1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_log.h" 20 #include "xfs_sb.h" 21 #include "xfs_ag.h" 22 #include "xfs_trans.h" 23 #include "xfs_mount.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_dinode.h" 26 #include "xfs_inode.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_alloc.h" 29 #include "xfs_error.h" 30 #include "xfs_iomap.h" 31 #include "xfs_trace.h" 32 #include "xfs_bmap.h" 33 #include "xfs_bmap_util.h" 34 #include <linux/aio.h> 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 void 41 xfs_count_page_state( 42 struct page *page, 43 int *delalloc, 44 int *unwritten) 45 { 46 struct buffer_head *bh, *head; 47 48 *delalloc = *unwritten = 0; 49 50 bh = head = page_buffers(page); 51 do { 52 if (buffer_unwritten(bh)) 53 (*unwritten) = 1; 54 else if (buffer_delay(bh)) 55 (*delalloc) = 1; 56 } while ((bh = bh->b_this_page) != head); 57 } 58 59 STATIC struct block_device * 60 xfs_find_bdev_for_inode( 61 struct inode *inode) 62 { 63 struct xfs_inode *ip = XFS_I(inode); 64 struct xfs_mount *mp = ip->i_mount; 65 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return mp->m_rtdev_targp->bt_bdev; 68 else 69 return mp->m_ddev_targp->bt_bdev; 70 } 71 72 /* 73 * We're now finished for good with this ioend structure. 74 * Update the page state via the associated buffer_heads, 75 * release holds on the inode and bio, and finally free 76 * up memory. Do not use the ioend after this. 77 */ 78 STATIC void 79 xfs_destroy_ioend( 80 xfs_ioend_t *ioend) 81 { 82 struct buffer_head *bh, *next; 83 84 for (bh = ioend->io_buffer_head; bh; bh = next) { 85 next = bh->b_private; 86 bh->b_end_io(bh, !ioend->io_error); 87 } 88 89 mempool_free(ioend, xfs_ioend_pool); 90 } 91 92 /* 93 * Fast and loose check if this write could update the on-disk inode size. 94 */ 95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 96 { 97 return ioend->io_offset + ioend->io_size > 98 XFS_I(ioend->io_inode)->i_d.di_size; 99 } 100 101 STATIC int 102 xfs_setfilesize_trans_alloc( 103 struct xfs_ioend *ioend) 104 { 105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 106 struct xfs_trans *tp; 107 int error; 108 109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 110 111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 112 if (error) { 113 xfs_trans_cancel(tp, 0); 114 return error; 115 } 116 117 ioend->io_append_trans = tp; 118 119 /* 120 * We may pass freeze protection with a transaction. So tell lockdep 121 * we released it. 122 */ 123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 124 1, _THIS_IP_); 125 /* 126 * We hand off the transaction to the completion thread now, so 127 * clear the flag here. 128 */ 129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 130 return 0; 131 } 132 133 /* 134 * Update on-disk file size now that data has been written to disk. 135 */ 136 STATIC int 137 xfs_setfilesize( 138 struct xfs_ioend *ioend) 139 { 140 struct xfs_inode *ip = XFS_I(ioend->io_inode); 141 struct xfs_trans *tp = ioend->io_append_trans; 142 xfs_fsize_t isize; 143 144 /* 145 * The transaction may have been allocated in the I/O submission thread, 146 * thus we need to mark ourselves as beeing in a transaction manually. 147 * Similarly for freeze protection. 148 */ 149 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 150 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 151 0, 1, _THIS_IP_); 152 153 xfs_ilock(ip, XFS_ILOCK_EXCL); 154 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 155 if (!isize) { 156 xfs_iunlock(ip, XFS_ILOCK_EXCL); 157 xfs_trans_cancel(tp, 0); 158 return 0; 159 } 160 161 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 162 163 ip->i_d.di_size = isize; 164 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 165 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 166 167 return xfs_trans_commit(tp, 0); 168 } 169 170 /* 171 * Schedule IO completion handling on the final put of an ioend. 172 * 173 * If there is no work to do we might as well call it a day and free the 174 * ioend right now. 175 */ 176 STATIC void 177 xfs_finish_ioend( 178 struct xfs_ioend *ioend) 179 { 180 if (atomic_dec_and_test(&ioend->io_remaining)) { 181 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 182 183 if (ioend->io_type == XFS_IO_UNWRITTEN) 184 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 185 else if (ioend->io_append_trans || 186 (ioend->io_isdirect && xfs_ioend_is_append(ioend))) 187 queue_work(mp->m_data_workqueue, &ioend->io_work); 188 else 189 xfs_destroy_ioend(ioend); 190 } 191 } 192 193 /* 194 * IO write completion. 195 */ 196 STATIC void 197 xfs_end_io( 198 struct work_struct *work) 199 { 200 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 201 struct xfs_inode *ip = XFS_I(ioend->io_inode); 202 int error = 0; 203 204 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 205 ioend->io_error = -EIO; 206 goto done; 207 } 208 if (ioend->io_error) 209 goto done; 210 211 /* 212 * For unwritten extents we need to issue transactions to convert a 213 * range to normal written extens after the data I/O has finished. 214 */ 215 if (ioend->io_type == XFS_IO_UNWRITTEN) { 216 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 217 ioend->io_size); 218 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) { 219 /* 220 * For direct I/O we do not know if we need to allocate blocks 221 * or not so we can't preallocate an append transaction as that 222 * results in nested reservations and log space deadlocks. Hence 223 * allocate the transaction here. While this is sub-optimal and 224 * can block IO completion for some time, we're stuck with doing 225 * it this way until we can pass the ioend to the direct IO 226 * allocation callbacks and avoid nesting that way. 227 */ 228 error = xfs_setfilesize_trans_alloc(ioend); 229 if (error) 230 goto done; 231 error = xfs_setfilesize(ioend); 232 } else if (ioend->io_append_trans) { 233 error = xfs_setfilesize(ioend); 234 } else { 235 ASSERT(!xfs_ioend_is_append(ioend)); 236 } 237 238 done: 239 if (error) 240 ioend->io_error = -error; 241 xfs_destroy_ioend(ioend); 242 } 243 244 /* 245 * Call IO completion handling in caller context on the final put of an ioend. 246 */ 247 STATIC void 248 xfs_finish_ioend_sync( 249 struct xfs_ioend *ioend) 250 { 251 if (atomic_dec_and_test(&ioend->io_remaining)) 252 xfs_end_io(&ioend->io_work); 253 } 254 255 /* 256 * Allocate and initialise an IO completion structure. 257 * We need to track unwritten extent write completion here initially. 258 * We'll need to extend this for updating the ondisk inode size later 259 * (vs. incore size). 260 */ 261 STATIC xfs_ioend_t * 262 xfs_alloc_ioend( 263 struct inode *inode, 264 unsigned int type) 265 { 266 xfs_ioend_t *ioend; 267 268 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 269 270 /* 271 * Set the count to 1 initially, which will prevent an I/O 272 * completion callback from happening before we have started 273 * all the I/O from calling the completion routine too early. 274 */ 275 atomic_set(&ioend->io_remaining, 1); 276 ioend->io_isdirect = 0; 277 ioend->io_error = 0; 278 ioend->io_list = NULL; 279 ioend->io_type = type; 280 ioend->io_inode = inode; 281 ioend->io_buffer_head = NULL; 282 ioend->io_buffer_tail = NULL; 283 ioend->io_offset = 0; 284 ioend->io_size = 0; 285 ioend->io_append_trans = NULL; 286 287 INIT_WORK(&ioend->io_work, xfs_end_io); 288 return ioend; 289 } 290 291 STATIC int 292 xfs_map_blocks( 293 struct inode *inode, 294 loff_t offset, 295 struct xfs_bmbt_irec *imap, 296 int type, 297 int nonblocking) 298 { 299 struct xfs_inode *ip = XFS_I(inode); 300 struct xfs_mount *mp = ip->i_mount; 301 ssize_t count = 1 << inode->i_blkbits; 302 xfs_fileoff_t offset_fsb, end_fsb; 303 int error = 0; 304 int bmapi_flags = XFS_BMAPI_ENTIRE; 305 int nimaps = 1; 306 307 if (XFS_FORCED_SHUTDOWN(mp)) 308 return -XFS_ERROR(EIO); 309 310 if (type == XFS_IO_UNWRITTEN) 311 bmapi_flags |= XFS_BMAPI_IGSTATE; 312 313 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 314 if (nonblocking) 315 return -XFS_ERROR(EAGAIN); 316 xfs_ilock(ip, XFS_ILOCK_SHARED); 317 } 318 319 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 320 (ip->i_df.if_flags & XFS_IFEXTENTS)); 321 ASSERT(offset <= mp->m_super->s_maxbytes); 322 323 if (offset + count > mp->m_super->s_maxbytes) 324 count = mp->m_super->s_maxbytes - offset; 325 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 326 offset_fsb = XFS_B_TO_FSBT(mp, offset); 327 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 328 imap, &nimaps, bmapi_flags); 329 xfs_iunlock(ip, XFS_ILOCK_SHARED); 330 331 if (error) 332 return -XFS_ERROR(error); 333 334 if (type == XFS_IO_DELALLOC && 335 (!nimaps || isnullstartblock(imap->br_startblock))) { 336 error = xfs_iomap_write_allocate(ip, offset, count, imap); 337 if (!error) 338 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 339 return -XFS_ERROR(error); 340 } 341 342 #ifdef DEBUG 343 if (type == XFS_IO_UNWRITTEN) { 344 ASSERT(nimaps); 345 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 346 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 347 } 348 #endif 349 if (nimaps) 350 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 351 return 0; 352 } 353 354 STATIC int 355 xfs_imap_valid( 356 struct inode *inode, 357 struct xfs_bmbt_irec *imap, 358 xfs_off_t offset) 359 { 360 offset >>= inode->i_blkbits; 361 362 return offset >= imap->br_startoff && 363 offset < imap->br_startoff + imap->br_blockcount; 364 } 365 366 /* 367 * BIO completion handler for buffered IO. 368 */ 369 STATIC void 370 xfs_end_bio( 371 struct bio *bio, 372 int error) 373 { 374 xfs_ioend_t *ioend = bio->bi_private; 375 376 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 377 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 378 379 /* Toss bio and pass work off to an xfsdatad thread */ 380 bio->bi_private = NULL; 381 bio->bi_end_io = NULL; 382 bio_put(bio); 383 384 xfs_finish_ioend(ioend); 385 } 386 387 STATIC void 388 xfs_submit_ioend_bio( 389 struct writeback_control *wbc, 390 xfs_ioend_t *ioend, 391 struct bio *bio) 392 { 393 atomic_inc(&ioend->io_remaining); 394 bio->bi_private = ioend; 395 bio->bi_end_io = xfs_end_bio; 396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 397 } 398 399 STATIC struct bio * 400 xfs_alloc_ioend_bio( 401 struct buffer_head *bh) 402 { 403 int nvecs = bio_get_nr_vecs(bh->b_bdev); 404 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 405 406 ASSERT(bio->bi_private == NULL); 407 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 408 bio->bi_bdev = bh->b_bdev; 409 return bio; 410 } 411 412 STATIC void 413 xfs_start_buffer_writeback( 414 struct buffer_head *bh) 415 { 416 ASSERT(buffer_mapped(bh)); 417 ASSERT(buffer_locked(bh)); 418 ASSERT(!buffer_delay(bh)); 419 ASSERT(!buffer_unwritten(bh)); 420 421 mark_buffer_async_write(bh); 422 set_buffer_uptodate(bh); 423 clear_buffer_dirty(bh); 424 } 425 426 STATIC void 427 xfs_start_page_writeback( 428 struct page *page, 429 int clear_dirty, 430 int buffers) 431 { 432 ASSERT(PageLocked(page)); 433 ASSERT(!PageWriteback(page)); 434 if (clear_dirty) 435 clear_page_dirty_for_io(page); 436 set_page_writeback(page); 437 unlock_page(page); 438 /* If no buffers on the page are to be written, finish it here */ 439 if (!buffers) 440 end_page_writeback(page); 441 } 442 443 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 444 { 445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 446 } 447 448 /* 449 * Submit all of the bios for all of the ioends we have saved up, covering the 450 * initial writepage page and also any probed pages. 451 * 452 * Because we may have multiple ioends spanning a page, we need to start 453 * writeback on all the buffers before we submit them for I/O. If we mark the 454 * buffers as we got, then we can end up with a page that only has buffers 455 * marked async write and I/O complete on can occur before we mark the other 456 * buffers async write. 457 * 458 * The end result of this is that we trip a bug in end_page_writeback() because 459 * we call it twice for the one page as the code in end_buffer_async_write() 460 * assumes that all buffers on the page are started at the same time. 461 * 462 * The fix is two passes across the ioend list - one to start writeback on the 463 * buffer_heads, and then submit them for I/O on the second pass. 464 * 465 * If @fail is non-zero, it means that we have a situation where some part of 466 * the submission process has failed after we have marked paged for writeback 467 * and unlocked them. In this situation, we need to fail the ioend chain rather 468 * than submit it to IO. This typically only happens on a filesystem shutdown. 469 */ 470 STATIC void 471 xfs_submit_ioend( 472 struct writeback_control *wbc, 473 xfs_ioend_t *ioend, 474 int fail) 475 { 476 xfs_ioend_t *head = ioend; 477 xfs_ioend_t *next; 478 struct buffer_head *bh; 479 struct bio *bio; 480 sector_t lastblock = 0; 481 482 /* Pass 1 - start writeback */ 483 do { 484 next = ioend->io_list; 485 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 486 xfs_start_buffer_writeback(bh); 487 } while ((ioend = next) != NULL); 488 489 /* Pass 2 - submit I/O */ 490 ioend = head; 491 do { 492 next = ioend->io_list; 493 bio = NULL; 494 495 /* 496 * If we are failing the IO now, just mark the ioend with an 497 * error and finish it. This will run IO completion immediately 498 * as there is only one reference to the ioend at this point in 499 * time. 500 */ 501 if (fail) { 502 ioend->io_error = -fail; 503 xfs_finish_ioend(ioend); 504 continue; 505 } 506 507 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 508 509 if (!bio) { 510 retry: 511 bio = xfs_alloc_ioend_bio(bh); 512 } else if (bh->b_blocknr != lastblock + 1) { 513 xfs_submit_ioend_bio(wbc, ioend, bio); 514 goto retry; 515 } 516 517 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 518 xfs_submit_ioend_bio(wbc, ioend, bio); 519 goto retry; 520 } 521 522 lastblock = bh->b_blocknr; 523 } 524 if (bio) 525 xfs_submit_ioend_bio(wbc, ioend, bio); 526 xfs_finish_ioend(ioend); 527 } while ((ioend = next) != NULL); 528 } 529 530 /* 531 * Cancel submission of all buffer_heads so far in this endio. 532 * Toss the endio too. Only ever called for the initial page 533 * in a writepage request, so only ever one page. 534 */ 535 STATIC void 536 xfs_cancel_ioend( 537 xfs_ioend_t *ioend) 538 { 539 xfs_ioend_t *next; 540 struct buffer_head *bh, *next_bh; 541 542 do { 543 next = ioend->io_list; 544 bh = ioend->io_buffer_head; 545 do { 546 next_bh = bh->b_private; 547 clear_buffer_async_write(bh); 548 unlock_buffer(bh); 549 } while ((bh = next_bh) != NULL); 550 551 mempool_free(ioend, xfs_ioend_pool); 552 } while ((ioend = next) != NULL); 553 } 554 555 /* 556 * Test to see if we've been building up a completion structure for 557 * earlier buffers -- if so, we try to append to this ioend if we 558 * can, otherwise we finish off any current ioend and start another. 559 * Return true if we've finished the given ioend. 560 */ 561 STATIC void 562 xfs_add_to_ioend( 563 struct inode *inode, 564 struct buffer_head *bh, 565 xfs_off_t offset, 566 unsigned int type, 567 xfs_ioend_t **result, 568 int need_ioend) 569 { 570 xfs_ioend_t *ioend = *result; 571 572 if (!ioend || need_ioend || type != ioend->io_type) { 573 xfs_ioend_t *previous = *result; 574 575 ioend = xfs_alloc_ioend(inode, type); 576 ioend->io_offset = offset; 577 ioend->io_buffer_head = bh; 578 ioend->io_buffer_tail = bh; 579 if (previous) 580 previous->io_list = ioend; 581 *result = ioend; 582 } else { 583 ioend->io_buffer_tail->b_private = bh; 584 ioend->io_buffer_tail = bh; 585 } 586 587 bh->b_private = NULL; 588 ioend->io_size += bh->b_size; 589 } 590 591 STATIC void 592 xfs_map_buffer( 593 struct inode *inode, 594 struct buffer_head *bh, 595 struct xfs_bmbt_irec *imap, 596 xfs_off_t offset) 597 { 598 sector_t bn; 599 struct xfs_mount *m = XFS_I(inode)->i_mount; 600 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 601 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 602 603 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 604 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 605 606 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 607 ((offset - iomap_offset) >> inode->i_blkbits); 608 609 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 610 611 bh->b_blocknr = bn; 612 set_buffer_mapped(bh); 613 } 614 615 STATIC void 616 xfs_map_at_offset( 617 struct inode *inode, 618 struct buffer_head *bh, 619 struct xfs_bmbt_irec *imap, 620 xfs_off_t offset) 621 { 622 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 624 625 xfs_map_buffer(inode, bh, imap, offset); 626 set_buffer_mapped(bh); 627 clear_buffer_delay(bh); 628 clear_buffer_unwritten(bh); 629 } 630 631 /* 632 * Test if a given page is suitable for writing as part of an unwritten 633 * or delayed allocate extent. 634 */ 635 STATIC int 636 xfs_check_page_type( 637 struct page *page, 638 unsigned int type) 639 { 640 if (PageWriteback(page)) 641 return 0; 642 643 if (page->mapping && page_has_buffers(page)) { 644 struct buffer_head *bh, *head; 645 int acceptable = 0; 646 647 bh = head = page_buffers(page); 648 do { 649 if (buffer_unwritten(bh)) 650 acceptable += (type == XFS_IO_UNWRITTEN); 651 else if (buffer_delay(bh)) 652 acceptable += (type == XFS_IO_DELALLOC); 653 else if (buffer_dirty(bh) && buffer_mapped(bh)) 654 acceptable += (type == XFS_IO_OVERWRITE); 655 else 656 break; 657 } while ((bh = bh->b_this_page) != head); 658 659 if (acceptable) 660 return 1; 661 } 662 663 return 0; 664 } 665 666 /* 667 * Allocate & map buffers for page given the extent map. Write it out. 668 * except for the original page of a writepage, this is called on 669 * delalloc/unwritten pages only, for the original page it is possible 670 * that the page has no mapping at all. 671 */ 672 STATIC int 673 xfs_convert_page( 674 struct inode *inode, 675 struct page *page, 676 loff_t tindex, 677 struct xfs_bmbt_irec *imap, 678 xfs_ioend_t **ioendp, 679 struct writeback_control *wbc) 680 { 681 struct buffer_head *bh, *head; 682 xfs_off_t end_offset; 683 unsigned long p_offset; 684 unsigned int type; 685 int len, page_dirty; 686 int count = 0, done = 0, uptodate = 1; 687 xfs_off_t offset = page_offset(page); 688 689 if (page->index != tindex) 690 goto fail; 691 if (!trylock_page(page)) 692 goto fail; 693 if (PageWriteback(page)) 694 goto fail_unlock_page; 695 if (page->mapping != inode->i_mapping) 696 goto fail_unlock_page; 697 if (!xfs_check_page_type(page, (*ioendp)->io_type)) 698 goto fail_unlock_page; 699 700 /* 701 * page_dirty is initially a count of buffers on the page before 702 * EOF and is decremented as we move each into a cleanable state. 703 * 704 * Derivation: 705 * 706 * End offset is the highest offset that this page should represent. 707 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 708 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 709 * hence give us the correct page_dirty count. On any other page, 710 * it will be zero and in that case we need page_dirty to be the 711 * count of buffers on the page. 712 */ 713 end_offset = min_t(unsigned long long, 714 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 715 i_size_read(inode)); 716 717 /* 718 * If the current map does not span the entire page we are about to try 719 * to write, then give up. The only way we can write a page that spans 720 * multiple mappings in a single writeback iteration is via the 721 * xfs_vm_writepage() function. Data integrity writeback requires the 722 * entire page to be written in a single attempt, otherwise the part of 723 * the page we don't write here doesn't get written as part of the data 724 * integrity sync. 725 * 726 * For normal writeback, we also don't attempt to write partial pages 727 * here as it simply means that write_cache_pages() will see it under 728 * writeback and ignore the page until some point in the future, at 729 * which time this will be the only page in the file that needs 730 * writeback. Hence for more optimal IO patterns, we should always 731 * avoid partial page writeback due to multiple mappings on a page here. 732 */ 733 if (!xfs_imap_valid(inode, imap, end_offset)) 734 goto fail_unlock_page; 735 736 len = 1 << inode->i_blkbits; 737 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 738 PAGE_CACHE_SIZE); 739 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 740 page_dirty = p_offset / len; 741 742 bh = head = page_buffers(page); 743 do { 744 if (offset >= end_offset) 745 break; 746 if (!buffer_uptodate(bh)) 747 uptodate = 0; 748 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 749 done = 1; 750 continue; 751 } 752 753 if (buffer_unwritten(bh) || buffer_delay(bh) || 754 buffer_mapped(bh)) { 755 if (buffer_unwritten(bh)) 756 type = XFS_IO_UNWRITTEN; 757 else if (buffer_delay(bh)) 758 type = XFS_IO_DELALLOC; 759 else 760 type = XFS_IO_OVERWRITE; 761 762 if (!xfs_imap_valid(inode, imap, offset)) { 763 done = 1; 764 continue; 765 } 766 767 lock_buffer(bh); 768 if (type != XFS_IO_OVERWRITE) 769 xfs_map_at_offset(inode, bh, imap, offset); 770 xfs_add_to_ioend(inode, bh, offset, type, 771 ioendp, done); 772 773 page_dirty--; 774 count++; 775 } else { 776 done = 1; 777 } 778 } while (offset += len, (bh = bh->b_this_page) != head); 779 780 if (uptodate && bh == head) 781 SetPageUptodate(page); 782 783 if (count) { 784 if (--wbc->nr_to_write <= 0 && 785 wbc->sync_mode == WB_SYNC_NONE) 786 done = 1; 787 } 788 xfs_start_page_writeback(page, !page_dirty, count); 789 790 return done; 791 fail_unlock_page: 792 unlock_page(page); 793 fail: 794 return 1; 795 } 796 797 /* 798 * Convert & write out a cluster of pages in the same extent as defined 799 * by mp and following the start page. 800 */ 801 STATIC void 802 xfs_cluster_write( 803 struct inode *inode, 804 pgoff_t tindex, 805 struct xfs_bmbt_irec *imap, 806 xfs_ioend_t **ioendp, 807 struct writeback_control *wbc, 808 pgoff_t tlast) 809 { 810 struct pagevec pvec; 811 int done = 0, i; 812 813 pagevec_init(&pvec, 0); 814 while (!done && tindex <= tlast) { 815 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 816 817 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 818 break; 819 820 for (i = 0; i < pagevec_count(&pvec); i++) { 821 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 822 imap, ioendp, wbc); 823 if (done) 824 break; 825 } 826 827 pagevec_release(&pvec); 828 cond_resched(); 829 } 830 } 831 832 STATIC void 833 xfs_vm_invalidatepage( 834 struct page *page, 835 unsigned int offset, 836 unsigned int length) 837 { 838 trace_xfs_invalidatepage(page->mapping->host, page, offset, 839 length); 840 block_invalidatepage(page, offset, length); 841 } 842 843 /* 844 * If the page has delalloc buffers on it, we need to punch them out before we 845 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 846 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 847 * is done on that same region - the delalloc extent is returned when none is 848 * supposed to be there. 849 * 850 * We prevent this by truncating away the delalloc regions on the page before 851 * invalidating it. Because they are delalloc, we can do this without needing a 852 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 853 * truncation without a transaction as there is no space left for block 854 * reservation (typically why we see a ENOSPC in writeback). 855 * 856 * This is not a performance critical path, so for now just do the punching a 857 * buffer head at a time. 858 */ 859 STATIC void 860 xfs_aops_discard_page( 861 struct page *page) 862 { 863 struct inode *inode = page->mapping->host; 864 struct xfs_inode *ip = XFS_I(inode); 865 struct buffer_head *bh, *head; 866 loff_t offset = page_offset(page); 867 868 if (!xfs_check_page_type(page, XFS_IO_DELALLOC)) 869 goto out_invalidate; 870 871 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 872 goto out_invalidate; 873 874 xfs_alert(ip->i_mount, 875 "page discard on page %p, inode 0x%llx, offset %llu.", 876 page, ip->i_ino, offset); 877 878 xfs_ilock(ip, XFS_ILOCK_EXCL); 879 bh = head = page_buffers(page); 880 do { 881 int error; 882 xfs_fileoff_t start_fsb; 883 884 if (!buffer_delay(bh)) 885 goto next_buffer; 886 887 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 888 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 889 if (error) { 890 /* something screwed, just bail */ 891 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 892 xfs_alert(ip->i_mount, 893 "page discard unable to remove delalloc mapping."); 894 } 895 break; 896 } 897 next_buffer: 898 offset += 1 << inode->i_blkbits; 899 900 } while ((bh = bh->b_this_page) != head); 901 902 xfs_iunlock(ip, XFS_ILOCK_EXCL); 903 out_invalidate: 904 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 905 return; 906 } 907 908 /* 909 * Write out a dirty page. 910 * 911 * For delalloc space on the page we need to allocate space and flush it. 912 * For unwritten space on the page we need to start the conversion to 913 * regular allocated space. 914 * For any other dirty buffer heads on the page we should flush them. 915 */ 916 STATIC int 917 xfs_vm_writepage( 918 struct page *page, 919 struct writeback_control *wbc) 920 { 921 struct inode *inode = page->mapping->host; 922 struct buffer_head *bh, *head; 923 struct xfs_bmbt_irec imap; 924 xfs_ioend_t *ioend = NULL, *iohead = NULL; 925 loff_t offset; 926 unsigned int type; 927 __uint64_t end_offset; 928 pgoff_t end_index, last_index; 929 ssize_t len; 930 int err, imap_valid = 0, uptodate = 1; 931 int count = 0; 932 int nonblocking = 0; 933 934 trace_xfs_writepage(inode, page, 0, 0); 935 936 ASSERT(page_has_buffers(page)); 937 938 /* 939 * Refuse to write the page out if we are called from reclaim context. 940 * 941 * This avoids stack overflows when called from deeply used stacks in 942 * random callers for direct reclaim or memcg reclaim. We explicitly 943 * allow reclaim from kswapd as the stack usage there is relatively low. 944 * 945 * This should never happen except in the case of a VM regression so 946 * warn about it. 947 */ 948 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 949 PF_MEMALLOC)) 950 goto redirty; 951 952 /* 953 * Given that we do not allow direct reclaim to call us, we should 954 * never be called while in a filesystem transaction. 955 */ 956 if (WARN_ON(current->flags & PF_FSTRANS)) 957 goto redirty; 958 959 /* Is this page beyond the end of the file? */ 960 offset = i_size_read(inode); 961 end_index = offset >> PAGE_CACHE_SHIFT; 962 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 963 if (page->index >= end_index) { 964 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 965 966 /* 967 * Skip the page if it is fully outside i_size, e.g. due to a 968 * truncate operation that is in progress. We must redirty the 969 * page so that reclaim stops reclaiming it. Otherwise 970 * xfs_vm_releasepage() is called on it and gets confused. 971 */ 972 if (page->index >= end_index + 1 || offset_into_page == 0) 973 goto redirty; 974 975 /* 976 * The page straddles i_size. It must be zeroed out on each 977 * and every writepage invocation because it may be mmapped. 978 * "A file is mapped in multiples of the page size. For a file 979 * that is not a multiple of the page size, the remaining 980 * memory is zeroed when mapped, and writes to that region are 981 * not written out to the file." 982 */ 983 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 984 } 985 986 end_offset = min_t(unsigned long long, 987 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 988 offset); 989 len = 1 << inode->i_blkbits; 990 991 bh = head = page_buffers(page); 992 offset = page_offset(page); 993 type = XFS_IO_OVERWRITE; 994 995 if (wbc->sync_mode == WB_SYNC_NONE) 996 nonblocking = 1; 997 998 do { 999 int new_ioend = 0; 1000 1001 if (offset >= end_offset) 1002 break; 1003 if (!buffer_uptodate(bh)) 1004 uptodate = 0; 1005 1006 /* 1007 * set_page_dirty dirties all buffers in a page, independent 1008 * of their state. The dirty state however is entirely 1009 * meaningless for holes (!mapped && uptodate), so skip 1010 * buffers covering holes here. 1011 */ 1012 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1013 imap_valid = 0; 1014 continue; 1015 } 1016 1017 if (buffer_unwritten(bh)) { 1018 if (type != XFS_IO_UNWRITTEN) { 1019 type = XFS_IO_UNWRITTEN; 1020 imap_valid = 0; 1021 } 1022 } else if (buffer_delay(bh)) { 1023 if (type != XFS_IO_DELALLOC) { 1024 type = XFS_IO_DELALLOC; 1025 imap_valid = 0; 1026 } 1027 } else if (buffer_uptodate(bh)) { 1028 if (type != XFS_IO_OVERWRITE) { 1029 type = XFS_IO_OVERWRITE; 1030 imap_valid = 0; 1031 } 1032 } else { 1033 if (PageUptodate(page)) 1034 ASSERT(buffer_mapped(bh)); 1035 /* 1036 * This buffer is not uptodate and will not be 1037 * written to disk. Ensure that we will put any 1038 * subsequent writeable buffers into a new 1039 * ioend. 1040 */ 1041 imap_valid = 0; 1042 continue; 1043 } 1044 1045 if (imap_valid) 1046 imap_valid = xfs_imap_valid(inode, &imap, offset); 1047 if (!imap_valid) { 1048 /* 1049 * If we didn't have a valid mapping then we need to 1050 * put the new mapping into a separate ioend structure. 1051 * This ensures non-contiguous extents always have 1052 * separate ioends, which is particularly important 1053 * for unwritten extent conversion at I/O completion 1054 * time. 1055 */ 1056 new_ioend = 1; 1057 err = xfs_map_blocks(inode, offset, &imap, type, 1058 nonblocking); 1059 if (err) 1060 goto error; 1061 imap_valid = xfs_imap_valid(inode, &imap, offset); 1062 } 1063 if (imap_valid) { 1064 lock_buffer(bh); 1065 if (type != XFS_IO_OVERWRITE) 1066 xfs_map_at_offset(inode, bh, &imap, offset); 1067 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1068 new_ioend); 1069 count++; 1070 } 1071 1072 if (!iohead) 1073 iohead = ioend; 1074 1075 } while (offset += len, ((bh = bh->b_this_page) != head)); 1076 1077 if (uptodate && bh == head) 1078 SetPageUptodate(page); 1079 1080 xfs_start_page_writeback(page, 1, count); 1081 1082 /* if there is no IO to be submitted for this page, we are done */ 1083 if (!ioend) 1084 return 0; 1085 1086 ASSERT(iohead); 1087 1088 /* 1089 * Any errors from this point onwards need tobe reported through the IO 1090 * completion path as we have marked the initial page as under writeback 1091 * and unlocked it. 1092 */ 1093 if (imap_valid) { 1094 xfs_off_t end_index; 1095 1096 end_index = imap.br_startoff + imap.br_blockcount; 1097 1098 /* to bytes */ 1099 end_index <<= inode->i_blkbits; 1100 1101 /* to pages */ 1102 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1103 1104 /* check against file size */ 1105 if (end_index > last_index) 1106 end_index = last_index; 1107 1108 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1109 wbc, end_index); 1110 } 1111 1112 1113 /* 1114 * Reserve log space if we might write beyond the on-disk inode size. 1115 */ 1116 err = 0; 1117 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1118 err = xfs_setfilesize_trans_alloc(ioend); 1119 1120 xfs_submit_ioend(wbc, iohead, err); 1121 1122 return 0; 1123 1124 error: 1125 if (iohead) 1126 xfs_cancel_ioend(iohead); 1127 1128 if (err == -EAGAIN) 1129 goto redirty; 1130 1131 xfs_aops_discard_page(page); 1132 ClearPageUptodate(page); 1133 unlock_page(page); 1134 return err; 1135 1136 redirty: 1137 redirty_page_for_writepage(wbc, page); 1138 unlock_page(page); 1139 return 0; 1140 } 1141 1142 STATIC int 1143 xfs_vm_writepages( 1144 struct address_space *mapping, 1145 struct writeback_control *wbc) 1146 { 1147 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1148 return generic_writepages(mapping, wbc); 1149 } 1150 1151 /* 1152 * Called to move a page into cleanable state - and from there 1153 * to be released. The page should already be clean. We always 1154 * have buffer heads in this call. 1155 * 1156 * Returns 1 if the page is ok to release, 0 otherwise. 1157 */ 1158 STATIC int 1159 xfs_vm_releasepage( 1160 struct page *page, 1161 gfp_t gfp_mask) 1162 { 1163 int delalloc, unwritten; 1164 1165 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1166 1167 xfs_count_page_state(page, &delalloc, &unwritten); 1168 1169 if (WARN_ON(delalloc)) 1170 return 0; 1171 if (WARN_ON(unwritten)) 1172 return 0; 1173 1174 return try_to_free_buffers(page); 1175 } 1176 1177 STATIC int 1178 __xfs_get_blocks( 1179 struct inode *inode, 1180 sector_t iblock, 1181 struct buffer_head *bh_result, 1182 int create, 1183 int direct) 1184 { 1185 struct xfs_inode *ip = XFS_I(inode); 1186 struct xfs_mount *mp = ip->i_mount; 1187 xfs_fileoff_t offset_fsb, end_fsb; 1188 int error = 0; 1189 int lockmode = 0; 1190 struct xfs_bmbt_irec imap; 1191 int nimaps = 1; 1192 xfs_off_t offset; 1193 ssize_t size; 1194 int new = 0; 1195 1196 if (XFS_FORCED_SHUTDOWN(mp)) 1197 return -XFS_ERROR(EIO); 1198 1199 offset = (xfs_off_t)iblock << inode->i_blkbits; 1200 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1201 size = bh_result->b_size; 1202 1203 if (!create && direct && offset >= i_size_read(inode)) 1204 return 0; 1205 1206 /* 1207 * Direct I/O is usually done on preallocated files, so try getting 1208 * a block mapping without an exclusive lock first. For buffered 1209 * writes we already have the exclusive iolock anyway, so avoiding 1210 * a lock roundtrip here by taking the ilock exclusive from the 1211 * beginning is a useful micro optimization. 1212 */ 1213 if (create && !direct) { 1214 lockmode = XFS_ILOCK_EXCL; 1215 xfs_ilock(ip, lockmode); 1216 } else { 1217 lockmode = xfs_ilock_map_shared(ip); 1218 } 1219 1220 ASSERT(offset <= mp->m_super->s_maxbytes); 1221 if (offset + size > mp->m_super->s_maxbytes) 1222 size = mp->m_super->s_maxbytes - offset; 1223 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1224 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1225 1226 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1227 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1228 if (error) 1229 goto out_unlock; 1230 1231 if (create && 1232 (!nimaps || 1233 (imap.br_startblock == HOLESTARTBLOCK || 1234 imap.br_startblock == DELAYSTARTBLOCK))) { 1235 if (direct || xfs_get_extsz_hint(ip)) { 1236 /* 1237 * Drop the ilock in preparation for starting the block 1238 * allocation transaction. It will be retaken 1239 * exclusively inside xfs_iomap_write_direct for the 1240 * actual allocation. 1241 */ 1242 xfs_iunlock(ip, lockmode); 1243 error = xfs_iomap_write_direct(ip, offset, size, 1244 &imap, nimaps); 1245 if (error) 1246 return -error; 1247 new = 1; 1248 } else { 1249 /* 1250 * Delalloc reservations do not require a transaction, 1251 * we can go on without dropping the lock here. If we 1252 * are allocating a new delalloc block, make sure that 1253 * we set the new flag so that we mark the buffer new so 1254 * that we know that it is newly allocated if the write 1255 * fails. 1256 */ 1257 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1258 new = 1; 1259 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1260 if (error) 1261 goto out_unlock; 1262 1263 xfs_iunlock(ip, lockmode); 1264 } 1265 1266 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1267 } else if (nimaps) { 1268 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1269 xfs_iunlock(ip, lockmode); 1270 } else { 1271 trace_xfs_get_blocks_notfound(ip, offset, size); 1272 goto out_unlock; 1273 } 1274 1275 if (imap.br_startblock != HOLESTARTBLOCK && 1276 imap.br_startblock != DELAYSTARTBLOCK) { 1277 /* 1278 * For unwritten extents do not report a disk address on 1279 * the read case (treat as if we're reading into a hole). 1280 */ 1281 if (create || !ISUNWRITTEN(&imap)) 1282 xfs_map_buffer(inode, bh_result, &imap, offset); 1283 if (create && ISUNWRITTEN(&imap)) { 1284 if (direct) { 1285 bh_result->b_private = inode; 1286 set_buffer_defer_completion(bh_result); 1287 } 1288 set_buffer_unwritten(bh_result); 1289 } 1290 } 1291 1292 /* 1293 * If this is a realtime file, data may be on a different device. 1294 * to that pointed to from the buffer_head b_bdev currently. 1295 */ 1296 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1297 1298 /* 1299 * If we previously allocated a block out beyond eof and we are now 1300 * coming back to use it then we will need to flag it as new even if it 1301 * has a disk address. 1302 * 1303 * With sub-block writes into unwritten extents we also need to mark 1304 * the buffer as new so that the unwritten parts of the buffer gets 1305 * correctly zeroed. 1306 */ 1307 if (create && 1308 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1309 (offset >= i_size_read(inode)) || 1310 (new || ISUNWRITTEN(&imap)))) 1311 set_buffer_new(bh_result); 1312 1313 if (imap.br_startblock == DELAYSTARTBLOCK) { 1314 BUG_ON(direct); 1315 if (create) { 1316 set_buffer_uptodate(bh_result); 1317 set_buffer_mapped(bh_result); 1318 set_buffer_delay(bh_result); 1319 } 1320 } 1321 1322 /* 1323 * If this is O_DIRECT or the mpage code calling tell them how large 1324 * the mapping is, so that we can avoid repeated get_blocks calls. 1325 */ 1326 if (direct || size > (1 << inode->i_blkbits)) { 1327 xfs_off_t mapping_size; 1328 1329 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1330 mapping_size <<= inode->i_blkbits; 1331 1332 ASSERT(mapping_size > 0); 1333 if (mapping_size > size) 1334 mapping_size = size; 1335 if (mapping_size > LONG_MAX) 1336 mapping_size = LONG_MAX; 1337 1338 bh_result->b_size = mapping_size; 1339 } 1340 1341 return 0; 1342 1343 out_unlock: 1344 xfs_iunlock(ip, lockmode); 1345 return -error; 1346 } 1347 1348 int 1349 xfs_get_blocks( 1350 struct inode *inode, 1351 sector_t iblock, 1352 struct buffer_head *bh_result, 1353 int create) 1354 { 1355 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1356 } 1357 1358 STATIC int 1359 xfs_get_blocks_direct( 1360 struct inode *inode, 1361 sector_t iblock, 1362 struct buffer_head *bh_result, 1363 int create) 1364 { 1365 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1366 } 1367 1368 /* 1369 * Complete a direct I/O write request. 1370 * 1371 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1372 * need to issue a transaction to convert the range from unwritten to written 1373 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1374 * to do this and we are done. But in case this was a successful AIO 1375 * request this handler is called from interrupt context, from which we 1376 * can't start transactions. In that case offload the I/O completion to 1377 * the workqueues we also use for buffered I/O completion. 1378 */ 1379 STATIC void 1380 xfs_end_io_direct_write( 1381 struct kiocb *iocb, 1382 loff_t offset, 1383 ssize_t size, 1384 void *private) 1385 { 1386 struct xfs_ioend *ioend = iocb->private; 1387 1388 /* 1389 * While the generic direct I/O code updates the inode size, it does 1390 * so only after the end_io handler is called, which means our 1391 * end_io handler thinks the on-disk size is outside the in-core 1392 * size. To prevent this just update it a little bit earlier here. 1393 */ 1394 if (offset + size > i_size_read(ioend->io_inode)) 1395 i_size_write(ioend->io_inode, offset + size); 1396 1397 /* 1398 * blockdev_direct_IO can return an error even after the I/O 1399 * completion handler was called. Thus we need to protect 1400 * against double-freeing. 1401 */ 1402 iocb->private = NULL; 1403 1404 ioend->io_offset = offset; 1405 ioend->io_size = size; 1406 if (private && size > 0) 1407 ioend->io_type = XFS_IO_UNWRITTEN; 1408 1409 xfs_finish_ioend_sync(ioend); 1410 } 1411 1412 STATIC ssize_t 1413 xfs_vm_direct_IO( 1414 int rw, 1415 struct kiocb *iocb, 1416 const struct iovec *iov, 1417 loff_t offset, 1418 unsigned long nr_segs) 1419 { 1420 struct inode *inode = iocb->ki_filp->f_mapping->host; 1421 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1422 struct xfs_ioend *ioend = NULL; 1423 ssize_t ret; 1424 1425 if (rw & WRITE) { 1426 size_t size = iov_length(iov, nr_segs); 1427 1428 /* 1429 * We cannot preallocate a size update transaction here as we 1430 * don't know whether allocation is necessary or not. Hence we 1431 * can only tell IO completion that one is necessary if we are 1432 * not doing unwritten extent conversion. 1433 */ 1434 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT); 1435 if (offset + size > XFS_I(inode)->i_d.di_size) 1436 ioend->io_isdirect = 1; 1437 1438 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1439 offset, nr_segs, 1440 xfs_get_blocks_direct, 1441 xfs_end_io_direct_write, NULL, 0); 1442 if (ret != -EIOCBQUEUED && iocb->private) 1443 goto out_destroy_ioend; 1444 } else { 1445 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1446 offset, nr_segs, 1447 xfs_get_blocks_direct, 1448 NULL, NULL, 0); 1449 } 1450 1451 return ret; 1452 1453 out_destroy_ioend: 1454 xfs_destroy_ioend(ioend); 1455 return ret; 1456 } 1457 1458 /* 1459 * Punch out the delalloc blocks we have already allocated. 1460 * 1461 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1462 * as the page is still locked at this point. 1463 */ 1464 STATIC void 1465 xfs_vm_kill_delalloc_range( 1466 struct inode *inode, 1467 loff_t start, 1468 loff_t end) 1469 { 1470 struct xfs_inode *ip = XFS_I(inode); 1471 xfs_fileoff_t start_fsb; 1472 xfs_fileoff_t end_fsb; 1473 int error; 1474 1475 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1476 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1477 if (end_fsb <= start_fsb) 1478 return; 1479 1480 xfs_ilock(ip, XFS_ILOCK_EXCL); 1481 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1482 end_fsb - start_fsb); 1483 if (error) { 1484 /* something screwed, just bail */ 1485 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1486 xfs_alert(ip->i_mount, 1487 "xfs_vm_write_failed: unable to clean up ino %lld", 1488 ip->i_ino); 1489 } 1490 } 1491 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1492 } 1493 1494 STATIC void 1495 xfs_vm_write_failed( 1496 struct inode *inode, 1497 struct page *page, 1498 loff_t pos, 1499 unsigned len) 1500 { 1501 loff_t block_offset; 1502 loff_t block_start; 1503 loff_t block_end; 1504 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1505 loff_t to = from + len; 1506 struct buffer_head *bh, *head; 1507 1508 /* 1509 * The request pos offset might be 32 or 64 bit, this is all fine 1510 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1511 * platform, the high 32-bit will be masked off if we evaluate the 1512 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1513 * 0xfffff000 as an unsigned long, hence the result is incorrect 1514 * which could cause the following ASSERT failed in most cases. 1515 * In order to avoid this, we can evaluate the block_offset of the 1516 * start of the page by using shifts rather than masks the mismatch 1517 * problem. 1518 */ 1519 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1520 1521 ASSERT(block_offset + from == pos); 1522 1523 head = page_buffers(page); 1524 block_start = 0; 1525 for (bh = head; bh != head || !block_start; 1526 bh = bh->b_this_page, block_start = block_end, 1527 block_offset += bh->b_size) { 1528 block_end = block_start + bh->b_size; 1529 1530 /* skip buffers before the write */ 1531 if (block_end <= from) 1532 continue; 1533 1534 /* if the buffer is after the write, we're done */ 1535 if (block_start >= to) 1536 break; 1537 1538 if (!buffer_delay(bh)) 1539 continue; 1540 1541 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1542 continue; 1543 1544 xfs_vm_kill_delalloc_range(inode, block_offset, 1545 block_offset + bh->b_size); 1546 } 1547 1548 } 1549 1550 /* 1551 * This used to call block_write_begin(), but it unlocks and releases the page 1552 * on error, and we need that page to be able to punch stale delalloc blocks out 1553 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1554 * the appropriate point. 1555 */ 1556 STATIC int 1557 xfs_vm_write_begin( 1558 struct file *file, 1559 struct address_space *mapping, 1560 loff_t pos, 1561 unsigned len, 1562 unsigned flags, 1563 struct page **pagep, 1564 void **fsdata) 1565 { 1566 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1567 struct page *page; 1568 int status; 1569 1570 ASSERT(len <= PAGE_CACHE_SIZE); 1571 1572 page = grab_cache_page_write_begin(mapping, index, 1573 flags | AOP_FLAG_NOFS); 1574 if (!page) 1575 return -ENOMEM; 1576 1577 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1578 if (unlikely(status)) { 1579 struct inode *inode = mapping->host; 1580 1581 xfs_vm_write_failed(inode, page, pos, len); 1582 unlock_page(page); 1583 1584 if (pos + len > i_size_read(inode)) 1585 truncate_pagecache(inode, i_size_read(inode)); 1586 1587 page_cache_release(page); 1588 page = NULL; 1589 } 1590 1591 *pagep = page; 1592 return status; 1593 } 1594 1595 /* 1596 * On failure, we only need to kill delalloc blocks beyond EOF because they 1597 * will never be written. For blocks within EOF, generic_write_end() zeros them 1598 * so they are safe to leave alone and be written with all the other valid data. 1599 */ 1600 STATIC int 1601 xfs_vm_write_end( 1602 struct file *file, 1603 struct address_space *mapping, 1604 loff_t pos, 1605 unsigned len, 1606 unsigned copied, 1607 struct page *page, 1608 void *fsdata) 1609 { 1610 int ret; 1611 1612 ASSERT(len <= PAGE_CACHE_SIZE); 1613 1614 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1615 if (unlikely(ret < len)) { 1616 struct inode *inode = mapping->host; 1617 size_t isize = i_size_read(inode); 1618 loff_t to = pos + len; 1619 1620 if (to > isize) { 1621 truncate_pagecache(inode, isize); 1622 xfs_vm_kill_delalloc_range(inode, isize, to); 1623 } 1624 } 1625 return ret; 1626 } 1627 1628 STATIC sector_t 1629 xfs_vm_bmap( 1630 struct address_space *mapping, 1631 sector_t block) 1632 { 1633 struct inode *inode = (struct inode *)mapping->host; 1634 struct xfs_inode *ip = XFS_I(inode); 1635 1636 trace_xfs_vm_bmap(XFS_I(inode)); 1637 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1638 filemap_write_and_wait(mapping); 1639 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1640 return generic_block_bmap(mapping, block, xfs_get_blocks); 1641 } 1642 1643 STATIC int 1644 xfs_vm_readpage( 1645 struct file *unused, 1646 struct page *page) 1647 { 1648 return mpage_readpage(page, xfs_get_blocks); 1649 } 1650 1651 STATIC int 1652 xfs_vm_readpages( 1653 struct file *unused, 1654 struct address_space *mapping, 1655 struct list_head *pages, 1656 unsigned nr_pages) 1657 { 1658 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1659 } 1660 1661 const struct address_space_operations xfs_address_space_operations = { 1662 .readpage = xfs_vm_readpage, 1663 .readpages = xfs_vm_readpages, 1664 .writepage = xfs_vm_writepage, 1665 .writepages = xfs_vm_writepages, 1666 .releasepage = xfs_vm_releasepage, 1667 .invalidatepage = xfs_vm_invalidatepage, 1668 .write_begin = xfs_vm_write_begin, 1669 .write_end = xfs_vm_write_end, 1670 .bmap = xfs_vm_bmap, 1671 .direct_IO = xfs_vm_direct_IO, 1672 .migratepage = buffer_migrate_page, 1673 .is_partially_uptodate = block_is_partially_uptodate, 1674 .error_remove_page = generic_error_remove_page, 1675 }; 1676