xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 56cb61f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_iomap.h"
16 #include "xfs_trace.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_reflink.h"
20 
21 struct xfs_writepage_ctx {
22 	struct iomap_writepage_ctx ctx;
23 	unsigned int		data_seq;
24 	unsigned int		cow_seq;
25 };
26 
27 static inline struct xfs_writepage_ctx *
28 XFS_WPC(struct iomap_writepage_ctx *ctx)
29 {
30 	return container_of(ctx, struct xfs_writepage_ctx, ctx);
31 }
32 
33 /*
34  * Fast and loose check if this write could update the on-disk inode size.
35  */
36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
37 {
38 	return ioend->io_offset + ioend->io_size >
39 		XFS_I(ioend->io_inode)->i_disk_size;
40 }
41 
42 /*
43  * Update on-disk file size now that data has been written to disk.
44  */
45 int
46 xfs_setfilesize(
47 	struct xfs_inode	*ip,
48 	xfs_off_t		offset,
49 	size_t			size)
50 {
51 	struct xfs_mount	*mp = ip->i_mount;
52 	struct xfs_trans	*tp;
53 	xfs_fsize_t		isize;
54 	int			error;
55 
56 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
57 	if (error)
58 		return error;
59 
60 	xfs_ilock(ip, XFS_ILOCK_EXCL);
61 	isize = xfs_new_eof(ip, offset + size);
62 	if (!isize) {
63 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
64 		xfs_trans_cancel(tp);
65 		return 0;
66 	}
67 
68 	trace_xfs_setfilesize(ip, offset, size);
69 
70 	ip->i_disk_size = isize;
71 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
72 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
73 
74 	return xfs_trans_commit(tp);
75 }
76 
77 /*
78  * IO write completion.
79  */
80 STATIC void
81 xfs_end_ioend(
82 	struct iomap_ioend	*ioend)
83 {
84 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
85 	struct xfs_mount	*mp = ip->i_mount;
86 	xfs_off_t		offset = ioend->io_offset;
87 	size_t			size = ioend->io_size;
88 	unsigned int		nofs_flag;
89 	int			error;
90 
91 	/*
92 	 * We can allocate memory here while doing writeback on behalf of
93 	 * memory reclaim.  To avoid memory allocation deadlocks set the
94 	 * task-wide nofs context for the following operations.
95 	 */
96 	nofs_flag = memalloc_nofs_save();
97 
98 	/*
99 	 * Just clean up the in-memory structures if the fs has been shut down.
100 	 */
101 	if (xfs_is_shutdown(mp)) {
102 		error = -EIO;
103 		goto done;
104 	}
105 
106 	/*
107 	 * Clean up all COW blocks and underlying data fork delalloc blocks on
108 	 * I/O error. The delalloc punch is required because this ioend was
109 	 * mapped to blocks in the COW fork and the associated pages are no
110 	 * longer dirty. If we don't remove delalloc blocks here, they become
111 	 * stale and can corrupt free space accounting on unmount.
112 	 */
113 	error = blk_status_to_errno(ioend->io_bio->bi_status);
114 	if (unlikely(error)) {
115 		if (ioend->io_flags & IOMAP_F_SHARED) {
116 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
117 			xfs_bmap_punch_delalloc_range(ip,
118 						      XFS_B_TO_FSBT(mp, offset),
119 						      XFS_B_TO_FSB(mp, size));
120 		}
121 		goto done;
122 	}
123 
124 	/*
125 	 * Success: commit the COW or unwritten blocks if needed.
126 	 */
127 	if (ioend->io_flags & IOMAP_F_SHARED)
128 		error = xfs_reflink_end_cow(ip, offset, size);
129 	else if (ioend->io_type == IOMAP_UNWRITTEN)
130 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
131 
132 	if (!error && xfs_ioend_is_append(ioend))
133 		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
134 done:
135 	iomap_finish_ioends(ioend, error);
136 	memalloc_nofs_restore(nofs_flag);
137 }
138 
139 /* Finish all pending io completions. */
140 void
141 xfs_end_io(
142 	struct work_struct	*work)
143 {
144 	struct xfs_inode	*ip =
145 		container_of(work, struct xfs_inode, i_ioend_work);
146 	struct iomap_ioend	*ioend;
147 	struct list_head	tmp;
148 	unsigned long		flags;
149 
150 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
151 	list_replace_init(&ip->i_ioend_list, &tmp);
152 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
153 
154 	iomap_sort_ioends(&tmp);
155 	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
156 			io_list))) {
157 		list_del_init(&ioend->io_list);
158 		iomap_ioend_try_merge(ioend, &tmp);
159 		xfs_end_ioend(ioend);
160 	}
161 }
162 
163 STATIC void
164 xfs_end_bio(
165 	struct bio		*bio)
166 {
167 	struct iomap_ioend	*ioend = bio->bi_private;
168 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
169 	unsigned long		flags;
170 
171 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
172 	if (list_empty(&ip->i_ioend_list))
173 		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
174 					 &ip->i_ioend_work));
175 	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
176 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
177 }
178 
179 /*
180  * Fast revalidation of the cached writeback mapping. Return true if the current
181  * mapping is valid, false otherwise.
182  */
183 static bool
184 xfs_imap_valid(
185 	struct iomap_writepage_ctx	*wpc,
186 	struct xfs_inode		*ip,
187 	loff_t				offset)
188 {
189 	if (offset < wpc->iomap.offset ||
190 	    offset >= wpc->iomap.offset + wpc->iomap.length)
191 		return false;
192 	/*
193 	 * If this is a COW mapping, it is sufficient to check that the mapping
194 	 * covers the offset. Be careful to check this first because the caller
195 	 * can revalidate a COW mapping without updating the data seqno.
196 	 */
197 	if (wpc->iomap.flags & IOMAP_F_SHARED)
198 		return true;
199 
200 	/*
201 	 * This is not a COW mapping. Check the sequence number of the data fork
202 	 * because concurrent changes could have invalidated the extent. Check
203 	 * the COW fork because concurrent changes since the last time we
204 	 * checked (and found nothing at this offset) could have added
205 	 * overlapping blocks.
206 	 */
207 	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
208 		return false;
209 	if (xfs_inode_has_cow_data(ip) &&
210 	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
211 		return false;
212 	return true;
213 }
214 
215 /*
216  * Pass in a dellalloc extent and convert it to real extents, return the real
217  * extent that maps offset_fsb in wpc->iomap.
218  *
219  * The current page is held locked so nothing could have removed the block
220  * backing offset_fsb, although it could have moved from the COW to the data
221  * fork by another thread.
222  */
223 static int
224 xfs_convert_blocks(
225 	struct iomap_writepage_ctx *wpc,
226 	struct xfs_inode	*ip,
227 	int			whichfork,
228 	loff_t			offset)
229 {
230 	int			error;
231 	unsigned		*seq;
232 
233 	if (whichfork == XFS_COW_FORK)
234 		seq = &XFS_WPC(wpc)->cow_seq;
235 	else
236 		seq = &XFS_WPC(wpc)->data_seq;
237 
238 	/*
239 	 * Attempt to allocate whatever delalloc extent currently backs offset
240 	 * and put the result into wpc->iomap.  Allocate in a loop because it
241 	 * may take several attempts to allocate real blocks for a contiguous
242 	 * delalloc extent if free space is sufficiently fragmented.
243 	 */
244 	do {
245 		error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
246 				&wpc->iomap, seq);
247 		if (error)
248 			return error;
249 	} while (wpc->iomap.offset + wpc->iomap.length <= offset);
250 
251 	return 0;
252 }
253 
254 static int
255 xfs_map_blocks(
256 	struct iomap_writepage_ctx *wpc,
257 	struct inode		*inode,
258 	loff_t			offset)
259 {
260 	struct xfs_inode	*ip = XFS_I(inode);
261 	struct xfs_mount	*mp = ip->i_mount;
262 	ssize_t			count = i_blocksize(inode);
263 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
264 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
265 	xfs_fileoff_t		cow_fsb;
266 	int			whichfork;
267 	struct xfs_bmbt_irec	imap;
268 	struct xfs_iext_cursor	icur;
269 	int			retries = 0;
270 	int			error = 0;
271 
272 	if (xfs_is_shutdown(mp))
273 		return -EIO;
274 
275 	/*
276 	 * COW fork blocks can overlap data fork blocks even if the blocks
277 	 * aren't shared.  COW I/O always takes precedent, so we must always
278 	 * check for overlap on reflink inodes unless the mapping is already a
279 	 * COW one, or the COW fork hasn't changed from the last time we looked
280 	 * at it.
281 	 *
282 	 * It's safe to check the COW fork if_seq here without the ILOCK because
283 	 * we've indirectly protected against concurrent updates: writeback has
284 	 * the page locked, which prevents concurrent invalidations by reflink
285 	 * and directio and prevents concurrent buffered writes to the same
286 	 * page.  Changes to if_seq always happen under i_lock, which protects
287 	 * against concurrent updates and provides a memory barrier on the way
288 	 * out that ensures that we always see the current value.
289 	 */
290 	if (xfs_imap_valid(wpc, ip, offset))
291 		return 0;
292 
293 	/*
294 	 * If we don't have a valid map, now it's time to get a new one for this
295 	 * offset.  This will convert delayed allocations (including COW ones)
296 	 * into real extents.  If we return without a valid map, it means we
297 	 * landed in a hole and we skip the block.
298 	 */
299 retry:
300 	cow_fsb = NULLFILEOFF;
301 	whichfork = XFS_DATA_FORK;
302 	xfs_ilock(ip, XFS_ILOCK_SHARED);
303 	ASSERT(!xfs_need_iread_extents(&ip->i_df));
304 
305 	/*
306 	 * Check if this is offset is covered by a COW extents, and if yes use
307 	 * it directly instead of looking up anything in the data fork.
308 	 */
309 	if (xfs_inode_has_cow_data(ip) &&
310 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
311 		cow_fsb = imap.br_startoff;
312 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
313 		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
314 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
315 
316 		whichfork = XFS_COW_FORK;
317 		goto allocate_blocks;
318 	}
319 
320 	/*
321 	 * No COW extent overlap. Revalidate now that we may have updated
322 	 * ->cow_seq. If the data mapping is still valid, we're done.
323 	 */
324 	if (xfs_imap_valid(wpc, ip, offset)) {
325 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
326 		return 0;
327 	}
328 
329 	/*
330 	 * If we don't have a valid map, now it's time to get a new one for this
331 	 * offset.  This will convert delayed allocations (including COW ones)
332 	 * into real extents.
333 	 */
334 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
335 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
336 	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
337 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
338 
339 	/* landed in a hole or beyond EOF? */
340 	if (imap.br_startoff > offset_fsb) {
341 		imap.br_blockcount = imap.br_startoff - offset_fsb;
342 		imap.br_startoff = offset_fsb;
343 		imap.br_startblock = HOLESTARTBLOCK;
344 		imap.br_state = XFS_EXT_NORM;
345 	}
346 
347 	/*
348 	 * Truncate to the next COW extent if there is one.  This is the only
349 	 * opportunity to do this because we can skip COW fork lookups for the
350 	 * subsequent blocks in the mapping; however, the requirement to treat
351 	 * the COW range separately remains.
352 	 */
353 	if (cow_fsb != NULLFILEOFF &&
354 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
355 		imap.br_blockcount = cow_fsb - imap.br_startoff;
356 
357 	/* got a delalloc extent? */
358 	if (imap.br_startblock != HOLESTARTBLOCK &&
359 	    isnullstartblock(imap.br_startblock))
360 		goto allocate_blocks;
361 
362 	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0);
363 	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
364 	return 0;
365 allocate_blocks:
366 	error = xfs_convert_blocks(wpc, ip, whichfork, offset);
367 	if (error) {
368 		/*
369 		 * If we failed to find the extent in the COW fork we might have
370 		 * raced with a COW to data fork conversion or truncate.
371 		 * Restart the lookup to catch the extent in the data fork for
372 		 * the former case, but prevent additional retries to avoid
373 		 * looping forever for the latter case.
374 		 */
375 		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
376 			goto retry;
377 		ASSERT(error != -EAGAIN);
378 		return error;
379 	}
380 
381 	/*
382 	 * Due to merging the return real extent might be larger than the
383 	 * original delalloc one.  Trim the return extent to the next COW
384 	 * boundary again to force a re-lookup.
385 	 */
386 	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
387 		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
388 
389 		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
390 			wpc->iomap.length = cow_offset - wpc->iomap.offset;
391 	}
392 
393 	ASSERT(wpc->iomap.offset <= offset);
394 	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
395 	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
396 	return 0;
397 }
398 
399 static int
400 xfs_prepare_ioend(
401 	struct iomap_ioend	*ioend,
402 	int			status)
403 {
404 	unsigned int		nofs_flag;
405 
406 	/*
407 	 * We can allocate memory here while doing writeback on behalf of
408 	 * memory reclaim.  To avoid memory allocation deadlocks set the
409 	 * task-wide nofs context for the following operations.
410 	 */
411 	nofs_flag = memalloc_nofs_save();
412 
413 	/* Convert CoW extents to regular */
414 	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
415 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
416 				ioend->io_offset, ioend->io_size);
417 	}
418 
419 	memalloc_nofs_restore(nofs_flag);
420 
421 	/* send ioends that might require a transaction to the completion wq */
422 	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
423 	    (ioend->io_flags & IOMAP_F_SHARED))
424 		ioend->io_bio->bi_end_io = xfs_end_bio;
425 	return status;
426 }
427 
428 /*
429  * If the page has delalloc blocks on it, we need to punch them out before we
430  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
431  * inode that can trip up a later direct I/O read operation on the same region.
432  *
433  * We prevent this by truncating away the delalloc regions on the page.  Because
434  * they are delalloc, we can do this without needing a transaction. Indeed - if
435  * we get ENOSPC errors, we have to be able to do this truncation without a
436  * transaction as there is no space left for block reservation (typically why we
437  * see a ENOSPC in writeback).
438  */
439 static void
440 xfs_discard_folio(
441 	struct folio		*folio,
442 	loff_t			pos)
443 {
444 	struct inode		*inode = folio->mapping->host;
445 	struct xfs_inode	*ip = XFS_I(inode);
446 	struct xfs_mount	*mp = ip->i_mount;
447 	size_t			offset = offset_in_folio(folio, pos);
448 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, pos);
449 	xfs_fileoff_t		pageoff_fsb = XFS_B_TO_FSBT(mp, offset);
450 	int			error;
451 
452 	if (xfs_is_shutdown(mp))
453 		goto out_invalidate;
454 
455 	xfs_alert_ratelimited(mp,
456 		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
457 			folio, ip->i_ino, pos);
458 
459 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
460 			i_blocks_per_folio(inode, folio) - pageoff_fsb);
461 	if (error && !xfs_is_shutdown(mp))
462 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
463 out_invalidate:
464 	iomap_invalidate_folio(folio, offset, folio_size(folio) - offset);
465 }
466 
467 static const struct iomap_writeback_ops xfs_writeback_ops = {
468 	.map_blocks		= xfs_map_blocks,
469 	.prepare_ioend		= xfs_prepare_ioend,
470 	.discard_folio		= xfs_discard_folio,
471 };
472 
473 STATIC int
474 xfs_vm_writepages(
475 	struct address_space	*mapping,
476 	struct writeback_control *wbc)
477 {
478 	struct xfs_writepage_ctx wpc = { };
479 
480 	/*
481 	 * Writing back data in a transaction context can result in recursive
482 	 * transactions. This is bad, so issue a warning and get out of here.
483 	 */
484 	if (WARN_ON_ONCE(current->journal_info))
485 		return 0;
486 
487 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
488 	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
489 }
490 
491 STATIC int
492 xfs_dax_writepages(
493 	struct address_space	*mapping,
494 	struct writeback_control *wbc)
495 {
496 	struct xfs_inode	*ip = XFS_I(mapping->host);
497 
498 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
499 	return dax_writeback_mapping_range(mapping,
500 			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
501 }
502 
503 STATIC sector_t
504 xfs_vm_bmap(
505 	struct address_space	*mapping,
506 	sector_t		block)
507 {
508 	struct xfs_inode	*ip = XFS_I(mapping->host);
509 
510 	trace_xfs_vm_bmap(ip);
511 
512 	/*
513 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
514 	 * bypasses the file system for actual I/O.  We really can't allow
515 	 * that on reflinks inodes, so we have to skip out here.  And yes,
516 	 * 0 is the magic code for a bmap error.
517 	 *
518 	 * Since we don't pass back blockdev info, we can't return bmap
519 	 * information for rt files either.
520 	 */
521 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
522 		return 0;
523 	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
524 }
525 
526 STATIC int
527 xfs_vm_readpage(
528 	struct file		*unused,
529 	struct page		*page)
530 {
531 	return iomap_readpage(page, &xfs_read_iomap_ops);
532 }
533 
534 STATIC void
535 xfs_vm_readahead(
536 	struct readahead_control	*rac)
537 {
538 	iomap_readahead(rac, &xfs_read_iomap_ops);
539 }
540 
541 static int
542 xfs_iomap_swapfile_activate(
543 	struct swap_info_struct		*sis,
544 	struct file			*swap_file,
545 	sector_t			*span)
546 {
547 	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
548 	return iomap_swapfile_activate(sis, swap_file, span,
549 			&xfs_read_iomap_ops);
550 }
551 
552 const struct address_space_operations xfs_address_space_operations = {
553 	.readpage		= xfs_vm_readpage,
554 	.readahead		= xfs_vm_readahead,
555 	.writepages		= xfs_vm_writepages,
556 	.set_page_dirty		= __set_page_dirty_nobuffers,
557 	.releasepage		= iomap_releasepage,
558 	.invalidatepage		= iomap_invalidatepage,
559 	.bmap			= xfs_vm_bmap,
560 	.direct_IO		= noop_direct_IO,
561 	.migratepage		= iomap_migrate_page,
562 	.is_partially_uptodate  = iomap_is_partially_uptodate,
563 	.error_remove_page	= generic_error_remove_page,
564 	.swap_activate		= xfs_iomap_swapfile_activate,
565 };
566 
567 const struct address_space_operations xfs_dax_aops = {
568 	.writepages		= xfs_dax_writepages,
569 	.direct_IO		= noop_direct_IO,
570 	.set_page_dirty		= __set_page_dirty_no_writeback,
571 	.invalidatepage		= noop_invalidatepage,
572 	.swap_activate		= xfs_iomap_swapfile_activate,
573 };
574