xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 4d2804b7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /*
41  * structure owned by writepages passed to individual writepage calls
42  */
43 struct xfs_writepage_ctx {
44 	struct xfs_bmbt_irec    imap;
45 	bool			imap_valid;
46 	unsigned int		io_type;
47 	struct xfs_ioend	*ioend;
48 	sector_t		last_block;
49 };
50 
51 void
52 xfs_count_page_state(
53 	struct page		*page,
54 	int			*delalloc,
55 	int			*unwritten)
56 {
57 	struct buffer_head	*bh, *head;
58 
59 	*delalloc = *unwritten = 0;
60 
61 	bh = head = page_buffers(page);
62 	do {
63 		if (buffer_unwritten(bh))
64 			(*unwritten) = 1;
65 		else if (buffer_delay(bh))
66 			(*delalloc) = 1;
67 	} while ((bh = bh->b_this_page) != head);
68 }
69 
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 	struct inode		*inode)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 	struct xfs_mount	*mp = ip->i_mount;
76 
77 	if (XFS_IS_REALTIME_INODE(ip))
78 		return mp->m_rtdev_targp->bt_bdev;
79 	else
80 		return mp->m_ddev_targp->bt_bdev;
81 }
82 
83 /*
84  * We're now finished for good with this page.  Update the page state via the
85  * associated buffer_heads, paying attention to the start and end offsets that
86  * we need to process on the page.
87  *
88  * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
89  * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
90  * the page at all, as we may be racing with memory reclaim and it can free both
91  * the bufferhead chain and the page as it will see the page as clean and
92  * unused.
93  */
94 static void
95 xfs_finish_page_writeback(
96 	struct inode		*inode,
97 	struct bio_vec		*bvec,
98 	int			error)
99 {
100 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
101 	struct buffer_head	*head, *bh, *next;
102 	unsigned int		off = 0;
103 	unsigned int		bsize;
104 
105 	ASSERT(bvec->bv_offset < PAGE_SIZE);
106 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
107 	ASSERT(end < PAGE_SIZE);
108 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
109 
110 	bh = head = page_buffers(bvec->bv_page);
111 
112 	bsize = bh->b_size;
113 	do {
114 		if (off > end)
115 			break;
116 		next = bh->b_this_page;
117 		if (off < bvec->bv_offset)
118 			goto next_bh;
119 		bh->b_end_io(bh, !error);
120 next_bh:
121 		off += bsize;
122 	} while ((bh = next) != head);
123 }
124 
125 /*
126  * We're now finished for good with this ioend structure.  Update the page
127  * state, release holds on bios, and finally free up memory.  Do not use the
128  * ioend after this.
129  */
130 STATIC void
131 xfs_destroy_ioend(
132 	struct xfs_ioend	*ioend,
133 	int			error)
134 {
135 	struct inode		*inode = ioend->io_inode;
136 	struct bio		*last = ioend->io_bio;
137 	struct bio		*bio, *next;
138 
139 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
140 		struct bio_vec	*bvec;
141 		int		i;
142 
143 		/*
144 		 * For the last bio, bi_private points to the ioend, so we
145 		 * need to explicitly end the iteration here.
146 		 */
147 		if (bio == last)
148 			next = NULL;
149 		else
150 			next = bio->bi_private;
151 
152 		/* walk each page on bio, ending page IO on them */
153 		bio_for_each_segment_all(bvec, bio, i)
154 			xfs_finish_page_writeback(inode, bvec, error);
155 
156 		bio_put(bio);
157 	}
158 }
159 
160 /*
161  * Fast and loose check if this write could update the on-disk inode size.
162  */
163 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
164 {
165 	return ioend->io_offset + ioend->io_size >
166 		XFS_I(ioend->io_inode)->i_d.di_size;
167 }
168 
169 STATIC int
170 xfs_setfilesize_trans_alloc(
171 	struct xfs_ioend	*ioend)
172 {
173 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
174 	struct xfs_trans	*tp;
175 	int			error;
176 
177 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
178 	if (error)
179 		return error;
180 
181 	ioend->io_append_trans = tp;
182 
183 	/*
184 	 * We may pass freeze protection with a transaction.  So tell lockdep
185 	 * we released it.
186 	 */
187 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
188 	/*
189 	 * We hand off the transaction to the completion thread now, so
190 	 * clear the flag here.
191 	 */
192 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
193 	return 0;
194 }
195 
196 /*
197  * Update on-disk file size now that data has been written to disk.
198  */
199 STATIC int
200 __xfs_setfilesize(
201 	struct xfs_inode	*ip,
202 	struct xfs_trans	*tp,
203 	xfs_off_t		offset,
204 	size_t			size)
205 {
206 	xfs_fsize_t		isize;
207 
208 	xfs_ilock(ip, XFS_ILOCK_EXCL);
209 	isize = xfs_new_eof(ip, offset + size);
210 	if (!isize) {
211 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
212 		xfs_trans_cancel(tp);
213 		return 0;
214 	}
215 
216 	trace_xfs_setfilesize(ip, offset, size);
217 
218 	ip->i_d.di_size = isize;
219 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
220 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221 
222 	return xfs_trans_commit(tp);
223 }
224 
225 int
226 xfs_setfilesize(
227 	struct xfs_inode	*ip,
228 	xfs_off_t		offset,
229 	size_t			size)
230 {
231 	struct xfs_mount	*mp = ip->i_mount;
232 	struct xfs_trans	*tp;
233 	int			error;
234 
235 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
236 	if (error)
237 		return error;
238 
239 	return __xfs_setfilesize(ip, tp, offset, size);
240 }
241 
242 STATIC int
243 xfs_setfilesize_ioend(
244 	struct xfs_ioend	*ioend,
245 	int			error)
246 {
247 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
248 	struct xfs_trans	*tp = ioend->io_append_trans;
249 
250 	/*
251 	 * The transaction may have been allocated in the I/O submission thread,
252 	 * thus we need to mark ourselves as being in a transaction manually.
253 	 * Similarly for freeze protection.
254 	 */
255 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
256 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
257 
258 	/* we abort the update if there was an IO error */
259 	if (error) {
260 		xfs_trans_cancel(tp);
261 		return error;
262 	}
263 
264 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
265 }
266 
267 /*
268  * IO write completion.
269  */
270 STATIC void
271 xfs_end_io(
272 	struct work_struct *work)
273 {
274 	struct xfs_ioend	*ioend =
275 		container_of(work, struct xfs_ioend, io_work);
276 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
277 	xfs_off_t		offset = ioend->io_offset;
278 	size_t			size = ioend->io_size;
279 	int			error = ioend->io_bio->bi_error;
280 
281 	/*
282 	 * Just clean up the in-memory strutures if the fs has been shut down.
283 	 */
284 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
285 		error = -EIO;
286 		goto done;
287 	}
288 
289 	/*
290 	 * Clean up any COW blocks on an I/O error.
291 	 */
292 	if (unlikely(error)) {
293 		switch (ioend->io_type) {
294 		case XFS_IO_COW:
295 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
296 			break;
297 		}
298 
299 		goto done;
300 	}
301 
302 	/*
303 	 * Success:  commit the COW or unwritten blocks if needed.
304 	 */
305 	switch (ioend->io_type) {
306 	case XFS_IO_COW:
307 		error = xfs_reflink_end_cow(ip, offset, size);
308 		break;
309 	case XFS_IO_UNWRITTEN:
310 		error = xfs_iomap_write_unwritten(ip, offset, size);
311 		break;
312 	default:
313 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
314 		break;
315 	}
316 
317 done:
318 	if (ioend->io_append_trans)
319 		error = xfs_setfilesize_ioend(ioend, error);
320 	xfs_destroy_ioend(ioend, error);
321 }
322 
323 STATIC void
324 xfs_end_bio(
325 	struct bio		*bio)
326 {
327 	struct xfs_ioend	*ioend = bio->bi_private;
328 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
329 
330 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
331 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
332 	else if (ioend->io_append_trans)
333 		queue_work(mp->m_data_workqueue, &ioend->io_work);
334 	else
335 		xfs_destroy_ioend(ioend, bio->bi_error);
336 }
337 
338 STATIC int
339 xfs_map_blocks(
340 	struct inode		*inode,
341 	loff_t			offset,
342 	struct xfs_bmbt_irec	*imap,
343 	int			type)
344 {
345 	struct xfs_inode	*ip = XFS_I(inode);
346 	struct xfs_mount	*mp = ip->i_mount;
347 	ssize_t			count = i_blocksize(inode);
348 	xfs_fileoff_t		offset_fsb, end_fsb;
349 	int			error = 0;
350 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
351 	int			nimaps = 1;
352 
353 	if (XFS_FORCED_SHUTDOWN(mp))
354 		return -EIO;
355 
356 	ASSERT(type != XFS_IO_COW);
357 	if (type == XFS_IO_UNWRITTEN)
358 		bmapi_flags |= XFS_BMAPI_IGSTATE;
359 
360 	xfs_ilock(ip, XFS_ILOCK_SHARED);
361 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
362 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
363 	ASSERT(offset <= mp->m_super->s_maxbytes);
364 
365 	if (offset + count > mp->m_super->s_maxbytes)
366 		count = mp->m_super->s_maxbytes - offset;
367 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
368 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
369 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
370 				imap, &nimaps, bmapi_flags);
371 	/*
372 	 * Truncate an overwrite extent if there's a pending CoW
373 	 * reservation before the end of this extent.  This forces us
374 	 * to come back to writepage to take care of the CoW.
375 	 */
376 	if (nimaps && type == XFS_IO_OVERWRITE)
377 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
378 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
379 
380 	if (error)
381 		return error;
382 
383 	if (type == XFS_IO_DELALLOC &&
384 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
385 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
386 				imap);
387 		if (!error)
388 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
389 		return error;
390 	}
391 
392 #ifdef DEBUG
393 	if (type == XFS_IO_UNWRITTEN) {
394 		ASSERT(nimaps);
395 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
396 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
397 	}
398 #endif
399 	if (nimaps)
400 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
401 	return 0;
402 }
403 
404 STATIC bool
405 xfs_imap_valid(
406 	struct inode		*inode,
407 	struct xfs_bmbt_irec	*imap,
408 	xfs_off_t		offset)
409 {
410 	offset >>= inode->i_blkbits;
411 
412 	return offset >= imap->br_startoff &&
413 		offset < imap->br_startoff + imap->br_blockcount;
414 }
415 
416 STATIC void
417 xfs_start_buffer_writeback(
418 	struct buffer_head	*bh)
419 {
420 	ASSERT(buffer_mapped(bh));
421 	ASSERT(buffer_locked(bh));
422 	ASSERT(!buffer_delay(bh));
423 	ASSERT(!buffer_unwritten(bh));
424 
425 	mark_buffer_async_write(bh);
426 	set_buffer_uptodate(bh);
427 	clear_buffer_dirty(bh);
428 }
429 
430 STATIC void
431 xfs_start_page_writeback(
432 	struct page		*page,
433 	int			clear_dirty)
434 {
435 	ASSERT(PageLocked(page));
436 	ASSERT(!PageWriteback(page));
437 
438 	/*
439 	 * if the page was not fully cleaned, we need to ensure that the higher
440 	 * layers come back to it correctly. That means we need to keep the page
441 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
442 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
443 	 * write this page in this writeback sweep will be made.
444 	 */
445 	if (clear_dirty) {
446 		clear_page_dirty_for_io(page);
447 		set_page_writeback(page);
448 	} else
449 		set_page_writeback_keepwrite(page);
450 
451 	unlock_page(page);
452 }
453 
454 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
455 {
456 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
457 }
458 
459 /*
460  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
461  * it, and we submit that bio. The ioend may be used for multiple bio
462  * submissions, so we only want to allocate an append transaction for the ioend
463  * once. In the case of multiple bio submission, each bio will take an IO
464  * reference to the ioend to ensure that the ioend completion is only done once
465  * all bios have been submitted and the ioend is really done.
466  *
467  * If @fail is non-zero, it means that we have a situation where some part of
468  * the submission process has failed after we have marked paged for writeback
469  * and unlocked them. In this situation, we need to fail the bio and ioend
470  * rather than submit it to IO. This typically only happens on a filesystem
471  * shutdown.
472  */
473 STATIC int
474 xfs_submit_ioend(
475 	struct writeback_control *wbc,
476 	struct xfs_ioend	*ioend,
477 	int			status)
478 {
479 	/* Convert CoW extents to regular */
480 	if (!status && ioend->io_type == XFS_IO_COW) {
481 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
482 				ioend->io_offset, ioend->io_size);
483 	}
484 
485 	/* Reserve log space if we might write beyond the on-disk inode size. */
486 	if (!status &&
487 	    ioend->io_type != XFS_IO_UNWRITTEN &&
488 	    xfs_ioend_is_append(ioend) &&
489 	    !ioend->io_append_trans)
490 		status = xfs_setfilesize_trans_alloc(ioend);
491 
492 	ioend->io_bio->bi_private = ioend;
493 	ioend->io_bio->bi_end_io = xfs_end_bio;
494 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
495 
496 	/*
497 	 * If we are failing the IO now, just mark the ioend with an
498 	 * error and finish it. This will run IO completion immediately
499 	 * as there is only one reference to the ioend at this point in
500 	 * time.
501 	 */
502 	if (status) {
503 		ioend->io_bio->bi_error = status;
504 		bio_endio(ioend->io_bio);
505 		return status;
506 	}
507 
508 	submit_bio(ioend->io_bio);
509 	return 0;
510 }
511 
512 static void
513 xfs_init_bio_from_bh(
514 	struct bio		*bio,
515 	struct buffer_head	*bh)
516 {
517 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
518 	bio->bi_bdev = bh->b_bdev;
519 }
520 
521 static struct xfs_ioend *
522 xfs_alloc_ioend(
523 	struct inode		*inode,
524 	unsigned int		type,
525 	xfs_off_t		offset,
526 	struct buffer_head	*bh)
527 {
528 	struct xfs_ioend	*ioend;
529 	struct bio		*bio;
530 
531 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
532 	xfs_init_bio_from_bh(bio, bh);
533 
534 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
535 	INIT_LIST_HEAD(&ioend->io_list);
536 	ioend->io_type = type;
537 	ioend->io_inode = inode;
538 	ioend->io_size = 0;
539 	ioend->io_offset = offset;
540 	INIT_WORK(&ioend->io_work, xfs_end_io);
541 	ioend->io_append_trans = NULL;
542 	ioend->io_bio = bio;
543 	return ioend;
544 }
545 
546 /*
547  * Allocate a new bio, and chain the old bio to the new one.
548  *
549  * Note that we have to do perform the chaining in this unintuitive order
550  * so that the bi_private linkage is set up in the right direction for the
551  * traversal in xfs_destroy_ioend().
552  */
553 static void
554 xfs_chain_bio(
555 	struct xfs_ioend	*ioend,
556 	struct writeback_control *wbc,
557 	struct buffer_head	*bh)
558 {
559 	struct bio *new;
560 
561 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
562 	xfs_init_bio_from_bh(new, bh);
563 
564 	bio_chain(ioend->io_bio, new);
565 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
566 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
567 	submit_bio(ioend->io_bio);
568 	ioend->io_bio = new;
569 }
570 
571 /*
572  * Test to see if we've been building up a completion structure for
573  * earlier buffers -- if so, we try to append to this ioend if we
574  * can, otherwise we finish off any current ioend and start another.
575  * Return the ioend we finished off so that the caller can submit it
576  * once it has finished processing the dirty page.
577  */
578 STATIC void
579 xfs_add_to_ioend(
580 	struct inode		*inode,
581 	struct buffer_head	*bh,
582 	xfs_off_t		offset,
583 	struct xfs_writepage_ctx *wpc,
584 	struct writeback_control *wbc,
585 	struct list_head	*iolist)
586 {
587 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
588 	    bh->b_blocknr != wpc->last_block + 1 ||
589 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
590 		if (wpc->ioend)
591 			list_add(&wpc->ioend->io_list, iolist);
592 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
593 	}
594 
595 	/*
596 	 * If the buffer doesn't fit into the bio we need to allocate a new
597 	 * one.  This shouldn't happen more than once for a given buffer.
598 	 */
599 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
600 		xfs_chain_bio(wpc->ioend, wbc, bh);
601 
602 	wpc->ioend->io_size += bh->b_size;
603 	wpc->last_block = bh->b_blocknr;
604 	xfs_start_buffer_writeback(bh);
605 }
606 
607 STATIC void
608 xfs_map_buffer(
609 	struct inode		*inode,
610 	struct buffer_head	*bh,
611 	struct xfs_bmbt_irec	*imap,
612 	xfs_off_t		offset)
613 {
614 	sector_t		bn;
615 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
616 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
617 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
618 
619 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
620 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
621 
622 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
623 	      ((offset - iomap_offset) >> inode->i_blkbits);
624 
625 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
626 
627 	bh->b_blocknr = bn;
628 	set_buffer_mapped(bh);
629 }
630 
631 STATIC void
632 xfs_map_at_offset(
633 	struct inode		*inode,
634 	struct buffer_head	*bh,
635 	struct xfs_bmbt_irec	*imap,
636 	xfs_off_t		offset)
637 {
638 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
639 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
640 
641 	xfs_map_buffer(inode, bh, imap, offset);
642 	set_buffer_mapped(bh);
643 	clear_buffer_delay(bh);
644 	clear_buffer_unwritten(bh);
645 }
646 
647 /*
648  * Test if a given page contains at least one buffer of a given @type.
649  * If @check_all_buffers is true, then we walk all the buffers in the page to
650  * try to find one of the type passed in. If it is not set, then the caller only
651  * needs to check the first buffer on the page for a match.
652  */
653 STATIC bool
654 xfs_check_page_type(
655 	struct page		*page,
656 	unsigned int		type,
657 	bool			check_all_buffers)
658 {
659 	struct buffer_head	*bh;
660 	struct buffer_head	*head;
661 
662 	if (PageWriteback(page))
663 		return false;
664 	if (!page->mapping)
665 		return false;
666 	if (!page_has_buffers(page))
667 		return false;
668 
669 	bh = head = page_buffers(page);
670 	do {
671 		if (buffer_unwritten(bh)) {
672 			if (type == XFS_IO_UNWRITTEN)
673 				return true;
674 		} else if (buffer_delay(bh)) {
675 			if (type == XFS_IO_DELALLOC)
676 				return true;
677 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
678 			if (type == XFS_IO_OVERWRITE)
679 				return true;
680 		}
681 
682 		/* If we are only checking the first buffer, we are done now. */
683 		if (!check_all_buffers)
684 			break;
685 	} while ((bh = bh->b_this_page) != head);
686 
687 	return false;
688 }
689 
690 STATIC void
691 xfs_vm_invalidatepage(
692 	struct page		*page,
693 	unsigned int		offset,
694 	unsigned int		length)
695 {
696 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
697 				 length);
698 	block_invalidatepage(page, offset, length);
699 }
700 
701 /*
702  * If the page has delalloc buffers on it, we need to punch them out before we
703  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
704  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
705  * is done on that same region - the delalloc extent is returned when none is
706  * supposed to be there.
707  *
708  * We prevent this by truncating away the delalloc regions on the page before
709  * invalidating it. Because they are delalloc, we can do this without needing a
710  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
711  * truncation without a transaction as there is no space left for block
712  * reservation (typically why we see a ENOSPC in writeback).
713  *
714  * This is not a performance critical path, so for now just do the punching a
715  * buffer head at a time.
716  */
717 STATIC void
718 xfs_aops_discard_page(
719 	struct page		*page)
720 {
721 	struct inode		*inode = page->mapping->host;
722 	struct xfs_inode	*ip = XFS_I(inode);
723 	struct buffer_head	*bh, *head;
724 	loff_t			offset = page_offset(page);
725 
726 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
727 		goto out_invalidate;
728 
729 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
730 		goto out_invalidate;
731 
732 	xfs_alert(ip->i_mount,
733 		"page discard on page %p, inode 0x%llx, offset %llu.",
734 			page, ip->i_ino, offset);
735 
736 	xfs_ilock(ip, XFS_ILOCK_EXCL);
737 	bh = head = page_buffers(page);
738 	do {
739 		int		error;
740 		xfs_fileoff_t	start_fsb;
741 
742 		if (!buffer_delay(bh))
743 			goto next_buffer;
744 
745 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
746 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
747 		if (error) {
748 			/* something screwed, just bail */
749 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
750 				xfs_alert(ip->i_mount,
751 			"page discard unable to remove delalloc mapping.");
752 			}
753 			break;
754 		}
755 next_buffer:
756 		offset += i_blocksize(inode);
757 
758 	} while ((bh = bh->b_this_page) != head);
759 
760 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
761 out_invalidate:
762 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
763 	return;
764 }
765 
766 static int
767 xfs_map_cow(
768 	struct xfs_writepage_ctx *wpc,
769 	struct inode		*inode,
770 	loff_t			offset,
771 	unsigned int		*new_type)
772 {
773 	struct xfs_inode	*ip = XFS_I(inode);
774 	struct xfs_bmbt_irec	imap;
775 	bool			is_cow = false;
776 	int			error;
777 
778 	/*
779 	 * If we already have a valid COW mapping keep using it.
780 	 */
781 	if (wpc->io_type == XFS_IO_COW) {
782 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
783 		if (wpc->imap_valid) {
784 			*new_type = XFS_IO_COW;
785 			return 0;
786 		}
787 	}
788 
789 	/*
790 	 * Else we need to check if there is a COW mapping at this offset.
791 	 */
792 	xfs_ilock(ip, XFS_ILOCK_SHARED);
793 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
794 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
795 
796 	if (!is_cow)
797 		return 0;
798 
799 	/*
800 	 * And if the COW mapping has a delayed extent here we need to
801 	 * allocate real space for it now.
802 	 */
803 	if (isnullstartblock(imap.br_startblock)) {
804 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
805 				&imap);
806 		if (error)
807 			return error;
808 	}
809 
810 	wpc->io_type = *new_type = XFS_IO_COW;
811 	wpc->imap_valid = true;
812 	wpc->imap = imap;
813 	return 0;
814 }
815 
816 /*
817  * We implement an immediate ioend submission policy here to avoid needing to
818  * chain multiple ioends and hence nest mempool allocations which can violate
819  * forward progress guarantees we need to provide. The current ioend we are
820  * adding buffers to is cached on the writepage context, and if the new buffer
821  * does not append to the cached ioend it will create a new ioend and cache that
822  * instead.
823  *
824  * If a new ioend is created and cached, the old ioend is returned and queued
825  * locally for submission once the entire page is processed or an error has been
826  * detected.  While ioends are submitted immediately after they are completed,
827  * batching optimisations are provided by higher level block plugging.
828  *
829  * At the end of a writeback pass, there will be a cached ioend remaining on the
830  * writepage context that the caller will need to submit.
831  */
832 static int
833 xfs_writepage_map(
834 	struct xfs_writepage_ctx *wpc,
835 	struct writeback_control *wbc,
836 	struct inode		*inode,
837 	struct page		*page,
838 	loff_t			offset,
839 	__uint64_t              end_offset)
840 {
841 	LIST_HEAD(submit_list);
842 	struct xfs_ioend	*ioend, *next;
843 	struct buffer_head	*bh, *head;
844 	ssize_t			len = i_blocksize(inode);
845 	int			error = 0;
846 	int			count = 0;
847 	int			uptodate = 1;
848 	unsigned int		new_type;
849 
850 	bh = head = page_buffers(page);
851 	offset = page_offset(page);
852 	do {
853 		if (offset >= end_offset)
854 			break;
855 		if (!buffer_uptodate(bh))
856 			uptodate = 0;
857 
858 		/*
859 		 * set_page_dirty dirties all buffers in a page, independent
860 		 * of their state.  The dirty state however is entirely
861 		 * meaningless for holes (!mapped && uptodate), so skip
862 		 * buffers covering holes here.
863 		 */
864 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
865 			wpc->imap_valid = false;
866 			continue;
867 		}
868 
869 		if (buffer_unwritten(bh))
870 			new_type = XFS_IO_UNWRITTEN;
871 		else if (buffer_delay(bh))
872 			new_type = XFS_IO_DELALLOC;
873 		else if (buffer_uptodate(bh))
874 			new_type = XFS_IO_OVERWRITE;
875 		else {
876 			if (PageUptodate(page))
877 				ASSERT(buffer_mapped(bh));
878 			/*
879 			 * This buffer is not uptodate and will not be
880 			 * written to disk.  Ensure that we will put any
881 			 * subsequent writeable buffers into a new
882 			 * ioend.
883 			 */
884 			wpc->imap_valid = false;
885 			continue;
886 		}
887 
888 		if (xfs_is_reflink_inode(XFS_I(inode))) {
889 			error = xfs_map_cow(wpc, inode, offset, &new_type);
890 			if (error)
891 				goto out;
892 		}
893 
894 		if (wpc->io_type != new_type) {
895 			wpc->io_type = new_type;
896 			wpc->imap_valid = false;
897 		}
898 
899 		if (wpc->imap_valid)
900 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
901 							 offset);
902 		if (!wpc->imap_valid) {
903 			error = xfs_map_blocks(inode, offset, &wpc->imap,
904 					     wpc->io_type);
905 			if (error)
906 				goto out;
907 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
908 							 offset);
909 		}
910 		if (wpc->imap_valid) {
911 			lock_buffer(bh);
912 			if (wpc->io_type != XFS_IO_OVERWRITE)
913 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
914 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
915 			count++;
916 		}
917 
918 	} while (offset += len, ((bh = bh->b_this_page) != head));
919 
920 	if (uptodate && bh == head)
921 		SetPageUptodate(page);
922 
923 	ASSERT(wpc->ioend || list_empty(&submit_list));
924 
925 out:
926 	/*
927 	 * On error, we have to fail the ioend here because we have locked
928 	 * buffers in the ioend. If we don't do this, we'll deadlock
929 	 * invalidating the page as that tries to lock the buffers on the page.
930 	 * Also, because we may have set pages under writeback, we have to make
931 	 * sure we run IO completion to mark the error state of the IO
932 	 * appropriately, so we can't cancel the ioend directly here. That means
933 	 * we have to mark this page as under writeback if we included any
934 	 * buffers from it in the ioend chain so that completion treats it
935 	 * correctly.
936 	 *
937 	 * If we didn't include the page in the ioend, the on error we can
938 	 * simply discard and unlock it as there are no other users of the page
939 	 * or it's buffers right now. The caller will still need to trigger
940 	 * submission of outstanding ioends on the writepage context so they are
941 	 * treated correctly on error.
942 	 */
943 	if (count) {
944 		xfs_start_page_writeback(page, !error);
945 
946 		/*
947 		 * Preserve the original error if there was one, otherwise catch
948 		 * submission errors here and propagate into subsequent ioend
949 		 * submissions.
950 		 */
951 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
952 			int error2;
953 
954 			list_del_init(&ioend->io_list);
955 			error2 = xfs_submit_ioend(wbc, ioend, error);
956 			if (error2 && !error)
957 				error = error2;
958 		}
959 	} else if (error) {
960 		xfs_aops_discard_page(page);
961 		ClearPageUptodate(page);
962 		unlock_page(page);
963 	} else {
964 		/*
965 		 * We can end up here with no error and nothing to write if we
966 		 * race with a partial page truncate on a sub-page block sized
967 		 * filesystem. In that case we need to mark the page clean.
968 		 */
969 		xfs_start_page_writeback(page, 1);
970 		end_page_writeback(page);
971 	}
972 
973 	mapping_set_error(page->mapping, error);
974 	return error;
975 }
976 
977 /*
978  * Write out a dirty page.
979  *
980  * For delalloc space on the page we need to allocate space and flush it.
981  * For unwritten space on the page we need to start the conversion to
982  * regular allocated space.
983  * For any other dirty buffer heads on the page we should flush them.
984  */
985 STATIC int
986 xfs_do_writepage(
987 	struct page		*page,
988 	struct writeback_control *wbc,
989 	void			*data)
990 {
991 	struct xfs_writepage_ctx *wpc = data;
992 	struct inode		*inode = page->mapping->host;
993 	loff_t			offset;
994 	__uint64_t              end_offset;
995 	pgoff_t                 end_index;
996 
997 	trace_xfs_writepage(inode, page, 0, 0);
998 
999 	ASSERT(page_has_buffers(page));
1000 
1001 	/*
1002 	 * Refuse to write the page out if we are called from reclaim context.
1003 	 *
1004 	 * This avoids stack overflows when called from deeply used stacks in
1005 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1006 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1007 	 *
1008 	 * This should never happen except in the case of a VM regression so
1009 	 * warn about it.
1010 	 */
1011 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1012 			PF_MEMALLOC))
1013 		goto redirty;
1014 
1015 	/*
1016 	 * Given that we do not allow direct reclaim to call us, we should
1017 	 * never be called while in a filesystem transaction.
1018 	 */
1019 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1020 		goto redirty;
1021 
1022 	/*
1023 	 * Is this page beyond the end of the file?
1024 	 *
1025 	 * The page index is less than the end_index, adjust the end_offset
1026 	 * to the highest offset that this page should represent.
1027 	 * -----------------------------------------------------
1028 	 * |			file mapping	       | <EOF> |
1029 	 * -----------------------------------------------------
1030 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1031 	 * ^--------------------------------^----------|--------
1032 	 * |     desired writeback range    |      see else    |
1033 	 * ---------------------------------^------------------|
1034 	 */
1035 	offset = i_size_read(inode);
1036 	end_index = offset >> PAGE_SHIFT;
1037 	if (page->index < end_index)
1038 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1039 	else {
1040 		/*
1041 		 * Check whether the page to write out is beyond or straddles
1042 		 * i_size or not.
1043 		 * -------------------------------------------------------
1044 		 * |		file mapping		        | <EOF>  |
1045 		 * -------------------------------------------------------
1046 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1047 		 * ^--------------------------------^-----------|---------
1048 		 * |				    |      Straddles     |
1049 		 * ---------------------------------^-----------|--------|
1050 		 */
1051 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1052 
1053 		/*
1054 		 * Skip the page if it is fully outside i_size, e.g. due to a
1055 		 * truncate operation that is in progress. We must redirty the
1056 		 * page so that reclaim stops reclaiming it. Otherwise
1057 		 * xfs_vm_releasepage() is called on it and gets confused.
1058 		 *
1059 		 * Note that the end_index is unsigned long, it would overflow
1060 		 * if the given offset is greater than 16TB on 32-bit system
1061 		 * and if we do check the page is fully outside i_size or not
1062 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1063 		 * will be evaluated to 0.  Hence this page will be redirtied
1064 		 * and be written out repeatedly which would result in an
1065 		 * infinite loop, the user program that perform this operation
1066 		 * will hang.  Instead, we can verify this situation by checking
1067 		 * if the page to write is totally beyond the i_size or if it's
1068 		 * offset is just equal to the EOF.
1069 		 */
1070 		if (page->index > end_index ||
1071 		    (page->index == end_index && offset_into_page == 0))
1072 			goto redirty;
1073 
1074 		/*
1075 		 * The page straddles i_size.  It must be zeroed out on each
1076 		 * and every writepage invocation because it may be mmapped.
1077 		 * "A file is mapped in multiples of the page size.  For a file
1078 		 * that is not a multiple of the page size, the remaining
1079 		 * memory is zeroed when mapped, and writes to that region are
1080 		 * not written out to the file."
1081 		 */
1082 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1083 
1084 		/* Adjust the end_offset to the end of file */
1085 		end_offset = offset;
1086 	}
1087 
1088 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1089 
1090 redirty:
1091 	redirty_page_for_writepage(wbc, page);
1092 	unlock_page(page);
1093 	return 0;
1094 }
1095 
1096 STATIC int
1097 xfs_vm_writepage(
1098 	struct page		*page,
1099 	struct writeback_control *wbc)
1100 {
1101 	struct xfs_writepage_ctx wpc = {
1102 		.io_type = XFS_IO_INVALID,
1103 	};
1104 	int			ret;
1105 
1106 	ret = xfs_do_writepage(page, wbc, &wpc);
1107 	if (wpc.ioend)
1108 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1109 	return ret;
1110 }
1111 
1112 STATIC int
1113 xfs_vm_writepages(
1114 	struct address_space	*mapping,
1115 	struct writeback_control *wbc)
1116 {
1117 	struct xfs_writepage_ctx wpc = {
1118 		.io_type = XFS_IO_INVALID,
1119 	};
1120 	int			ret;
1121 
1122 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1123 	if (dax_mapping(mapping))
1124 		return dax_writeback_mapping_range(mapping,
1125 				xfs_find_bdev_for_inode(mapping->host), wbc);
1126 
1127 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1128 	if (wpc.ioend)
1129 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1130 	return ret;
1131 }
1132 
1133 /*
1134  * Called to move a page into cleanable state - and from there
1135  * to be released. The page should already be clean. We always
1136  * have buffer heads in this call.
1137  *
1138  * Returns 1 if the page is ok to release, 0 otherwise.
1139  */
1140 STATIC int
1141 xfs_vm_releasepage(
1142 	struct page		*page,
1143 	gfp_t			gfp_mask)
1144 {
1145 	int			delalloc, unwritten;
1146 
1147 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1148 
1149 	/*
1150 	 * mm accommodates an old ext3 case where clean pages might not have had
1151 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1152 	 * ->releasepage() via shrink_active_list(). Conversely,
1153 	 * block_invalidatepage() can send pages that are still marked dirty
1154 	 * but otherwise have invalidated buffers.
1155 	 *
1156 	 * We want to release the latter to avoid unnecessary buildup of the
1157 	 * LRU, skip the former and warn if we've left any lingering
1158 	 * delalloc/unwritten buffers on clean pages. Skip pages with delalloc
1159 	 * or unwritten buffers and warn if the page is not dirty. Otherwise
1160 	 * try to release the buffers.
1161 	 */
1162 	xfs_count_page_state(page, &delalloc, &unwritten);
1163 
1164 	if (delalloc) {
1165 		WARN_ON_ONCE(!PageDirty(page));
1166 		return 0;
1167 	}
1168 	if (unwritten) {
1169 		WARN_ON_ONCE(!PageDirty(page));
1170 		return 0;
1171 	}
1172 
1173 	return try_to_free_buffers(page);
1174 }
1175 
1176 /*
1177  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1178  * is, so that we can avoid repeated get_blocks calls.
1179  *
1180  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1181  * for blocks beyond EOF must be marked new so that sub block regions can be
1182  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1183  * was just allocated or is unwritten, otherwise the callers would overwrite
1184  * existing data with zeros. Hence we have to split the mapping into a range up
1185  * to and including EOF, and a second mapping for beyond EOF.
1186  */
1187 static void
1188 xfs_map_trim_size(
1189 	struct inode		*inode,
1190 	sector_t		iblock,
1191 	struct buffer_head	*bh_result,
1192 	struct xfs_bmbt_irec	*imap,
1193 	xfs_off_t		offset,
1194 	ssize_t			size)
1195 {
1196 	xfs_off_t		mapping_size;
1197 
1198 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1199 	mapping_size <<= inode->i_blkbits;
1200 
1201 	ASSERT(mapping_size > 0);
1202 	if (mapping_size > size)
1203 		mapping_size = size;
1204 	if (offset < i_size_read(inode) &&
1205 	    offset + mapping_size >= i_size_read(inode)) {
1206 		/* limit mapping to block that spans EOF */
1207 		mapping_size = roundup_64(i_size_read(inode) - offset,
1208 					  i_blocksize(inode));
1209 	}
1210 	if (mapping_size > LONG_MAX)
1211 		mapping_size = LONG_MAX;
1212 
1213 	bh_result->b_size = mapping_size;
1214 }
1215 
1216 static int
1217 xfs_get_blocks(
1218 	struct inode		*inode,
1219 	sector_t		iblock,
1220 	struct buffer_head	*bh_result,
1221 	int			create)
1222 {
1223 	struct xfs_inode	*ip = XFS_I(inode);
1224 	struct xfs_mount	*mp = ip->i_mount;
1225 	xfs_fileoff_t		offset_fsb, end_fsb;
1226 	int			error = 0;
1227 	int			lockmode = 0;
1228 	struct xfs_bmbt_irec	imap;
1229 	int			nimaps = 1;
1230 	xfs_off_t		offset;
1231 	ssize_t			size;
1232 
1233 	BUG_ON(create);
1234 
1235 	if (XFS_FORCED_SHUTDOWN(mp))
1236 		return -EIO;
1237 
1238 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1239 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1240 	size = bh_result->b_size;
1241 
1242 	if (offset >= i_size_read(inode))
1243 		return 0;
1244 
1245 	/*
1246 	 * Direct I/O is usually done on preallocated files, so try getting
1247 	 * a block mapping without an exclusive lock first.
1248 	 */
1249 	lockmode = xfs_ilock_data_map_shared(ip);
1250 
1251 	ASSERT(offset <= mp->m_super->s_maxbytes);
1252 	if (offset + size > mp->m_super->s_maxbytes)
1253 		size = mp->m_super->s_maxbytes - offset;
1254 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1255 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1256 
1257 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1258 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1259 	if (error)
1260 		goto out_unlock;
1261 
1262 	if (nimaps) {
1263 		trace_xfs_get_blocks_found(ip, offset, size,
1264 			imap.br_state == XFS_EXT_UNWRITTEN ?
1265 				XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1266 		xfs_iunlock(ip, lockmode);
1267 	} else {
1268 		trace_xfs_get_blocks_notfound(ip, offset, size);
1269 		goto out_unlock;
1270 	}
1271 
1272 	/* trim mapping down to size requested */
1273 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1274 
1275 	/*
1276 	 * For unwritten extents do not report a disk address in the buffered
1277 	 * read case (treat as if we're reading into a hole).
1278 	 */
1279 	if (xfs_bmap_is_real_extent(&imap))
1280 		xfs_map_buffer(inode, bh_result, &imap, offset);
1281 
1282 	/*
1283 	 * If this is a realtime file, data may be on a different device.
1284 	 * to that pointed to from the buffer_head b_bdev currently.
1285 	 */
1286 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1287 	return 0;
1288 
1289 out_unlock:
1290 	xfs_iunlock(ip, lockmode);
1291 	return error;
1292 }
1293 
1294 STATIC ssize_t
1295 xfs_vm_direct_IO(
1296 	struct kiocb		*iocb,
1297 	struct iov_iter		*iter)
1298 {
1299 	/*
1300 	 * We just need the method present so that open/fcntl allow direct I/O.
1301 	 */
1302 	return -EINVAL;
1303 }
1304 
1305 STATIC sector_t
1306 xfs_vm_bmap(
1307 	struct address_space	*mapping,
1308 	sector_t		block)
1309 {
1310 	struct inode		*inode = (struct inode *)mapping->host;
1311 	struct xfs_inode	*ip = XFS_I(inode);
1312 
1313 	trace_xfs_vm_bmap(XFS_I(inode));
1314 
1315 	/*
1316 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1317 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1318 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1319 	 * 0 is the magic code for a bmap error.
1320 	 *
1321 	 * Since we don't pass back blockdev info, we can't return bmap
1322 	 * information for rt files either.
1323 	 */
1324 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1325 		return 0;
1326 
1327 	filemap_write_and_wait(mapping);
1328 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1329 }
1330 
1331 STATIC int
1332 xfs_vm_readpage(
1333 	struct file		*unused,
1334 	struct page		*page)
1335 {
1336 	trace_xfs_vm_readpage(page->mapping->host, 1);
1337 	return mpage_readpage(page, xfs_get_blocks);
1338 }
1339 
1340 STATIC int
1341 xfs_vm_readpages(
1342 	struct file		*unused,
1343 	struct address_space	*mapping,
1344 	struct list_head	*pages,
1345 	unsigned		nr_pages)
1346 {
1347 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1348 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1349 }
1350 
1351 /*
1352  * This is basically a copy of __set_page_dirty_buffers() with one
1353  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1354  * dirty, we'll never be able to clean them because we don't write buffers
1355  * beyond EOF, and that means we can't invalidate pages that span EOF
1356  * that have been marked dirty. Further, the dirty state can leak into
1357  * the file interior if the file is extended, resulting in all sorts of
1358  * bad things happening as the state does not match the underlying data.
1359  *
1360  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1361  * this only exist because of bufferheads and how the generic code manages them.
1362  */
1363 STATIC int
1364 xfs_vm_set_page_dirty(
1365 	struct page		*page)
1366 {
1367 	struct address_space	*mapping = page->mapping;
1368 	struct inode		*inode = mapping->host;
1369 	loff_t			end_offset;
1370 	loff_t			offset;
1371 	int			newly_dirty;
1372 
1373 	if (unlikely(!mapping))
1374 		return !TestSetPageDirty(page);
1375 
1376 	end_offset = i_size_read(inode);
1377 	offset = page_offset(page);
1378 
1379 	spin_lock(&mapping->private_lock);
1380 	if (page_has_buffers(page)) {
1381 		struct buffer_head *head = page_buffers(page);
1382 		struct buffer_head *bh = head;
1383 
1384 		do {
1385 			if (offset < end_offset)
1386 				set_buffer_dirty(bh);
1387 			bh = bh->b_this_page;
1388 			offset += i_blocksize(inode);
1389 		} while (bh != head);
1390 	}
1391 	/*
1392 	 * Lock out page->mem_cgroup migration to keep PageDirty
1393 	 * synchronized with per-memcg dirty page counters.
1394 	 */
1395 	lock_page_memcg(page);
1396 	newly_dirty = !TestSetPageDirty(page);
1397 	spin_unlock(&mapping->private_lock);
1398 
1399 	if (newly_dirty) {
1400 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1401 		unsigned long flags;
1402 
1403 		spin_lock_irqsave(&mapping->tree_lock, flags);
1404 		if (page->mapping) {	/* Race with truncate? */
1405 			WARN_ON_ONCE(!PageUptodate(page));
1406 			account_page_dirtied(page, mapping);
1407 			radix_tree_tag_set(&mapping->page_tree,
1408 					page_index(page), PAGECACHE_TAG_DIRTY);
1409 		}
1410 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1411 	}
1412 	unlock_page_memcg(page);
1413 	if (newly_dirty)
1414 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1415 	return newly_dirty;
1416 }
1417 
1418 const struct address_space_operations xfs_address_space_operations = {
1419 	.readpage		= xfs_vm_readpage,
1420 	.readpages		= xfs_vm_readpages,
1421 	.writepage		= xfs_vm_writepage,
1422 	.writepages		= xfs_vm_writepages,
1423 	.set_page_dirty		= xfs_vm_set_page_dirty,
1424 	.releasepage		= xfs_vm_releasepage,
1425 	.invalidatepage		= xfs_vm_invalidatepage,
1426 	.bmap			= xfs_vm_bmap,
1427 	.direct_IO		= xfs_vm_direct_IO,
1428 	.migratepage		= buffer_migrate_page,
1429 	.is_partially_uptodate  = block_is_partially_uptodate,
1430 	.error_remove_page	= generic_error_remove_page,
1431 };
1432