. 1287 */ 1288 lockmode = xfs_ilock_data_map_shared(ip); 1289 1290 ASSERT(offset <= mp->m_super->s_maxbytes); 1291 if (offset + size > mp->m_super->s_maxbytes) 1292 size = mp->m_super->s_maxbytes - offset; 1293 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1294 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1295 1296 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1297 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1298 if (error) 1299 goto out_unlock; 1300 1301 if (nimaps) { 1302 trace_xfs_get_blocks_found(ip, offset, size, 1303 imap.br_state == XFS_EXT_UNWRITTEN ? 1304 XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap); 1305 xfs_iunlock(ip, lockmode); 1306 } else { 1307 trace_xfs_get_blocks_notfound(ip, offset, size); 1308 goto out_unlock; 1309 } 1310 1311 /* trim mapping down to size requested */ 1312 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1313 1314 /* 1315 * For unwritten extents do not report a disk address in the buffered 1316 * read case (treat as if we're reading into a hole). 1317 */ 1318 if (xfs_bmap_is_real_extent(&imap)) 1319 xfs_map_buffer(inode, bh_result, &imap, offset); 1320 1321 /* 1322 * If this is a realtime file, data may be on a different device. 1323 * to that pointed to from the buffer_head b_bdev currently. 1324 */ 1325 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1326 return 0; 1327 1328 out_unlock: 1329 xfs_iunlock(ip, lockmode); 1330 return error; 1331 } 1332 1333 STATIC ssize_t 1334 xfs_vm_direct_IO( 1335 struct kiocb *iocb, 1336 struct iov_iter *iter) 1337 { 1338 /* 1339 * We just need the method present so that open/fcntl allow direct I/O. 1340 */ 1341 return -EINVAL; 1342 } 1343 1344 STATIC sector_t 1345 xfs_vm_bmap( 1346 struct address_space *mapping, 1347 sector_t block) 1348 { 1349 struct inode *inode = (struct inode *)mapping->host; 1350 struct xfs_inode *ip = XFS_I(inode); 1351 1352 trace_xfs_vm_bmap(XFS_I(inode)); 1353 1354 /* 1355 * The swap code (ab-)uses ->bmap to get a block mapping and then 1356 * bypasseѕ the file system for actual I/O. We really can't allow 1357 * that on reflinks inodes, so we have to skip out here. And yes, 1358 * 0 is the magic code for a bmap error. 1359 * 1360 * Since we don't pass back blockdev info, we can't return bmap 1361 * information for rt files either. 1362 */ 1363 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1364 return 0; 1365 1366 filemap_write_and_wait(mapping); 1367 return generic_block_bmap(mapping, block, xfs_get_blocks); 1368 } 1369 1370 STATIC int 1371 xfs_vm_readpage( 1372 struct file *unused, 1373 struct page *page) 1374 { 1375 trace_xfs_vm_readpage(page->mapping->host, 1); 1376 return mpage_readpage(page, xfs_get_blocks); 1377 } 1378 1379 STATIC int 1380 xfs_vm_readpages( 1381 struct file *unused, 1382 struct address_space *mapping, 1383 struct list_head *pages, 1384 unsigned nr_pages) 1385 { 1386 trace_xfs_vm_readpages(mapping->host, nr_pages); 1387 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1388 } 1389 1390 /* 1391 * This is basically a copy of __set_page_dirty_buffers() with one 1392 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1393 * dirty, we'll never be able to clean them because we don't write buffers 1394 * beyond EOF, and that means we can't invalidate pages that span EOF 1395 * that have been marked dirty. Further, the dirty state can leak into 1396 * the file interior if the file is extended, resulting in all sorts of 1397 * bad things happening as the state does not match the underlying data. 1398 * 1399 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1400 * this only exist because of bufferheads and how the generic code manages them. 1401 */ 1402 STATIC int 1403 xfs_vm_set_page_dirty( 1404 struct page *page) 1405 { 1406 struct address_space *mapping = page->mapping; 1407 struct inode *inode = mapping->host; 1408 loff_t end_offset; 1409 loff_t offset; 1410 int newly_dirty; 1411 1412 if (unlikely(!mapping)) 1413 return !TestSetPageDirty(page); 1414 1415 end_offset = i_size_read(inode); 1416 offset = page_offset(page); 1417 1418 spin_lock(&mapping->private_lock); 1419 if (page_has_buffers(page)) { 1420 struct buffer_head *head = page_buffers(page); 1421 struct buffer_head *bh = head; 1422 1423 do { 1424 if (offset < end_offset) 1425 set_buffer_dirty(bh); 1426 bh = bh->b_this_page; 1427 offset += i_blocksize(inode); 1428 } while (bh != head); 1429 } 1430 /* 1431 * Lock out page->mem_cgroup migration to keep PageDirty 1432 * synchronized with per-memcg dirty page counters. 1433 */ 1434 lock_page_memcg(page); 1435 newly_dirty = !TestSetPageDirty(page); 1436 spin_unlock(&mapping->private_lock); 1437 1438 if (newly_dirty) { 1439 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&mapping->tree_lock, flags); 1443 if (page->mapping) { /* Race with truncate? */ 1444 WARN_ON_ONCE(!PageUptodate(page)); 1445 account_page_dirtied(page, mapping); 1446 radix_tree_tag_set(&mapping->page_tree, 1447 page_index(page), PAGECACHE_TAG_DIRTY); 1448 } 1449 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1450 } 1451 unlock_page_memcg(page); 1452 if (newly_dirty) 1453 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1454 return newly_dirty; 1455 } 1456 1457 const struct address_space_operations xfs_address_space_operations = { 1458 .readpage = xfs_vm_readpage, 1459 .readpages = xfs_vm_readpages, 1460 .writepage = xfs_vm_writepage, 1461 .writepages = xfs_vm_writepages, 1462 .set_page_dirty = xfs_vm_set_page_dirty, 1463 .releasepage = xfs_vm_releasepage, 1464 .invalidatepage = xfs_vm_invalidatepage, 1465 .bmap = xfs_vm_bmap, 1466 .direct_IO = xfs_vm_direct_IO, 1467 .migratepage = buffer_migrate_page, 1468 .is_partially_uptodate = block_is_partially_uptodate, 1469 .error_remove_page = generic_error_remove_page, 1470 }; 1471