xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 4fc4dca8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25 
26 /*
27  * structure owned by writepages passed to individual writepage calls
28  */
29 struct xfs_writepage_ctx {
30 	struct xfs_bmbt_irec    imap;
31 	int			fork;
32 	unsigned int		data_seq;
33 	unsigned int		cow_seq;
34 	struct xfs_ioend	*ioend;
35 };
36 
37 struct block_device *
38 xfs_find_bdev_for_inode(
39 	struct inode		*inode)
40 {
41 	struct xfs_inode	*ip = XFS_I(inode);
42 	struct xfs_mount	*mp = ip->i_mount;
43 
44 	if (XFS_IS_REALTIME_INODE(ip))
45 		return mp->m_rtdev_targp->bt_bdev;
46 	else
47 		return mp->m_ddev_targp->bt_bdev;
48 }
49 
50 struct dax_device *
51 xfs_find_daxdev_for_inode(
52 	struct inode		*inode)
53 {
54 	struct xfs_inode	*ip = XFS_I(inode);
55 	struct xfs_mount	*mp = ip->i_mount;
56 
57 	if (XFS_IS_REALTIME_INODE(ip))
58 		return mp->m_rtdev_targp->bt_daxdev;
59 	else
60 		return mp->m_ddev_targp->bt_daxdev;
61 }
62 
63 static void
64 xfs_finish_page_writeback(
65 	struct inode		*inode,
66 	struct bio_vec	*bvec,
67 	int			error)
68 {
69 	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);
70 
71 	if (error) {
72 		SetPageError(bvec->bv_page);
73 		mapping_set_error(inode->i_mapping, -EIO);
74 	}
75 
76 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
77 	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78 
79 	if (!iop || atomic_dec_and_test(&iop->write_count))
80 		end_page_writeback(bvec->bv_page);
81 }
82 
83 /*
84  * We're now finished for good with this ioend structure.  Update the page
85  * state, release holds on bios, and finally free up memory.  Do not use the
86  * ioend after this.
87  */
88 STATIC void
89 xfs_destroy_ioend(
90 	struct xfs_ioend	*ioend,
91 	int			error)
92 {
93 	struct inode		*inode = ioend->io_inode;
94 	struct bio		*bio = &ioend->io_inline_bio;
95 	struct bio		*last = ioend->io_bio, *next;
96 	u64			start = bio->bi_iter.bi_sector;
97 	bool			quiet = bio_flagged(bio, BIO_QUIET);
98 
99 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 		struct bio_vec	*bvec;
101 		struct bvec_iter_all iter_all;
102 
103 		/*
104 		 * For the last bio, bi_private points to the ioend, so we
105 		 * need to explicitly end the iteration here.
106 		 */
107 		if (bio == last)
108 			next = NULL;
109 		else
110 			next = bio->bi_private;
111 
112 		/* walk each page on bio, ending page IO on them */
113 		bio_for_each_segment_all(bvec, bio, iter_all)
114 			xfs_finish_page_writeback(inode, bvec, error);
115 		bio_put(bio);
116 	}
117 
118 	if (unlikely(error && !quiet)) {
119 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
120 			"writeback error on sector %llu", start);
121 	}
122 }
123 
124 /*
125  * Fast and loose check if this write could update the on-disk inode size.
126  */
127 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
128 {
129 	return ioend->io_offset + ioend->io_size >
130 		XFS_I(ioend->io_inode)->i_d.di_size;
131 }
132 
133 STATIC int
134 xfs_setfilesize_trans_alloc(
135 	struct xfs_ioend	*ioend)
136 {
137 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
138 	struct xfs_trans	*tp;
139 	int			error;
140 
141 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
142 				XFS_TRANS_NOFS, &tp);
143 	if (error)
144 		return error;
145 
146 	ioend->io_append_trans = tp;
147 
148 	/*
149 	 * We may pass freeze protection with a transaction.  So tell lockdep
150 	 * we released it.
151 	 */
152 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
153 	/*
154 	 * We hand off the transaction to the completion thread now, so
155 	 * clear the flag here.
156 	 */
157 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
158 	return 0;
159 }
160 
161 /*
162  * Update on-disk file size now that data has been written to disk.
163  */
164 STATIC int
165 __xfs_setfilesize(
166 	struct xfs_inode	*ip,
167 	struct xfs_trans	*tp,
168 	xfs_off_t		offset,
169 	size_t			size)
170 {
171 	xfs_fsize_t		isize;
172 
173 	xfs_ilock(ip, XFS_ILOCK_EXCL);
174 	isize = xfs_new_eof(ip, offset + size);
175 	if (!isize) {
176 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
177 		xfs_trans_cancel(tp);
178 		return 0;
179 	}
180 
181 	trace_xfs_setfilesize(ip, offset, size);
182 
183 	ip->i_d.di_size = isize;
184 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
185 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
186 
187 	return xfs_trans_commit(tp);
188 }
189 
190 int
191 xfs_setfilesize(
192 	struct xfs_inode	*ip,
193 	xfs_off_t		offset,
194 	size_t			size)
195 {
196 	struct xfs_mount	*mp = ip->i_mount;
197 	struct xfs_trans	*tp;
198 	int			error;
199 
200 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
201 	if (error)
202 		return error;
203 
204 	return __xfs_setfilesize(ip, tp, offset, size);
205 }
206 
207 STATIC int
208 xfs_setfilesize_ioend(
209 	struct xfs_ioend	*ioend,
210 	int			error)
211 {
212 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
213 	struct xfs_trans	*tp = ioend->io_append_trans;
214 
215 	/*
216 	 * The transaction may have been allocated in the I/O submission thread,
217 	 * thus we need to mark ourselves as being in a transaction manually.
218 	 * Similarly for freeze protection.
219 	 */
220 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
221 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
222 
223 	/* we abort the update if there was an IO error */
224 	if (error) {
225 		xfs_trans_cancel(tp);
226 		return error;
227 	}
228 
229 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
230 }
231 
232 /*
233  * IO write completion.
234  */
235 STATIC void
236 xfs_end_ioend(
237 	struct xfs_ioend	*ioend)
238 {
239 	struct list_head	ioend_list;
240 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
241 	xfs_off_t		offset = ioend->io_offset;
242 	size_t			size = ioend->io_size;
243 	int			error;
244 
245 	/*
246 	 * Just clean up the in-memory strutures if the fs has been shut down.
247 	 */
248 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249 		error = -EIO;
250 		goto done;
251 	}
252 
253 	/*
254 	 * Clean up any COW blocks on an I/O error.
255 	 */
256 	error = blk_status_to_errno(ioend->io_bio->bi_status);
257 	if (unlikely(error)) {
258 		if (ioend->io_fork == XFS_COW_FORK)
259 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
260 		goto done;
261 	}
262 
263 	/*
264 	 * Success: commit the COW or unwritten blocks if needed.
265 	 */
266 	if (ioend->io_fork == XFS_COW_FORK)
267 		error = xfs_reflink_end_cow(ip, offset, size);
268 	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
269 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
270 	else
271 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
272 
273 done:
274 	if (ioend->io_append_trans)
275 		error = xfs_setfilesize_ioend(ioend, error);
276 	list_replace_init(&ioend->io_list, &ioend_list);
277 	xfs_destroy_ioend(ioend, error);
278 
279 	while (!list_empty(&ioend_list)) {
280 		ioend = list_first_entry(&ioend_list, struct xfs_ioend,
281 				io_list);
282 		list_del_init(&ioend->io_list);
283 		xfs_destroy_ioend(ioend, error);
284 	}
285 }
286 
287 /*
288  * We can merge two adjacent ioends if they have the same set of work to do.
289  */
290 static bool
291 xfs_ioend_can_merge(
292 	struct xfs_ioend	*ioend,
293 	int			ioend_error,
294 	struct xfs_ioend	*next)
295 {
296 	int			next_error;
297 
298 	next_error = blk_status_to_errno(next->io_bio->bi_status);
299 	if (ioend_error != next_error)
300 		return false;
301 	if ((ioend->io_fork == XFS_COW_FORK) ^ (next->io_fork == XFS_COW_FORK))
302 		return false;
303 	if ((ioend->io_state == XFS_EXT_UNWRITTEN) ^
304 	    (next->io_state == XFS_EXT_UNWRITTEN))
305 		return false;
306 	if (ioend->io_offset + ioend->io_size != next->io_offset)
307 		return false;
308 	if (xfs_ioend_is_append(ioend) != xfs_ioend_is_append(next))
309 		return false;
310 	return true;
311 }
312 
313 /* Try to merge adjacent completions. */
314 STATIC void
315 xfs_ioend_try_merge(
316 	struct xfs_ioend	*ioend,
317 	struct list_head	*more_ioends)
318 {
319 	struct xfs_ioend	*next_ioend;
320 	int			ioend_error;
321 	int			error;
322 
323 	if (list_empty(more_ioends))
324 		return;
325 
326 	ioend_error = blk_status_to_errno(ioend->io_bio->bi_status);
327 
328 	while (!list_empty(more_ioends)) {
329 		next_ioend = list_first_entry(more_ioends, struct xfs_ioend,
330 				io_list);
331 		if (!xfs_ioend_can_merge(ioend, ioend_error, next_ioend))
332 			break;
333 		list_move_tail(&next_ioend->io_list, &ioend->io_list);
334 		ioend->io_size += next_ioend->io_size;
335 		if (ioend->io_append_trans) {
336 			error = xfs_setfilesize_ioend(next_ioend, 1);
337 			ASSERT(error == 1);
338 		}
339 	}
340 }
341 
342 /* list_sort compare function for ioends */
343 static int
344 xfs_ioend_compare(
345 	void			*priv,
346 	struct list_head	*a,
347 	struct list_head	*b)
348 {
349 	struct xfs_ioend	*ia;
350 	struct xfs_ioend	*ib;
351 
352 	ia = container_of(a, struct xfs_ioend, io_list);
353 	ib = container_of(b, struct xfs_ioend, io_list);
354 	if (ia->io_offset < ib->io_offset)
355 		return -1;
356 	else if (ia->io_offset > ib->io_offset)
357 		return 1;
358 	return 0;
359 }
360 
361 /* Finish all pending io completions. */
362 void
363 xfs_end_io(
364 	struct work_struct	*work)
365 {
366 	struct xfs_inode	*ip;
367 	struct xfs_ioend	*ioend;
368 	struct list_head	completion_list;
369 	unsigned long		flags;
370 
371 	ip = container_of(work, struct xfs_inode, i_ioend_work);
372 
373 	spin_lock_irqsave(&ip->i_ioend_lock, flags);
374 	list_replace_init(&ip->i_ioend_list, &completion_list);
375 	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
376 
377 	list_sort(NULL, &completion_list, xfs_ioend_compare);
378 
379 	while (!list_empty(&completion_list)) {
380 		ioend = list_first_entry(&completion_list, struct xfs_ioend,
381 				io_list);
382 		list_del_init(&ioend->io_list);
383 		xfs_ioend_try_merge(ioend, &completion_list);
384 		xfs_end_ioend(ioend);
385 	}
386 }
387 
388 STATIC void
389 xfs_end_bio(
390 	struct bio		*bio)
391 {
392 	struct xfs_ioend	*ioend = bio->bi_private;
393 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
394 	struct xfs_mount	*mp = ip->i_mount;
395 	unsigned long		flags;
396 
397 	if (ioend->io_fork == XFS_COW_FORK ||
398 	    ioend->io_state == XFS_EXT_UNWRITTEN ||
399 	    ioend->io_append_trans != NULL) {
400 		spin_lock_irqsave(&ip->i_ioend_lock, flags);
401 		if (list_empty(&ip->i_ioend_list))
402 			WARN_ON_ONCE(!queue_work(mp->m_unwritten_workqueue,
403 						 &ip->i_ioend_work));
404 		list_add_tail(&ioend->io_list, &ip->i_ioend_list);
405 		spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
406 	} else
407 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
408 }
409 
410 /*
411  * Fast revalidation of the cached writeback mapping. Return true if the current
412  * mapping is valid, false otherwise.
413  */
414 static bool
415 xfs_imap_valid(
416 	struct xfs_writepage_ctx	*wpc,
417 	struct xfs_inode		*ip,
418 	xfs_fileoff_t			offset_fsb)
419 {
420 	if (offset_fsb < wpc->imap.br_startoff ||
421 	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
422 		return false;
423 	/*
424 	 * If this is a COW mapping, it is sufficient to check that the mapping
425 	 * covers the offset. Be careful to check this first because the caller
426 	 * can revalidate a COW mapping without updating the data seqno.
427 	 */
428 	if (wpc->fork == XFS_COW_FORK)
429 		return true;
430 
431 	/*
432 	 * This is not a COW mapping. Check the sequence number of the data fork
433 	 * because concurrent changes could have invalidated the extent. Check
434 	 * the COW fork because concurrent changes since the last time we
435 	 * checked (and found nothing at this offset) could have added
436 	 * overlapping blocks.
437 	 */
438 	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
439 		return false;
440 	if (xfs_inode_has_cow_data(ip) &&
441 	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
442 		return false;
443 	return true;
444 }
445 
446 /*
447  * Pass in a dellalloc extent and convert it to real extents, return the real
448  * extent that maps offset_fsb in wpc->imap.
449  *
450  * The current page is held locked so nothing could have removed the block
451  * backing offset_fsb, although it could have moved from the COW to the data
452  * fork by another thread.
453  */
454 static int
455 xfs_convert_blocks(
456 	struct xfs_writepage_ctx *wpc,
457 	struct xfs_inode	*ip,
458 	xfs_fileoff_t		offset_fsb)
459 {
460 	int			error;
461 
462 	/*
463 	 * Attempt to allocate whatever delalloc extent currently backs
464 	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
465 	 * because it may take several attempts to allocate real blocks for a
466 	 * contiguous delalloc extent if free space is sufficiently fragmented.
467 	 */
468 	do {
469 		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
470 				&wpc->imap, wpc->fork == XFS_COW_FORK ?
471 					&wpc->cow_seq : &wpc->data_seq);
472 		if (error)
473 			return error;
474 	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
475 
476 	return 0;
477 }
478 
479 STATIC int
480 xfs_map_blocks(
481 	struct xfs_writepage_ctx *wpc,
482 	struct inode		*inode,
483 	loff_t			offset)
484 {
485 	struct xfs_inode	*ip = XFS_I(inode);
486 	struct xfs_mount	*mp = ip->i_mount;
487 	ssize_t			count = i_blocksize(inode);
488 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
489 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
490 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
491 	struct xfs_bmbt_irec	imap;
492 	struct xfs_iext_cursor	icur;
493 	int			retries = 0;
494 	int			error = 0;
495 
496 	if (XFS_FORCED_SHUTDOWN(mp))
497 		return -EIO;
498 
499 	/*
500 	 * COW fork blocks can overlap data fork blocks even if the blocks
501 	 * aren't shared.  COW I/O always takes precedent, so we must always
502 	 * check for overlap on reflink inodes unless the mapping is already a
503 	 * COW one, or the COW fork hasn't changed from the last time we looked
504 	 * at it.
505 	 *
506 	 * It's safe to check the COW fork if_seq here without the ILOCK because
507 	 * we've indirectly protected against concurrent updates: writeback has
508 	 * the page locked, which prevents concurrent invalidations by reflink
509 	 * and directio and prevents concurrent buffered writes to the same
510 	 * page.  Changes to if_seq always happen under i_lock, which protects
511 	 * against concurrent updates and provides a memory barrier on the way
512 	 * out that ensures that we always see the current value.
513 	 */
514 	if (xfs_imap_valid(wpc, ip, offset_fsb))
515 		return 0;
516 
517 	/*
518 	 * If we don't have a valid map, now it's time to get a new one for this
519 	 * offset.  This will convert delayed allocations (including COW ones)
520 	 * into real extents.  If we return without a valid map, it means we
521 	 * landed in a hole and we skip the block.
522 	 */
523 retry:
524 	xfs_ilock(ip, XFS_ILOCK_SHARED);
525 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
526 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
527 
528 	/*
529 	 * Check if this is offset is covered by a COW extents, and if yes use
530 	 * it directly instead of looking up anything in the data fork.
531 	 */
532 	if (xfs_inode_has_cow_data(ip) &&
533 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
534 		cow_fsb = imap.br_startoff;
535 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
536 		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
537 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
538 
539 		wpc->fork = XFS_COW_FORK;
540 		goto allocate_blocks;
541 	}
542 
543 	/*
544 	 * No COW extent overlap. Revalidate now that we may have updated
545 	 * ->cow_seq. If the data mapping is still valid, we're done.
546 	 */
547 	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
548 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
549 		return 0;
550 	}
551 
552 	/*
553 	 * If we don't have a valid map, now it's time to get a new one for this
554 	 * offset.  This will convert delayed allocations (including COW ones)
555 	 * into real extents.
556 	 */
557 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
558 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
559 	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
560 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
561 
562 	wpc->fork = XFS_DATA_FORK;
563 
564 	/* landed in a hole or beyond EOF? */
565 	if (imap.br_startoff > offset_fsb) {
566 		imap.br_blockcount = imap.br_startoff - offset_fsb;
567 		imap.br_startoff = offset_fsb;
568 		imap.br_startblock = HOLESTARTBLOCK;
569 		imap.br_state = XFS_EXT_NORM;
570 	}
571 
572 	/*
573 	 * Truncate to the next COW extent if there is one.  This is the only
574 	 * opportunity to do this because we can skip COW fork lookups for the
575 	 * subsequent blocks in the mapping; however, the requirement to treat
576 	 * the COW range separately remains.
577 	 */
578 	if (cow_fsb != NULLFILEOFF &&
579 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
580 		imap.br_blockcount = cow_fsb - imap.br_startoff;
581 
582 	/* got a delalloc extent? */
583 	if (imap.br_startblock != HOLESTARTBLOCK &&
584 	    isnullstartblock(imap.br_startblock))
585 		goto allocate_blocks;
586 
587 	wpc->imap = imap;
588 	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
589 	return 0;
590 allocate_blocks:
591 	error = xfs_convert_blocks(wpc, ip, offset_fsb);
592 	if (error) {
593 		/*
594 		 * If we failed to find the extent in the COW fork we might have
595 		 * raced with a COW to data fork conversion or truncate.
596 		 * Restart the lookup to catch the extent in the data fork for
597 		 * the former case, but prevent additional retries to avoid
598 		 * looping forever for the latter case.
599 		 */
600 		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
601 			goto retry;
602 		ASSERT(error != -EAGAIN);
603 		return error;
604 	}
605 
606 	/*
607 	 * Due to merging the return real extent might be larger than the
608 	 * original delalloc one.  Trim the return extent to the next COW
609 	 * boundary again to force a re-lookup.
610 	 */
611 	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
612 	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
613 		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
614 
615 	ASSERT(wpc->imap.br_startoff <= offset_fsb);
616 	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
617 	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
618 	return 0;
619 }
620 
621 /*
622  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
623  * it, and we submit that bio. The ioend may be used for multiple bio
624  * submissions, so we only want to allocate an append transaction for the ioend
625  * once. In the case of multiple bio submission, each bio will take an IO
626  * reference to the ioend to ensure that the ioend completion is only done once
627  * all bios have been submitted and the ioend is really done.
628  *
629  * If @fail is non-zero, it means that we have a situation where some part of
630  * the submission process has failed after we have marked paged for writeback
631  * and unlocked them. In this situation, we need to fail the bio and ioend
632  * rather than submit it to IO. This typically only happens on a filesystem
633  * shutdown.
634  */
635 STATIC int
636 xfs_submit_ioend(
637 	struct writeback_control *wbc,
638 	struct xfs_ioend	*ioend,
639 	int			status)
640 {
641 	/* Convert CoW extents to regular */
642 	if (!status && ioend->io_fork == XFS_COW_FORK) {
643 		/*
644 		 * Yuk. This can do memory allocation, but is not a
645 		 * transactional operation so everything is done in GFP_KERNEL
646 		 * context. That can deadlock, because we hold pages in
647 		 * writeback state and GFP_KERNEL allocations can block on them.
648 		 * Hence we must operate in nofs conditions here.
649 		 */
650 		unsigned nofs_flag;
651 
652 		nofs_flag = memalloc_nofs_save();
653 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
654 				ioend->io_offset, ioend->io_size);
655 		memalloc_nofs_restore(nofs_flag);
656 	}
657 
658 	/* Reserve log space if we might write beyond the on-disk inode size. */
659 	if (!status &&
660 	    (ioend->io_fork == XFS_COW_FORK ||
661 	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
662 	    xfs_ioend_is_append(ioend) &&
663 	    !ioend->io_append_trans)
664 		status = xfs_setfilesize_trans_alloc(ioend);
665 
666 	ioend->io_bio->bi_private = ioend;
667 	ioend->io_bio->bi_end_io = xfs_end_bio;
668 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
669 
670 	/*
671 	 * If we are failing the IO now, just mark the ioend with an
672 	 * error and finish it. This will run IO completion immediately
673 	 * as there is only one reference to the ioend at this point in
674 	 * time.
675 	 */
676 	if (status) {
677 		ioend->io_bio->bi_status = errno_to_blk_status(status);
678 		bio_endio(ioend->io_bio);
679 		return status;
680 	}
681 
682 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
683 	submit_bio(ioend->io_bio);
684 	return 0;
685 }
686 
687 static struct xfs_ioend *
688 xfs_alloc_ioend(
689 	struct inode		*inode,
690 	int			fork,
691 	xfs_exntst_t		state,
692 	xfs_off_t		offset,
693 	struct block_device	*bdev,
694 	sector_t		sector)
695 {
696 	struct xfs_ioend	*ioend;
697 	struct bio		*bio;
698 
699 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
700 	bio_set_dev(bio, bdev);
701 	bio->bi_iter.bi_sector = sector;
702 
703 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
704 	INIT_LIST_HEAD(&ioend->io_list);
705 	ioend->io_fork = fork;
706 	ioend->io_state = state;
707 	ioend->io_inode = inode;
708 	ioend->io_size = 0;
709 	ioend->io_offset = offset;
710 	ioend->io_append_trans = NULL;
711 	ioend->io_bio = bio;
712 	return ioend;
713 }
714 
715 /*
716  * Allocate a new bio, and chain the old bio to the new one.
717  *
718  * Note that we have to do perform the chaining in this unintuitive order
719  * so that the bi_private linkage is set up in the right direction for the
720  * traversal in xfs_destroy_ioend().
721  */
722 static void
723 xfs_chain_bio(
724 	struct xfs_ioend	*ioend,
725 	struct writeback_control *wbc,
726 	struct block_device	*bdev,
727 	sector_t		sector)
728 {
729 	struct bio *new;
730 
731 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
732 	bio_set_dev(new, bdev);
733 	new->bi_iter.bi_sector = sector;
734 	bio_chain(ioend->io_bio, new);
735 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
736 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
737 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
738 	submit_bio(ioend->io_bio);
739 	ioend->io_bio = new;
740 }
741 
742 /*
743  * Test to see if we have an existing ioend structure that we could append to
744  * first, otherwise finish off the current ioend and start another.
745  */
746 STATIC void
747 xfs_add_to_ioend(
748 	struct inode		*inode,
749 	xfs_off_t		offset,
750 	struct page		*page,
751 	struct iomap_page	*iop,
752 	struct xfs_writepage_ctx *wpc,
753 	struct writeback_control *wbc,
754 	struct list_head	*iolist)
755 {
756 	struct xfs_inode	*ip = XFS_I(inode);
757 	struct xfs_mount	*mp = ip->i_mount;
758 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
759 	unsigned		len = i_blocksize(inode);
760 	unsigned		poff = offset & (PAGE_SIZE - 1);
761 	sector_t		sector;
762 
763 	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
764 		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
765 
766 	if (!wpc->ioend ||
767 	    wpc->fork != wpc->ioend->io_fork ||
768 	    wpc->imap.br_state != wpc->ioend->io_state ||
769 	    sector != bio_end_sector(wpc->ioend->io_bio) ||
770 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
771 		if (wpc->ioend)
772 			list_add(&wpc->ioend->io_list, iolist);
773 		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
774 				wpc->imap.br_state, offset, bdev, sector);
775 	}
776 
777 	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, true)) {
778 		if (iop)
779 			atomic_inc(&iop->write_count);
780 		if (bio_full(wpc->ioend->io_bio))
781 			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
782 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
783 	}
784 
785 	wpc->ioend->io_size += len;
786 }
787 
788 STATIC void
789 xfs_vm_invalidatepage(
790 	struct page		*page,
791 	unsigned int		offset,
792 	unsigned int		length)
793 {
794 	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
795 	iomap_invalidatepage(page, offset, length);
796 }
797 
798 /*
799  * If the page has delalloc blocks on it, we need to punch them out before we
800  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
801  * inode that can trip up a later direct I/O read operation on the same region.
802  *
803  * We prevent this by truncating away the delalloc regions on the page.  Because
804  * they are delalloc, we can do this without needing a transaction. Indeed - if
805  * we get ENOSPC errors, we have to be able to do this truncation without a
806  * transaction as there is no space left for block reservation (typically why we
807  * see a ENOSPC in writeback).
808  */
809 STATIC void
810 xfs_aops_discard_page(
811 	struct page		*page)
812 {
813 	struct inode		*inode = page->mapping->host;
814 	struct xfs_inode	*ip = XFS_I(inode);
815 	struct xfs_mount	*mp = ip->i_mount;
816 	loff_t			offset = page_offset(page);
817 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
818 	int			error;
819 
820 	if (XFS_FORCED_SHUTDOWN(mp))
821 		goto out_invalidate;
822 
823 	xfs_alert(mp,
824 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
825 			page, ip->i_ino, offset);
826 
827 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
828 			PAGE_SIZE / i_blocksize(inode));
829 	if (error && !XFS_FORCED_SHUTDOWN(mp))
830 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
831 out_invalidate:
832 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
833 }
834 
835 /*
836  * We implement an immediate ioend submission policy here to avoid needing to
837  * chain multiple ioends and hence nest mempool allocations which can violate
838  * forward progress guarantees we need to provide. The current ioend we are
839  * adding blocks to is cached on the writepage context, and if the new block
840  * does not append to the cached ioend it will create a new ioend and cache that
841  * instead.
842  *
843  * If a new ioend is created and cached, the old ioend is returned and queued
844  * locally for submission once the entire page is processed or an error has been
845  * detected.  While ioends are submitted immediately after they are completed,
846  * batching optimisations are provided by higher level block plugging.
847  *
848  * At the end of a writeback pass, there will be a cached ioend remaining on the
849  * writepage context that the caller will need to submit.
850  */
851 static int
852 xfs_writepage_map(
853 	struct xfs_writepage_ctx *wpc,
854 	struct writeback_control *wbc,
855 	struct inode		*inode,
856 	struct page		*page,
857 	uint64_t		end_offset)
858 {
859 	LIST_HEAD(submit_list);
860 	struct iomap_page	*iop = to_iomap_page(page);
861 	unsigned		len = i_blocksize(inode);
862 	struct xfs_ioend	*ioend, *next;
863 	uint64_t		file_offset;	/* file offset of page */
864 	int			error = 0, count = 0, i;
865 
866 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
867 	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
868 
869 	/*
870 	 * Walk through the page to find areas to write back. If we run off the
871 	 * end of the current map or find the current map invalid, grab a new
872 	 * one.
873 	 */
874 	for (i = 0, file_offset = page_offset(page);
875 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
876 	     i++, file_offset += len) {
877 		if (iop && !test_bit(i, iop->uptodate))
878 			continue;
879 
880 		error = xfs_map_blocks(wpc, inode, file_offset);
881 		if (error)
882 			break;
883 		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
884 			continue;
885 		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
886 				 &submit_list);
887 		count++;
888 	}
889 
890 	ASSERT(wpc->ioend || list_empty(&submit_list));
891 	ASSERT(PageLocked(page));
892 	ASSERT(!PageWriteback(page));
893 
894 	/*
895 	 * On error, we have to fail the ioend here because we may have set
896 	 * pages under writeback, we have to make sure we run IO completion to
897 	 * mark the error state of the IO appropriately, so we can't cancel the
898 	 * ioend directly here.  That means we have to mark this page as under
899 	 * writeback if we included any blocks from it in the ioend chain so
900 	 * that completion treats it correctly.
901 	 *
902 	 * If we didn't include the page in the ioend, the on error we can
903 	 * simply discard and unlock it as there are no other users of the page
904 	 * now.  The caller will still need to trigger submission of outstanding
905 	 * ioends on the writepage context so they are treated correctly on
906 	 * error.
907 	 */
908 	if (unlikely(error)) {
909 		if (!count) {
910 			xfs_aops_discard_page(page);
911 			ClearPageUptodate(page);
912 			unlock_page(page);
913 			goto done;
914 		}
915 
916 		/*
917 		 * If the page was not fully cleaned, we need to ensure that the
918 		 * higher layers come back to it correctly.  That means we need
919 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
920 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
921 		 * so another attempt to write this page in this writeback sweep
922 		 * will be made.
923 		 */
924 		set_page_writeback_keepwrite(page);
925 	} else {
926 		clear_page_dirty_for_io(page);
927 		set_page_writeback(page);
928 	}
929 
930 	unlock_page(page);
931 
932 	/*
933 	 * Preserve the original error if there was one, otherwise catch
934 	 * submission errors here and propagate into subsequent ioend
935 	 * submissions.
936 	 */
937 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
938 		int error2;
939 
940 		list_del_init(&ioend->io_list);
941 		error2 = xfs_submit_ioend(wbc, ioend, error);
942 		if (error2 && !error)
943 			error = error2;
944 	}
945 
946 	/*
947 	 * We can end up here with no error and nothing to write only if we race
948 	 * with a partial page truncate on a sub-page block sized filesystem.
949 	 */
950 	if (!count)
951 		end_page_writeback(page);
952 done:
953 	mapping_set_error(page->mapping, error);
954 	return error;
955 }
956 
957 /*
958  * Write out a dirty page.
959  *
960  * For delalloc space on the page we need to allocate space and flush it.
961  * For unwritten space on the page we need to start the conversion to
962  * regular allocated space.
963  */
964 STATIC int
965 xfs_do_writepage(
966 	struct page		*page,
967 	struct writeback_control *wbc,
968 	void			*data)
969 {
970 	struct xfs_writepage_ctx *wpc = data;
971 	struct inode		*inode = page->mapping->host;
972 	loff_t			offset;
973 	uint64_t              end_offset;
974 	pgoff_t                 end_index;
975 
976 	trace_xfs_writepage(inode, page, 0, 0);
977 
978 	/*
979 	 * Refuse to write the page out if we are called from reclaim context.
980 	 *
981 	 * This avoids stack overflows when called from deeply used stacks in
982 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
983 	 * allow reclaim from kswapd as the stack usage there is relatively low.
984 	 *
985 	 * This should never happen except in the case of a VM regression so
986 	 * warn about it.
987 	 */
988 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
989 			PF_MEMALLOC))
990 		goto redirty;
991 
992 	/*
993 	 * Given that we do not allow direct reclaim to call us, we should
994 	 * never be called while in a filesystem transaction.
995 	 */
996 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
997 		goto redirty;
998 
999 	/*
1000 	 * Is this page beyond the end of the file?
1001 	 *
1002 	 * The page index is less than the end_index, adjust the end_offset
1003 	 * to the highest offset that this page should represent.
1004 	 * -----------------------------------------------------
1005 	 * |			file mapping	       | <EOF> |
1006 	 * -----------------------------------------------------
1007 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1008 	 * ^--------------------------------^----------|--------
1009 	 * |     desired writeback range    |      see else    |
1010 	 * ---------------------------------^------------------|
1011 	 */
1012 	offset = i_size_read(inode);
1013 	end_index = offset >> PAGE_SHIFT;
1014 	if (page->index < end_index)
1015 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1016 	else {
1017 		/*
1018 		 * Check whether the page to write out is beyond or straddles
1019 		 * i_size or not.
1020 		 * -------------------------------------------------------
1021 		 * |		file mapping		        | <EOF>  |
1022 		 * -------------------------------------------------------
1023 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1024 		 * ^--------------------------------^-----------|---------
1025 		 * |				    |      Straddles     |
1026 		 * ---------------------------------^-----------|--------|
1027 		 */
1028 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1029 
1030 		/*
1031 		 * Skip the page if it is fully outside i_size, e.g. due to a
1032 		 * truncate operation that is in progress. We must redirty the
1033 		 * page so that reclaim stops reclaiming it. Otherwise
1034 		 * xfs_vm_releasepage() is called on it and gets confused.
1035 		 *
1036 		 * Note that the end_index is unsigned long, it would overflow
1037 		 * if the given offset is greater than 16TB on 32-bit system
1038 		 * and if we do check the page is fully outside i_size or not
1039 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1040 		 * will be evaluated to 0.  Hence this page will be redirtied
1041 		 * and be written out repeatedly which would result in an
1042 		 * infinite loop, the user program that perform this operation
1043 		 * will hang.  Instead, we can verify this situation by checking
1044 		 * if the page to write is totally beyond the i_size or if it's
1045 		 * offset is just equal to the EOF.
1046 		 */
1047 		if (page->index > end_index ||
1048 		    (page->index == end_index && offset_into_page == 0))
1049 			goto redirty;
1050 
1051 		/*
1052 		 * The page straddles i_size.  It must be zeroed out on each
1053 		 * and every writepage invocation because it may be mmapped.
1054 		 * "A file is mapped in multiples of the page size.  For a file
1055 		 * that is not a multiple of the page size, the remaining
1056 		 * memory is zeroed when mapped, and writes to that region are
1057 		 * not written out to the file."
1058 		 */
1059 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1060 
1061 		/* Adjust the end_offset to the end of file */
1062 		end_offset = offset;
1063 	}
1064 
1065 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1066 
1067 redirty:
1068 	redirty_page_for_writepage(wbc, page);
1069 	unlock_page(page);
1070 	return 0;
1071 }
1072 
1073 STATIC int
1074 xfs_vm_writepage(
1075 	struct page		*page,
1076 	struct writeback_control *wbc)
1077 {
1078 	struct xfs_writepage_ctx wpc = { };
1079 	int			ret;
1080 
1081 	ret = xfs_do_writepage(page, wbc, &wpc);
1082 	if (wpc.ioend)
1083 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1084 	return ret;
1085 }
1086 
1087 STATIC int
1088 xfs_vm_writepages(
1089 	struct address_space	*mapping,
1090 	struct writeback_control *wbc)
1091 {
1092 	struct xfs_writepage_ctx wpc = { };
1093 	int			ret;
1094 
1095 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1096 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1097 	if (wpc.ioend)
1098 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1099 	return ret;
1100 }
1101 
1102 STATIC int
1103 xfs_dax_writepages(
1104 	struct address_space	*mapping,
1105 	struct writeback_control *wbc)
1106 {
1107 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1108 	return dax_writeback_mapping_range(mapping,
1109 			xfs_find_bdev_for_inode(mapping->host), wbc);
1110 }
1111 
1112 STATIC int
1113 xfs_vm_releasepage(
1114 	struct page		*page,
1115 	gfp_t			gfp_mask)
1116 {
1117 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1118 	return iomap_releasepage(page, gfp_mask);
1119 }
1120 
1121 STATIC sector_t
1122 xfs_vm_bmap(
1123 	struct address_space	*mapping,
1124 	sector_t		block)
1125 {
1126 	struct xfs_inode	*ip = XFS_I(mapping->host);
1127 
1128 	trace_xfs_vm_bmap(ip);
1129 
1130 	/*
1131 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1132 	 * bypasses the file system for actual I/O.  We really can't allow
1133 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1134 	 * 0 is the magic code for a bmap error.
1135 	 *
1136 	 * Since we don't pass back blockdev info, we can't return bmap
1137 	 * information for rt files either.
1138 	 */
1139 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1140 		return 0;
1141 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
1142 }
1143 
1144 STATIC int
1145 xfs_vm_readpage(
1146 	struct file		*unused,
1147 	struct page		*page)
1148 {
1149 	trace_xfs_vm_readpage(page->mapping->host, 1);
1150 	return iomap_readpage(page, &xfs_iomap_ops);
1151 }
1152 
1153 STATIC int
1154 xfs_vm_readpages(
1155 	struct file		*unused,
1156 	struct address_space	*mapping,
1157 	struct list_head	*pages,
1158 	unsigned		nr_pages)
1159 {
1160 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1161 	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1162 }
1163 
1164 static int
1165 xfs_iomap_swapfile_activate(
1166 	struct swap_info_struct		*sis,
1167 	struct file			*swap_file,
1168 	sector_t			*span)
1169 {
1170 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1171 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1172 }
1173 
1174 const struct address_space_operations xfs_address_space_operations = {
1175 	.readpage		= xfs_vm_readpage,
1176 	.readpages		= xfs_vm_readpages,
1177 	.writepage		= xfs_vm_writepage,
1178 	.writepages		= xfs_vm_writepages,
1179 	.set_page_dirty		= iomap_set_page_dirty,
1180 	.releasepage		= xfs_vm_releasepage,
1181 	.invalidatepage		= xfs_vm_invalidatepage,
1182 	.bmap			= xfs_vm_bmap,
1183 	.direct_IO		= noop_direct_IO,
1184 	.migratepage		= iomap_migrate_page,
1185 	.is_partially_uptodate  = iomap_is_partially_uptodate,
1186 	.error_remove_page	= generic_error_remove_page,
1187 	.swap_activate		= xfs_iomap_swapfile_activate,
1188 };
1189 
1190 const struct address_space_operations xfs_dax_aops = {
1191 	.writepages		= xfs_dax_writepages,
1192 	.direct_IO		= noop_direct_IO,
1193 	.set_page_dirty		= noop_set_page_dirty,
1194 	.invalidatepage		= noop_invalidatepage,
1195 	.swap_activate		= xfs_iomap_swapfile_activate,
1196 };
1197