1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include <linux/aio.h> 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 void 41 xfs_count_page_state( 42 struct page *page, 43 int *delalloc, 44 int *unwritten) 45 { 46 struct buffer_head *bh, *head; 47 48 *delalloc = *unwritten = 0; 49 50 bh = head = page_buffers(page); 51 do { 52 if (buffer_unwritten(bh)) 53 (*unwritten) = 1; 54 else if (buffer_delay(bh)) 55 (*delalloc) = 1; 56 } while ((bh = bh->b_this_page) != head); 57 } 58 59 STATIC struct block_device * 60 xfs_find_bdev_for_inode( 61 struct inode *inode) 62 { 63 struct xfs_inode *ip = XFS_I(inode); 64 struct xfs_mount *mp = ip->i_mount; 65 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return mp->m_rtdev_targp->bt_bdev; 68 else 69 return mp->m_ddev_targp->bt_bdev; 70 } 71 72 /* 73 * We're now finished for good with this ioend structure. 74 * Update the page state via the associated buffer_heads, 75 * release holds on the inode and bio, and finally free 76 * up memory. Do not use the ioend after this. 77 */ 78 STATIC void 79 xfs_destroy_ioend( 80 xfs_ioend_t *ioend) 81 { 82 struct buffer_head *bh, *next; 83 84 for (bh = ioend->io_buffer_head; bh; bh = next) { 85 next = bh->b_private; 86 bh->b_end_io(bh, !ioend->io_error); 87 } 88 89 mempool_free(ioend, xfs_ioend_pool); 90 } 91 92 /* 93 * Fast and loose check if this write could update the on-disk inode size. 94 */ 95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 96 { 97 return ioend->io_offset + ioend->io_size > 98 XFS_I(ioend->io_inode)->i_d.di_size; 99 } 100 101 STATIC int 102 xfs_setfilesize_trans_alloc( 103 struct xfs_ioend *ioend) 104 { 105 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 106 struct xfs_trans *tp; 107 int error; 108 109 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 110 111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0); 112 if (error) { 113 xfs_trans_cancel(tp, 0); 114 return error; 115 } 116 117 ioend->io_append_trans = tp; 118 119 /* 120 * We may pass freeze protection with a transaction. So tell lockdep 121 * we released it. 122 */ 123 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 124 1, _THIS_IP_); 125 /* 126 * We hand off the transaction to the completion thread now, so 127 * clear the flag here. 128 */ 129 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 130 return 0; 131 } 132 133 /* 134 * Update on-disk file size now that data has been written to disk. 135 */ 136 STATIC int 137 xfs_setfilesize( 138 struct xfs_ioend *ioend) 139 { 140 struct xfs_inode *ip = XFS_I(ioend->io_inode); 141 struct xfs_trans *tp = ioend->io_append_trans; 142 xfs_fsize_t isize; 143 144 /* 145 * The transaction may have been allocated in the I/O submission thread, 146 * thus we need to mark ourselves as beeing in a transaction manually. 147 * Similarly for freeze protection. 148 */ 149 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 150 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 151 0, 1, _THIS_IP_); 152 153 xfs_ilock(ip, XFS_ILOCK_EXCL); 154 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 155 if (!isize) { 156 xfs_iunlock(ip, XFS_ILOCK_EXCL); 157 xfs_trans_cancel(tp, 0); 158 return 0; 159 } 160 161 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 162 163 ip->i_d.di_size = isize; 164 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 165 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 166 167 return xfs_trans_commit(tp, 0); 168 } 169 170 /* 171 * Schedule IO completion handling on the final put of an ioend. 172 * 173 * If there is no work to do we might as well call it a day and free the 174 * ioend right now. 175 */ 176 STATIC void 177 xfs_finish_ioend( 178 struct xfs_ioend *ioend) 179 { 180 if (atomic_dec_and_test(&ioend->io_remaining)) { 181 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 182 183 if (ioend->io_type == XFS_IO_UNWRITTEN) 184 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 185 else if (ioend->io_append_trans || 186 (ioend->io_isdirect && xfs_ioend_is_append(ioend))) 187 queue_work(mp->m_data_workqueue, &ioend->io_work); 188 else 189 xfs_destroy_ioend(ioend); 190 } 191 } 192 193 /* 194 * IO write completion. 195 */ 196 STATIC void 197 xfs_end_io( 198 struct work_struct *work) 199 { 200 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 201 struct xfs_inode *ip = XFS_I(ioend->io_inode); 202 int error = 0; 203 204 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 205 ioend->io_error = -EIO; 206 goto done; 207 } 208 if (ioend->io_error) 209 goto done; 210 211 /* 212 * For unwritten extents we need to issue transactions to convert a 213 * range to normal written extens after the data I/O has finished. 214 */ 215 if (ioend->io_type == XFS_IO_UNWRITTEN) { 216 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 217 ioend->io_size); 218 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) { 219 /* 220 * For direct I/O we do not know if we need to allocate blocks 221 * or not so we can't preallocate an append transaction as that 222 * results in nested reservations and log space deadlocks. Hence 223 * allocate the transaction here. While this is sub-optimal and 224 * can block IO completion for some time, we're stuck with doing 225 * it this way until we can pass the ioend to the direct IO 226 * allocation callbacks and avoid nesting that way. 227 */ 228 error = xfs_setfilesize_trans_alloc(ioend); 229 if (error) 230 goto done; 231 error = xfs_setfilesize(ioend); 232 } else if (ioend->io_append_trans) { 233 error = xfs_setfilesize(ioend); 234 } else { 235 ASSERT(!xfs_ioend_is_append(ioend)); 236 } 237 238 done: 239 if (error) 240 ioend->io_error = error; 241 xfs_destroy_ioend(ioend); 242 } 243 244 /* 245 * Call IO completion handling in caller context on the final put of an ioend. 246 */ 247 STATIC void 248 xfs_finish_ioend_sync( 249 struct xfs_ioend *ioend) 250 { 251 if (atomic_dec_and_test(&ioend->io_remaining)) 252 xfs_end_io(&ioend->io_work); 253 } 254 255 /* 256 * Allocate and initialise an IO completion structure. 257 * We need to track unwritten extent write completion here initially. 258 * We'll need to extend this for updating the ondisk inode size later 259 * (vs. incore size). 260 */ 261 STATIC xfs_ioend_t * 262 xfs_alloc_ioend( 263 struct inode *inode, 264 unsigned int type) 265 { 266 xfs_ioend_t *ioend; 267 268 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 269 270 /* 271 * Set the count to 1 initially, which will prevent an I/O 272 * completion callback from happening before we have started 273 * all the I/O from calling the completion routine too early. 274 */ 275 atomic_set(&ioend->io_remaining, 1); 276 ioend->io_isdirect = 0; 277 ioend->io_error = 0; 278 ioend->io_list = NULL; 279 ioend->io_type = type; 280 ioend->io_inode = inode; 281 ioend->io_buffer_head = NULL; 282 ioend->io_buffer_tail = NULL; 283 ioend->io_offset = 0; 284 ioend->io_size = 0; 285 ioend->io_append_trans = NULL; 286 287 INIT_WORK(&ioend->io_work, xfs_end_io); 288 return ioend; 289 } 290 291 STATIC int 292 xfs_map_blocks( 293 struct inode *inode, 294 loff_t offset, 295 struct xfs_bmbt_irec *imap, 296 int type, 297 int nonblocking) 298 { 299 struct xfs_inode *ip = XFS_I(inode); 300 struct xfs_mount *mp = ip->i_mount; 301 ssize_t count = 1 << inode->i_blkbits; 302 xfs_fileoff_t offset_fsb, end_fsb; 303 int error = 0; 304 int bmapi_flags = XFS_BMAPI_ENTIRE; 305 int nimaps = 1; 306 307 if (XFS_FORCED_SHUTDOWN(mp)) 308 return -EIO; 309 310 if (type == XFS_IO_UNWRITTEN) 311 bmapi_flags |= XFS_BMAPI_IGSTATE; 312 313 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 314 if (nonblocking) 315 return -EAGAIN; 316 xfs_ilock(ip, XFS_ILOCK_SHARED); 317 } 318 319 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 320 (ip->i_df.if_flags & XFS_IFEXTENTS)); 321 ASSERT(offset <= mp->m_super->s_maxbytes); 322 323 if (offset + count > mp->m_super->s_maxbytes) 324 count = mp->m_super->s_maxbytes - offset; 325 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 326 offset_fsb = XFS_B_TO_FSBT(mp, offset); 327 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 328 imap, &nimaps, bmapi_flags); 329 xfs_iunlock(ip, XFS_ILOCK_SHARED); 330 331 if (error) 332 return error; 333 334 if (type == XFS_IO_DELALLOC && 335 (!nimaps || isnullstartblock(imap->br_startblock))) { 336 error = xfs_iomap_write_allocate(ip, offset, imap); 337 if (!error) 338 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 339 return error; 340 } 341 342 #ifdef DEBUG 343 if (type == XFS_IO_UNWRITTEN) { 344 ASSERT(nimaps); 345 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 346 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 347 } 348 #endif 349 if (nimaps) 350 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 351 return 0; 352 } 353 354 STATIC int 355 xfs_imap_valid( 356 struct inode *inode, 357 struct xfs_bmbt_irec *imap, 358 xfs_off_t offset) 359 { 360 offset >>= inode->i_blkbits; 361 362 return offset >= imap->br_startoff && 363 offset < imap->br_startoff + imap->br_blockcount; 364 } 365 366 /* 367 * BIO completion handler for buffered IO. 368 */ 369 STATIC void 370 xfs_end_bio( 371 struct bio *bio, 372 int error) 373 { 374 xfs_ioend_t *ioend = bio->bi_private; 375 376 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 377 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 378 379 /* Toss bio and pass work off to an xfsdatad thread */ 380 bio->bi_private = NULL; 381 bio->bi_end_io = NULL; 382 bio_put(bio); 383 384 xfs_finish_ioend(ioend); 385 } 386 387 STATIC void 388 xfs_submit_ioend_bio( 389 struct writeback_control *wbc, 390 xfs_ioend_t *ioend, 391 struct bio *bio) 392 { 393 atomic_inc(&ioend->io_remaining); 394 bio->bi_private = ioend; 395 bio->bi_end_io = xfs_end_bio; 396 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 397 } 398 399 STATIC struct bio * 400 xfs_alloc_ioend_bio( 401 struct buffer_head *bh) 402 { 403 int nvecs = bio_get_nr_vecs(bh->b_bdev); 404 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 405 406 ASSERT(bio->bi_private == NULL); 407 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 408 bio->bi_bdev = bh->b_bdev; 409 return bio; 410 } 411 412 STATIC void 413 xfs_start_buffer_writeback( 414 struct buffer_head *bh) 415 { 416 ASSERT(buffer_mapped(bh)); 417 ASSERT(buffer_locked(bh)); 418 ASSERT(!buffer_delay(bh)); 419 ASSERT(!buffer_unwritten(bh)); 420 421 mark_buffer_async_write(bh); 422 set_buffer_uptodate(bh); 423 clear_buffer_dirty(bh); 424 } 425 426 STATIC void 427 xfs_start_page_writeback( 428 struct page *page, 429 int clear_dirty, 430 int buffers) 431 { 432 ASSERT(PageLocked(page)); 433 ASSERT(!PageWriteback(page)); 434 435 /* 436 * if the page was not fully cleaned, we need to ensure that the higher 437 * layers come back to it correctly. That means we need to keep the page 438 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 439 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 440 * write this page in this writeback sweep will be made. 441 */ 442 if (clear_dirty) { 443 clear_page_dirty_for_io(page); 444 set_page_writeback(page); 445 } else 446 set_page_writeback_keepwrite(page); 447 448 unlock_page(page); 449 450 /* If no buffers on the page are to be written, finish it here */ 451 if (!buffers) 452 end_page_writeback(page); 453 } 454 455 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 456 { 457 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 458 } 459 460 /* 461 * Submit all of the bios for all of the ioends we have saved up, covering the 462 * initial writepage page and also any probed pages. 463 * 464 * Because we may have multiple ioends spanning a page, we need to start 465 * writeback on all the buffers before we submit them for I/O. If we mark the 466 * buffers as we got, then we can end up with a page that only has buffers 467 * marked async write and I/O complete on can occur before we mark the other 468 * buffers async write. 469 * 470 * The end result of this is that we trip a bug in end_page_writeback() because 471 * we call it twice for the one page as the code in end_buffer_async_write() 472 * assumes that all buffers on the page are started at the same time. 473 * 474 * The fix is two passes across the ioend list - one to start writeback on the 475 * buffer_heads, and then submit them for I/O on the second pass. 476 * 477 * If @fail is non-zero, it means that we have a situation where some part of 478 * the submission process has failed after we have marked paged for writeback 479 * and unlocked them. In this situation, we need to fail the ioend chain rather 480 * than submit it to IO. This typically only happens on a filesystem shutdown. 481 */ 482 STATIC void 483 xfs_submit_ioend( 484 struct writeback_control *wbc, 485 xfs_ioend_t *ioend, 486 int fail) 487 { 488 xfs_ioend_t *head = ioend; 489 xfs_ioend_t *next; 490 struct buffer_head *bh; 491 struct bio *bio; 492 sector_t lastblock = 0; 493 494 /* Pass 1 - start writeback */ 495 do { 496 next = ioend->io_list; 497 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 498 xfs_start_buffer_writeback(bh); 499 } while ((ioend = next) != NULL); 500 501 /* Pass 2 - submit I/O */ 502 ioend = head; 503 do { 504 next = ioend->io_list; 505 bio = NULL; 506 507 /* 508 * If we are failing the IO now, just mark the ioend with an 509 * error and finish it. This will run IO completion immediately 510 * as there is only one reference to the ioend at this point in 511 * time. 512 */ 513 if (fail) { 514 ioend->io_error = fail; 515 xfs_finish_ioend(ioend); 516 continue; 517 } 518 519 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 520 521 if (!bio) { 522 retry: 523 bio = xfs_alloc_ioend_bio(bh); 524 } else if (bh->b_blocknr != lastblock + 1) { 525 xfs_submit_ioend_bio(wbc, ioend, bio); 526 goto retry; 527 } 528 529 if (xfs_bio_add_buffer(bio, bh) != bh->b_size) { 530 xfs_submit_ioend_bio(wbc, ioend, bio); 531 goto retry; 532 } 533 534 lastblock = bh->b_blocknr; 535 } 536 if (bio) 537 xfs_submit_ioend_bio(wbc, ioend, bio); 538 xfs_finish_ioend(ioend); 539 } while ((ioend = next) != NULL); 540 } 541 542 /* 543 * Cancel submission of all buffer_heads so far in this endio. 544 * Toss the endio too. Only ever called for the initial page 545 * in a writepage request, so only ever one page. 546 */ 547 STATIC void 548 xfs_cancel_ioend( 549 xfs_ioend_t *ioend) 550 { 551 xfs_ioend_t *next; 552 struct buffer_head *bh, *next_bh; 553 554 do { 555 next = ioend->io_list; 556 bh = ioend->io_buffer_head; 557 do { 558 next_bh = bh->b_private; 559 clear_buffer_async_write(bh); 560 /* 561 * The unwritten flag is cleared when added to the 562 * ioend. We're not submitting for I/O so mark the 563 * buffer unwritten again for next time around. 564 */ 565 if (ioend->io_type == XFS_IO_UNWRITTEN) 566 set_buffer_unwritten(bh); 567 unlock_buffer(bh); 568 } while ((bh = next_bh) != NULL); 569 570 mempool_free(ioend, xfs_ioend_pool); 571 } while ((ioend = next) != NULL); 572 } 573 574 /* 575 * Test to see if we've been building up a completion structure for 576 * earlier buffers -- if so, we try to append to this ioend if we 577 * can, otherwise we finish off any current ioend and start another. 578 * Return true if we've finished the given ioend. 579 */ 580 STATIC void 581 xfs_add_to_ioend( 582 struct inode *inode, 583 struct buffer_head *bh, 584 xfs_off_t offset, 585 unsigned int type, 586 xfs_ioend_t **result, 587 int need_ioend) 588 { 589 xfs_ioend_t *ioend = *result; 590 591 if (!ioend || need_ioend || type != ioend->io_type) { 592 xfs_ioend_t *previous = *result; 593 594 ioend = xfs_alloc_ioend(inode, type); 595 ioend->io_offset = offset; 596 ioend->io_buffer_head = bh; 597 ioend->io_buffer_tail = bh; 598 if (previous) 599 previous->io_list = ioend; 600 *result = ioend; 601 } else { 602 ioend->io_buffer_tail->b_private = bh; 603 ioend->io_buffer_tail = bh; 604 } 605 606 bh->b_private = NULL; 607 ioend->io_size += bh->b_size; 608 } 609 610 STATIC void 611 xfs_map_buffer( 612 struct inode *inode, 613 struct buffer_head *bh, 614 struct xfs_bmbt_irec *imap, 615 xfs_off_t offset) 616 { 617 sector_t bn; 618 struct xfs_mount *m = XFS_I(inode)->i_mount; 619 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 620 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 621 622 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 623 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 624 625 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 626 ((offset - iomap_offset) >> inode->i_blkbits); 627 628 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 629 630 bh->b_blocknr = bn; 631 set_buffer_mapped(bh); 632 } 633 634 STATIC void 635 xfs_map_at_offset( 636 struct inode *inode, 637 struct buffer_head *bh, 638 struct xfs_bmbt_irec *imap, 639 xfs_off_t offset) 640 { 641 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 642 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 643 644 xfs_map_buffer(inode, bh, imap, offset); 645 set_buffer_mapped(bh); 646 clear_buffer_delay(bh); 647 clear_buffer_unwritten(bh); 648 } 649 650 /* 651 * Test if a given page contains at least one buffer of a given @type. 652 * If @check_all_buffers is true, then we walk all the buffers in the page to 653 * try to find one of the type passed in. If it is not set, then the caller only 654 * needs to check the first buffer on the page for a match. 655 */ 656 STATIC bool 657 xfs_check_page_type( 658 struct page *page, 659 unsigned int type, 660 bool check_all_buffers) 661 { 662 struct buffer_head *bh; 663 struct buffer_head *head; 664 665 if (PageWriteback(page)) 666 return false; 667 if (!page->mapping) 668 return false; 669 if (!page_has_buffers(page)) 670 return false; 671 672 bh = head = page_buffers(page); 673 do { 674 if (buffer_unwritten(bh)) { 675 if (type == XFS_IO_UNWRITTEN) 676 return true; 677 } else if (buffer_delay(bh)) { 678 if (type == XFS_IO_DELALLOC) 679 return true; 680 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 681 if (type == XFS_IO_OVERWRITE) 682 return true; 683 } 684 685 /* If we are only checking the first buffer, we are done now. */ 686 if (!check_all_buffers) 687 break; 688 } while ((bh = bh->b_this_page) != head); 689 690 return false; 691 } 692 693 /* 694 * Allocate & map buffers for page given the extent map. Write it out. 695 * except for the original page of a writepage, this is called on 696 * delalloc/unwritten pages only, for the original page it is possible 697 * that the page has no mapping at all. 698 */ 699 STATIC int 700 xfs_convert_page( 701 struct inode *inode, 702 struct page *page, 703 loff_t tindex, 704 struct xfs_bmbt_irec *imap, 705 xfs_ioend_t **ioendp, 706 struct writeback_control *wbc) 707 { 708 struct buffer_head *bh, *head; 709 xfs_off_t end_offset; 710 unsigned long p_offset; 711 unsigned int type; 712 int len, page_dirty; 713 int count = 0, done = 0, uptodate = 1; 714 xfs_off_t offset = page_offset(page); 715 716 if (page->index != tindex) 717 goto fail; 718 if (!trylock_page(page)) 719 goto fail; 720 if (PageWriteback(page)) 721 goto fail_unlock_page; 722 if (page->mapping != inode->i_mapping) 723 goto fail_unlock_page; 724 if (!xfs_check_page_type(page, (*ioendp)->io_type, false)) 725 goto fail_unlock_page; 726 727 /* 728 * page_dirty is initially a count of buffers on the page before 729 * EOF and is decremented as we move each into a cleanable state. 730 * 731 * Derivation: 732 * 733 * End offset is the highest offset that this page should represent. 734 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 735 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 736 * hence give us the correct page_dirty count. On any other page, 737 * it will be zero and in that case we need page_dirty to be the 738 * count of buffers on the page. 739 */ 740 end_offset = min_t(unsigned long long, 741 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 742 i_size_read(inode)); 743 744 /* 745 * If the current map does not span the entire page we are about to try 746 * to write, then give up. The only way we can write a page that spans 747 * multiple mappings in a single writeback iteration is via the 748 * xfs_vm_writepage() function. Data integrity writeback requires the 749 * entire page to be written in a single attempt, otherwise the part of 750 * the page we don't write here doesn't get written as part of the data 751 * integrity sync. 752 * 753 * For normal writeback, we also don't attempt to write partial pages 754 * here as it simply means that write_cache_pages() will see it under 755 * writeback and ignore the page until some point in the future, at 756 * which time this will be the only page in the file that needs 757 * writeback. Hence for more optimal IO patterns, we should always 758 * avoid partial page writeback due to multiple mappings on a page here. 759 */ 760 if (!xfs_imap_valid(inode, imap, end_offset)) 761 goto fail_unlock_page; 762 763 len = 1 << inode->i_blkbits; 764 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 765 PAGE_CACHE_SIZE); 766 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 767 page_dirty = p_offset / len; 768 769 /* 770 * The moment we find a buffer that doesn't match our current type 771 * specification or can't be written, abort the loop and start 772 * writeback. As per the above xfs_imap_valid() check, only 773 * xfs_vm_writepage() can handle partial page writeback fully - we are 774 * limited here to the buffers that are contiguous with the current 775 * ioend, and hence a buffer we can't write breaks that contiguity and 776 * we have to defer the rest of the IO to xfs_vm_writepage(). 777 */ 778 bh = head = page_buffers(page); 779 do { 780 if (offset >= end_offset) 781 break; 782 if (!buffer_uptodate(bh)) 783 uptodate = 0; 784 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 785 done = 1; 786 break; 787 } 788 789 if (buffer_unwritten(bh) || buffer_delay(bh) || 790 buffer_mapped(bh)) { 791 if (buffer_unwritten(bh)) 792 type = XFS_IO_UNWRITTEN; 793 else if (buffer_delay(bh)) 794 type = XFS_IO_DELALLOC; 795 else 796 type = XFS_IO_OVERWRITE; 797 798 /* 799 * imap should always be valid because of the above 800 * partial page end_offset check on the imap. 801 */ 802 ASSERT(xfs_imap_valid(inode, imap, offset)); 803 804 lock_buffer(bh); 805 if (type != XFS_IO_OVERWRITE) 806 xfs_map_at_offset(inode, bh, imap, offset); 807 xfs_add_to_ioend(inode, bh, offset, type, 808 ioendp, done); 809 810 page_dirty--; 811 count++; 812 } else { 813 done = 1; 814 break; 815 } 816 } while (offset += len, (bh = bh->b_this_page) != head); 817 818 if (uptodate && bh == head) 819 SetPageUptodate(page); 820 821 if (count) { 822 if (--wbc->nr_to_write <= 0 && 823 wbc->sync_mode == WB_SYNC_NONE) 824 done = 1; 825 } 826 xfs_start_page_writeback(page, !page_dirty, count); 827 828 return done; 829 fail_unlock_page: 830 unlock_page(page); 831 fail: 832 return 1; 833 } 834 835 /* 836 * Convert & write out a cluster of pages in the same extent as defined 837 * by mp and following the start page. 838 */ 839 STATIC void 840 xfs_cluster_write( 841 struct inode *inode, 842 pgoff_t tindex, 843 struct xfs_bmbt_irec *imap, 844 xfs_ioend_t **ioendp, 845 struct writeback_control *wbc, 846 pgoff_t tlast) 847 { 848 struct pagevec pvec; 849 int done = 0, i; 850 851 pagevec_init(&pvec, 0); 852 while (!done && tindex <= tlast) { 853 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 854 855 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 856 break; 857 858 for (i = 0; i < pagevec_count(&pvec); i++) { 859 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 860 imap, ioendp, wbc); 861 if (done) 862 break; 863 } 864 865 pagevec_release(&pvec); 866 cond_resched(); 867 } 868 } 869 870 STATIC void 871 xfs_vm_invalidatepage( 872 struct page *page, 873 unsigned int offset, 874 unsigned int length) 875 { 876 trace_xfs_invalidatepage(page->mapping->host, page, offset, 877 length); 878 block_invalidatepage(page, offset, length); 879 } 880 881 /* 882 * If the page has delalloc buffers on it, we need to punch them out before we 883 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 884 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 885 * is done on that same region - the delalloc extent is returned when none is 886 * supposed to be there. 887 * 888 * We prevent this by truncating away the delalloc regions on the page before 889 * invalidating it. Because they are delalloc, we can do this without needing a 890 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 891 * truncation without a transaction as there is no space left for block 892 * reservation (typically why we see a ENOSPC in writeback). 893 * 894 * This is not a performance critical path, so for now just do the punching a 895 * buffer head at a time. 896 */ 897 STATIC void 898 xfs_aops_discard_page( 899 struct page *page) 900 { 901 struct inode *inode = page->mapping->host; 902 struct xfs_inode *ip = XFS_I(inode); 903 struct buffer_head *bh, *head; 904 loff_t offset = page_offset(page); 905 906 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 907 goto out_invalidate; 908 909 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 910 goto out_invalidate; 911 912 xfs_alert(ip->i_mount, 913 "page discard on page %p, inode 0x%llx, offset %llu.", 914 page, ip->i_ino, offset); 915 916 xfs_ilock(ip, XFS_ILOCK_EXCL); 917 bh = head = page_buffers(page); 918 do { 919 int error; 920 xfs_fileoff_t start_fsb; 921 922 if (!buffer_delay(bh)) 923 goto next_buffer; 924 925 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 926 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 927 if (error) { 928 /* something screwed, just bail */ 929 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 930 xfs_alert(ip->i_mount, 931 "page discard unable to remove delalloc mapping."); 932 } 933 break; 934 } 935 next_buffer: 936 offset += 1 << inode->i_blkbits; 937 938 } while ((bh = bh->b_this_page) != head); 939 940 xfs_iunlock(ip, XFS_ILOCK_EXCL); 941 out_invalidate: 942 xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE); 943 return; 944 } 945 946 /* 947 * Write out a dirty page. 948 * 949 * For delalloc space on the page we need to allocate space and flush it. 950 * For unwritten space on the page we need to start the conversion to 951 * regular allocated space. 952 * For any other dirty buffer heads on the page we should flush them. 953 */ 954 STATIC int 955 xfs_vm_writepage( 956 struct page *page, 957 struct writeback_control *wbc) 958 { 959 struct inode *inode = page->mapping->host; 960 struct buffer_head *bh, *head; 961 struct xfs_bmbt_irec imap; 962 xfs_ioend_t *ioend = NULL, *iohead = NULL; 963 loff_t offset; 964 unsigned int type; 965 __uint64_t end_offset; 966 pgoff_t end_index, last_index; 967 ssize_t len; 968 int err, imap_valid = 0, uptodate = 1; 969 int count = 0; 970 int nonblocking = 0; 971 972 trace_xfs_writepage(inode, page, 0, 0); 973 974 ASSERT(page_has_buffers(page)); 975 976 /* 977 * Refuse to write the page out if we are called from reclaim context. 978 * 979 * This avoids stack overflows when called from deeply used stacks in 980 * random callers for direct reclaim or memcg reclaim. We explicitly 981 * allow reclaim from kswapd as the stack usage there is relatively low. 982 * 983 * This should never happen except in the case of a VM regression so 984 * warn about it. 985 */ 986 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 987 PF_MEMALLOC)) 988 goto redirty; 989 990 /* 991 * Given that we do not allow direct reclaim to call us, we should 992 * never be called while in a filesystem transaction. 993 */ 994 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 995 goto redirty; 996 997 /* Is this page beyond the end of the file? */ 998 offset = i_size_read(inode); 999 end_index = offset >> PAGE_CACHE_SHIFT; 1000 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 1001 1002 /* 1003 * The page index is less than the end_index, adjust the end_offset 1004 * to the highest offset that this page should represent. 1005 * ----------------------------------------------------- 1006 * | file mapping | <EOF> | 1007 * ----------------------------------------------------- 1008 * | Page ... | Page N-2 | Page N-1 | Page N | | 1009 * ^--------------------------------^----------|-------- 1010 * | desired writeback range | see else | 1011 * ---------------------------------^------------------| 1012 */ 1013 if (page->index < end_index) 1014 end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT; 1015 else { 1016 /* 1017 * Check whether the page to write out is beyond or straddles 1018 * i_size or not. 1019 * ------------------------------------------------------- 1020 * | file mapping | <EOF> | 1021 * ------------------------------------------------------- 1022 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 1023 * ^--------------------------------^-----------|--------- 1024 * | | Straddles | 1025 * ---------------------------------^-----------|--------| 1026 */ 1027 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 1028 1029 /* 1030 * Skip the page if it is fully outside i_size, e.g. due to a 1031 * truncate operation that is in progress. We must redirty the 1032 * page so that reclaim stops reclaiming it. Otherwise 1033 * xfs_vm_releasepage() is called on it and gets confused. 1034 * 1035 * Note that the end_index is unsigned long, it would overflow 1036 * if the given offset is greater than 16TB on 32-bit system 1037 * and if we do check the page is fully outside i_size or not 1038 * via "if (page->index >= end_index + 1)" as "end_index + 1" 1039 * will be evaluated to 0. Hence this page will be redirtied 1040 * and be written out repeatedly which would result in an 1041 * infinite loop, the user program that perform this operation 1042 * will hang. Instead, we can verify this situation by checking 1043 * if the page to write is totally beyond the i_size or if it's 1044 * offset is just equal to the EOF. 1045 */ 1046 if (page->index > end_index || 1047 (page->index == end_index && offset_into_page == 0)) 1048 goto redirty; 1049 1050 /* 1051 * The page straddles i_size. It must be zeroed out on each 1052 * and every writepage invocation because it may be mmapped. 1053 * "A file is mapped in multiples of the page size. For a file 1054 * that is not a multiple of the page size, the remaining 1055 * memory is zeroed when mapped, and writes to that region are 1056 * not written out to the file." 1057 */ 1058 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 1059 1060 /* Adjust the end_offset to the end of file */ 1061 end_offset = offset; 1062 } 1063 1064 len = 1 << inode->i_blkbits; 1065 1066 bh = head = page_buffers(page); 1067 offset = page_offset(page); 1068 type = XFS_IO_OVERWRITE; 1069 1070 if (wbc->sync_mode == WB_SYNC_NONE) 1071 nonblocking = 1; 1072 1073 do { 1074 int new_ioend = 0; 1075 1076 if (offset >= end_offset) 1077 break; 1078 if (!buffer_uptodate(bh)) 1079 uptodate = 0; 1080 1081 /* 1082 * set_page_dirty dirties all buffers in a page, independent 1083 * of their state. The dirty state however is entirely 1084 * meaningless for holes (!mapped && uptodate), so skip 1085 * buffers covering holes here. 1086 */ 1087 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1088 imap_valid = 0; 1089 continue; 1090 } 1091 1092 if (buffer_unwritten(bh)) { 1093 if (type != XFS_IO_UNWRITTEN) { 1094 type = XFS_IO_UNWRITTEN; 1095 imap_valid = 0; 1096 } 1097 } else if (buffer_delay(bh)) { 1098 if (type != XFS_IO_DELALLOC) { 1099 type = XFS_IO_DELALLOC; 1100 imap_valid = 0; 1101 } 1102 } else if (buffer_uptodate(bh)) { 1103 if (type != XFS_IO_OVERWRITE) { 1104 type = XFS_IO_OVERWRITE; 1105 imap_valid = 0; 1106 } 1107 } else { 1108 if (PageUptodate(page)) 1109 ASSERT(buffer_mapped(bh)); 1110 /* 1111 * This buffer is not uptodate and will not be 1112 * written to disk. Ensure that we will put any 1113 * subsequent writeable buffers into a new 1114 * ioend. 1115 */ 1116 imap_valid = 0; 1117 continue; 1118 } 1119 1120 if (imap_valid) 1121 imap_valid = xfs_imap_valid(inode, &imap, offset); 1122 if (!imap_valid) { 1123 /* 1124 * If we didn't have a valid mapping then we need to 1125 * put the new mapping into a separate ioend structure. 1126 * This ensures non-contiguous extents always have 1127 * separate ioends, which is particularly important 1128 * for unwritten extent conversion at I/O completion 1129 * time. 1130 */ 1131 new_ioend = 1; 1132 err = xfs_map_blocks(inode, offset, &imap, type, 1133 nonblocking); 1134 if (err) 1135 goto error; 1136 imap_valid = xfs_imap_valid(inode, &imap, offset); 1137 } 1138 if (imap_valid) { 1139 lock_buffer(bh); 1140 if (type != XFS_IO_OVERWRITE) 1141 xfs_map_at_offset(inode, bh, &imap, offset); 1142 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1143 new_ioend); 1144 count++; 1145 } 1146 1147 if (!iohead) 1148 iohead = ioend; 1149 1150 } while (offset += len, ((bh = bh->b_this_page) != head)); 1151 1152 if (uptodate && bh == head) 1153 SetPageUptodate(page); 1154 1155 xfs_start_page_writeback(page, 1, count); 1156 1157 /* if there is no IO to be submitted for this page, we are done */ 1158 if (!ioend) 1159 return 0; 1160 1161 ASSERT(iohead); 1162 1163 /* 1164 * Any errors from this point onwards need tobe reported through the IO 1165 * completion path as we have marked the initial page as under writeback 1166 * and unlocked it. 1167 */ 1168 if (imap_valid) { 1169 xfs_off_t end_index; 1170 1171 end_index = imap.br_startoff + imap.br_blockcount; 1172 1173 /* to bytes */ 1174 end_index <<= inode->i_blkbits; 1175 1176 /* to pages */ 1177 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1178 1179 /* check against file size */ 1180 if (end_index > last_index) 1181 end_index = last_index; 1182 1183 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1184 wbc, end_index); 1185 } 1186 1187 1188 /* 1189 * Reserve log space if we might write beyond the on-disk inode size. 1190 */ 1191 err = 0; 1192 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1193 err = xfs_setfilesize_trans_alloc(ioend); 1194 1195 xfs_submit_ioend(wbc, iohead, err); 1196 1197 return 0; 1198 1199 error: 1200 if (iohead) 1201 xfs_cancel_ioend(iohead); 1202 1203 if (err == -EAGAIN) 1204 goto redirty; 1205 1206 xfs_aops_discard_page(page); 1207 ClearPageUptodate(page); 1208 unlock_page(page); 1209 return err; 1210 1211 redirty: 1212 redirty_page_for_writepage(wbc, page); 1213 unlock_page(page); 1214 return 0; 1215 } 1216 1217 STATIC int 1218 xfs_vm_writepages( 1219 struct address_space *mapping, 1220 struct writeback_control *wbc) 1221 { 1222 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1223 return generic_writepages(mapping, wbc); 1224 } 1225 1226 /* 1227 * Called to move a page into cleanable state - and from there 1228 * to be released. The page should already be clean. We always 1229 * have buffer heads in this call. 1230 * 1231 * Returns 1 if the page is ok to release, 0 otherwise. 1232 */ 1233 STATIC int 1234 xfs_vm_releasepage( 1235 struct page *page, 1236 gfp_t gfp_mask) 1237 { 1238 int delalloc, unwritten; 1239 1240 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1241 1242 xfs_count_page_state(page, &delalloc, &unwritten); 1243 1244 if (WARN_ON_ONCE(delalloc)) 1245 return 0; 1246 if (WARN_ON_ONCE(unwritten)) 1247 return 0; 1248 1249 return try_to_free_buffers(page); 1250 } 1251 1252 STATIC int 1253 __xfs_get_blocks( 1254 struct inode *inode, 1255 sector_t iblock, 1256 struct buffer_head *bh_result, 1257 int create, 1258 int direct) 1259 { 1260 struct xfs_inode *ip = XFS_I(inode); 1261 struct xfs_mount *mp = ip->i_mount; 1262 xfs_fileoff_t offset_fsb, end_fsb; 1263 int error = 0; 1264 int lockmode = 0; 1265 struct xfs_bmbt_irec imap; 1266 int nimaps = 1; 1267 xfs_off_t offset; 1268 ssize_t size; 1269 int new = 0; 1270 1271 if (XFS_FORCED_SHUTDOWN(mp)) 1272 return -EIO; 1273 1274 offset = (xfs_off_t)iblock << inode->i_blkbits; 1275 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1276 size = bh_result->b_size; 1277 1278 if (!create && direct && offset >= i_size_read(inode)) 1279 return 0; 1280 1281 /* 1282 * Direct I/O is usually done on preallocated files, so try getting 1283 * a block mapping without an exclusive lock first. For buffered 1284 * writes we already have the exclusive iolock anyway, so avoiding 1285 * a lock roundtrip here by taking the ilock exclusive from the 1286 * beginning is a useful micro optimization. 1287 */ 1288 if (create && !direct) { 1289 lockmode = XFS_ILOCK_EXCL; 1290 xfs_ilock(ip, lockmode); 1291 } else { 1292 lockmode = xfs_ilock_data_map_shared(ip); 1293 } 1294 1295 ASSERT(offset <= mp->m_super->s_maxbytes); 1296 if (offset + size > mp->m_super->s_maxbytes) 1297 size = mp->m_super->s_maxbytes - offset; 1298 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1299 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1300 1301 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1302 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1303 if (error) 1304 goto out_unlock; 1305 1306 if (create && 1307 (!nimaps || 1308 (imap.br_startblock == HOLESTARTBLOCK || 1309 imap.br_startblock == DELAYSTARTBLOCK))) { 1310 if (direct || xfs_get_extsz_hint(ip)) { 1311 /* 1312 * Drop the ilock in preparation for starting the block 1313 * allocation transaction. It will be retaken 1314 * exclusively inside xfs_iomap_write_direct for the 1315 * actual allocation. 1316 */ 1317 xfs_iunlock(ip, lockmode); 1318 error = xfs_iomap_write_direct(ip, offset, size, 1319 &imap, nimaps); 1320 if (error) 1321 return error; 1322 new = 1; 1323 } else { 1324 /* 1325 * Delalloc reservations do not require a transaction, 1326 * we can go on without dropping the lock here. If we 1327 * are allocating a new delalloc block, make sure that 1328 * we set the new flag so that we mark the buffer new so 1329 * that we know that it is newly allocated if the write 1330 * fails. 1331 */ 1332 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1333 new = 1; 1334 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1335 if (error) 1336 goto out_unlock; 1337 1338 xfs_iunlock(ip, lockmode); 1339 } 1340 1341 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1342 } else if (nimaps) { 1343 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1344 xfs_iunlock(ip, lockmode); 1345 } else { 1346 trace_xfs_get_blocks_notfound(ip, offset, size); 1347 goto out_unlock; 1348 } 1349 1350 if (imap.br_startblock != HOLESTARTBLOCK && 1351 imap.br_startblock != DELAYSTARTBLOCK) { 1352 /* 1353 * For unwritten extents do not report a disk address on 1354 * the read case (treat as if we're reading into a hole). 1355 */ 1356 if (create || !ISUNWRITTEN(&imap)) 1357 xfs_map_buffer(inode, bh_result, &imap, offset); 1358 if (create && ISUNWRITTEN(&imap)) { 1359 if (direct) { 1360 bh_result->b_private = inode; 1361 set_buffer_defer_completion(bh_result); 1362 } 1363 set_buffer_unwritten(bh_result); 1364 } 1365 } 1366 1367 /* 1368 * If this is a realtime file, data may be on a different device. 1369 * to that pointed to from the buffer_head b_bdev currently. 1370 */ 1371 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1372 1373 /* 1374 * If we previously allocated a block out beyond eof and we are now 1375 * coming back to use it then we will need to flag it as new even if it 1376 * has a disk address. 1377 * 1378 * With sub-block writes into unwritten extents we also need to mark 1379 * the buffer as new so that the unwritten parts of the buffer gets 1380 * correctly zeroed. 1381 */ 1382 if (create && 1383 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1384 (offset >= i_size_read(inode)) || 1385 (new || ISUNWRITTEN(&imap)))) 1386 set_buffer_new(bh_result); 1387 1388 if (imap.br_startblock == DELAYSTARTBLOCK) { 1389 BUG_ON(direct); 1390 if (create) { 1391 set_buffer_uptodate(bh_result); 1392 set_buffer_mapped(bh_result); 1393 set_buffer_delay(bh_result); 1394 } 1395 } 1396 1397 /* 1398 * If this is O_DIRECT or the mpage code calling tell them how large 1399 * the mapping is, so that we can avoid repeated get_blocks calls. 1400 * 1401 * If the mapping spans EOF, then we have to break the mapping up as the 1402 * mapping for blocks beyond EOF must be marked new so that sub block 1403 * regions can be correctly zeroed. We can't do this for mappings within 1404 * EOF unless the mapping was just allocated or is unwritten, otherwise 1405 * the callers would overwrite existing data with zeros. Hence we have 1406 * to split the mapping into a range up to and including EOF, and a 1407 * second mapping for beyond EOF. 1408 */ 1409 if (direct || size > (1 << inode->i_blkbits)) { 1410 xfs_off_t mapping_size; 1411 1412 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1413 mapping_size <<= inode->i_blkbits; 1414 1415 ASSERT(mapping_size > 0); 1416 if (mapping_size > size) 1417 mapping_size = size; 1418 if (offset < i_size_read(inode) && 1419 offset + mapping_size >= i_size_read(inode)) { 1420 /* limit mapping to block that spans EOF */ 1421 mapping_size = roundup_64(i_size_read(inode) - offset, 1422 1 << inode->i_blkbits); 1423 } 1424 if (mapping_size > LONG_MAX) 1425 mapping_size = LONG_MAX; 1426 1427 bh_result->b_size = mapping_size; 1428 } 1429 1430 return 0; 1431 1432 out_unlock: 1433 xfs_iunlock(ip, lockmode); 1434 return error; 1435 } 1436 1437 int 1438 xfs_get_blocks( 1439 struct inode *inode, 1440 sector_t iblock, 1441 struct buffer_head *bh_result, 1442 int create) 1443 { 1444 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1445 } 1446 1447 STATIC int 1448 xfs_get_blocks_direct( 1449 struct inode *inode, 1450 sector_t iblock, 1451 struct buffer_head *bh_result, 1452 int create) 1453 { 1454 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1455 } 1456 1457 /* 1458 * Complete a direct I/O write request. 1459 * 1460 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1461 * need to issue a transaction to convert the range from unwritten to written 1462 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1463 * to do this and we are done. But in case this was a successful AIO 1464 * request this handler is called from interrupt context, from which we 1465 * can't start transactions. In that case offload the I/O completion to 1466 * the workqueues we also use for buffered I/O completion. 1467 */ 1468 STATIC void 1469 xfs_end_io_direct_write( 1470 struct kiocb *iocb, 1471 loff_t offset, 1472 ssize_t size, 1473 void *private) 1474 { 1475 struct xfs_ioend *ioend = iocb->private; 1476 1477 /* 1478 * While the generic direct I/O code updates the inode size, it does 1479 * so only after the end_io handler is called, which means our 1480 * end_io handler thinks the on-disk size is outside the in-core 1481 * size. To prevent this just update it a little bit earlier here. 1482 */ 1483 if (offset + size > i_size_read(ioend->io_inode)) 1484 i_size_write(ioend->io_inode, offset + size); 1485 1486 /* 1487 * blockdev_direct_IO can return an error even after the I/O 1488 * completion handler was called. Thus we need to protect 1489 * against double-freeing. 1490 */ 1491 iocb->private = NULL; 1492 1493 ioend->io_offset = offset; 1494 ioend->io_size = size; 1495 if (private && size > 0) 1496 ioend->io_type = XFS_IO_UNWRITTEN; 1497 1498 xfs_finish_ioend_sync(ioend); 1499 } 1500 1501 STATIC ssize_t 1502 xfs_vm_direct_IO( 1503 int rw, 1504 struct kiocb *iocb, 1505 struct iov_iter *iter, 1506 loff_t offset) 1507 { 1508 struct inode *inode = iocb->ki_filp->f_mapping->host; 1509 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1510 struct xfs_ioend *ioend = NULL; 1511 ssize_t ret; 1512 1513 if (rw & WRITE) { 1514 size_t size = iov_iter_count(iter); 1515 1516 /* 1517 * We cannot preallocate a size update transaction here as we 1518 * don't know whether allocation is necessary or not. Hence we 1519 * can only tell IO completion that one is necessary if we are 1520 * not doing unwritten extent conversion. 1521 */ 1522 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT); 1523 if (offset + size > XFS_I(inode)->i_d.di_size) 1524 ioend->io_isdirect = 1; 1525 1526 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1527 offset, xfs_get_blocks_direct, 1528 xfs_end_io_direct_write, NULL, 1529 DIO_ASYNC_EXTEND); 1530 if (ret != -EIOCBQUEUED && iocb->private) 1531 goto out_destroy_ioend; 1532 } else { 1533 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iter, 1534 offset, xfs_get_blocks_direct, 1535 NULL, NULL, 0); 1536 } 1537 1538 return ret; 1539 1540 out_destroy_ioend: 1541 xfs_destroy_ioend(ioend); 1542 return ret; 1543 } 1544 1545 /* 1546 * Punch out the delalloc blocks we have already allocated. 1547 * 1548 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1549 * as the page is still locked at this point. 1550 */ 1551 STATIC void 1552 xfs_vm_kill_delalloc_range( 1553 struct inode *inode, 1554 loff_t start, 1555 loff_t end) 1556 { 1557 struct xfs_inode *ip = XFS_I(inode); 1558 xfs_fileoff_t start_fsb; 1559 xfs_fileoff_t end_fsb; 1560 int error; 1561 1562 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1563 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1564 if (end_fsb <= start_fsb) 1565 return; 1566 1567 xfs_ilock(ip, XFS_ILOCK_EXCL); 1568 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1569 end_fsb - start_fsb); 1570 if (error) { 1571 /* something screwed, just bail */ 1572 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1573 xfs_alert(ip->i_mount, 1574 "xfs_vm_write_failed: unable to clean up ino %lld", 1575 ip->i_ino); 1576 } 1577 } 1578 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1579 } 1580 1581 STATIC void 1582 xfs_vm_write_failed( 1583 struct inode *inode, 1584 struct page *page, 1585 loff_t pos, 1586 unsigned len) 1587 { 1588 loff_t block_offset; 1589 loff_t block_start; 1590 loff_t block_end; 1591 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1592 loff_t to = from + len; 1593 struct buffer_head *bh, *head; 1594 1595 /* 1596 * The request pos offset might be 32 or 64 bit, this is all fine 1597 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1598 * platform, the high 32-bit will be masked off if we evaluate the 1599 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1600 * 0xfffff000 as an unsigned long, hence the result is incorrect 1601 * which could cause the following ASSERT failed in most cases. 1602 * In order to avoid this, we can evaluate the block_offset of the 1603 * start of the page by using shifts rather than masks the mismatch 1604 * problem. 1605 */ 1606 block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT; 1607 1608 ASSERT(block_offset + from == pos); 1609 1610 head = page_buffers(page); 1611 block_start = 0; 1612 for (bh = head; bh != head || !block_start; 1613 bh = bh->b_this_page, block_start = block_end, 1614 block_offset += bh->b_size) { 1615 block_end = block_start + bh->b_size; 1616 1617 /* skip buffers before the write */ 1618 if (block_end <= from) 1619 continue; 1620 1621 /* if the buffer is after the write, we're done */ 1622 if (block_start >= to) 1623 break; 1624 1625 if (!buffer_delay(bh)) 1626 continue; 1627 1628 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1629 continue; 1630 1631 xfs_vm_kill_delalloc_range(inode, block_offset, 1632 block_offset + bh->b_size); 1633 1634 /* 1635 * This buffer does not contain data anymore. make sure anyone 1636 * who finds it knows that for certain. 1637 */ 1638 clear_buffer_delay(bh); 1639 clear_buffer_uptodate(bh); 1640 clear_buffer_mapped(bh); 1641 clear_buffer_new(bh); 1642 clear_buffer_dirty(bh); 1643 } 1644 1645 } 1646 1647 /* 1648 * This used to call block_write_begin(), but it unlocks and releases the page 1649 * on error, and we need that page to be able to punch stale delalloc blocks out 1650 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1651 * the appropriate point. 1652 */ 1653 STATIC int 1654 xfs_vm_write_begin( 1655 struct file *file, 1656 struct address_space *mapping, 1657 loff_t pos, 1658 unsigned len, 1659 unsigned flags, 1660 struct page **pagep, 1661 void **fsdata) 1662 { 1663 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1664 struct page *page; 1665 int status; 1666 1667 ASSERT(len <= PAGE_CACHE_SIZE); 1668 1669 page = grab_cache_page_write_begin(mapping, index, flags); 1670 if (!page) 1671 return -ENOMEM; 1672 1673 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1674 if (unlikely(status)) { 1675 struct inode *inode = mapping->host; 1676 size_t isize = i_size_read(inode); 1677 1678 xfs_vm_write_failed(inode, page, pos, len); 1679 unlock_page(page); 1680 1681 /* 1682 * If the write is beyond EOF, we only want to kill blocks 1683 * allocated in this write, not blocks that were previously 1684 * written successfully. 1685 */ 1686 if (pos + len > isize) { 1687 ssize_t start = max_t(ssize_t, pos, isize); 1688 1689 truncate_pagecache_range(inode, start, pos + len); 1690 } 1691 1692 page_cache_release(page); 1693 page = NULL; 1694 } 1695 1696 *pagep = page; 1697 return status; 1698 } 1699 1700 /* 1701 * On failure, we only need to kill delalloc blocks beyond EOF in the range of 1702 * this specific write because they will never be written. Previous writes 1703 * beyond EOF where block allocation succeeded do not need to be trashed, so 1704 * only new blocks from this write should be trashed. For blocks within 1705 * EOF, generic_write_end() zeros them so they are safe to leave alone and be 1706 * written with all the other valid data. 1707 */ 1708 STATIC int 1709 xfs_vm_write_end( 1710 struct file *file, 1711 struct address_space *mapping, 1712 loff_t pos, 1713 unsigned len, 1714 unsigned copied, 1715 struct page *page, 1716 void *fsdata) 1717 { 1718 int ret; 1719 1720 ASSERT(len <= PAGE_CACHE_SIZE); 1721 1722 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1723 if (unlikely(ret < len)) { 1724 struct inode *inode = mapping->host; 1725 size_t isize = i_size_read(inode); 1726 loff_t to = pos + len; 1727 1728 if (to > isize) { 1729 /* only kill blocks in this write beyond EOF */ 1730 if (pos > isize) 1731 isize = pos; 1732 xfs_vm_kill_delalloc_range(inode, isize, to); 1733 truncate_pagecache_range(inode, isize, to); 1734 } 1735 } 1736 return ret; 1737 } 1738 1739 STATIC sector_t 1740 xfs_vm_bmap( 1741 struct address_space *mapping, 1742 sector_t block) 1743 { 1744 struct inode *inode = (struct inode *)mapping->host; 1745 struct xfs_inode *ip = XFS_I(inode); 1746 1747 trace_xfs_vm_bmap(XFS_I(inode)); 1748 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1749 filemap_write_and_wait(mapping); 1750 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1751 return generic_block_bmap(mapping, block, xfs_get_blocks); 1752 } 1753 1754 STATIC int 1755 xfs_vm_readpage( 1756 struct file *unused, 1757 struct page *page) 1758 { 1759 return mpage_readpage(page, xfs_get_blocks); 1760 } 1761 1762 STATIC int 1763 xfs_vm_readpages( 1764 struct file *unused, 1765 struct address_space *mapping, 1766 struct list_head *pages, 1767 unsigned nr_pages) 1768 { 1769 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1770 } 1771 1772 /* 1773 * This is basically a copy of __set_page_dirty_buffers() with one 1774 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1775 * dirty, we'll never be able to clean them because we don't write buffers 1776 * beyond EOF, and that means we can't invalidate pages that span EOF 1777 * that have been marked dirty. Further, the dirty state can leak into 1778 * the file interior if the file is extended, resulting in all sorts of 1779 * bad things happening as the state does not match the underlying data. 1780 * 1781 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1782 * this only exist because of bufferheads and how the generic code manages them. 1783 */ 1784 STATIC int 1785 xfs_vm_set_page_dirty( 1786 struct page *page) 1787 { 1788 struct address_space *mapping = page->mapping; 1789 struct inode *inode = mapping->host; 1790 loff_t end_offset; 1791 loff_t offset; 1792 int newly_dirty; 1793 1794 if (unlikely(!mapping)) 1795 return !TestSetPageDirty(page); 1796 1797 end_offset = i_size_read(inode); 1798 offset = page_offset(page); 1799 1800 spin_lock(&mapping->private_lock); 1801 if (page_has_buffers(page)) { 1802 struct buffer_head *head = page_buffers(page); 1803 struct buffer_head *bh = head; 1804 1805 do { 1806 if (offset < end_offset) 1807 set_buffer_dirty(bh); 1808 bh = bh->b_this_page; 1809 offset += 1 << inode->i_blkbits; 1810 } while (bh != head); 1811 } 1812 newly_dirty = !TestSetPageDirty(page); 1813 spin_unlock(&mapping->private_lock); 1814 1815 if (newly_dirty) { 1816 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1817 unsigned long flags; 1818 1819 spin_lock_irqsave(&mapping->tree_lock, flags); 1820 if (page->mapping) { /* Race with truncate? */ 1821 WARN_ON_ONCE(!PageUptodate(page)); 1822 account_page_dirtied(page, mapping); 1823 radix_tree_tag_set(&mapping->page_tree, 1824 page_index(page), PAGECACHE_TAG_DIRTY); 1825 } 1826 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1827 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1828 } 1829 return newly_dirty; 1830 } 1831 1832 const struct address_space_operations xfs_address_space_operations = { 1833 .readpage = xfs_vm_readpage, 1834 .readpages = xfs_vm_readpages, 1835 .writepage = xfs_vm_writepage, 1836 .writepages = xfs_vm_writepages, 1837 .set_page_dirty = xfs_vm_set_page_dirty, 1838 .releasepage = xfs_vm_releasepage, 1839 .invalidatepage = xfs_vm_invalidatepage, 1840 .write_begin = xfs_vm_write_begin, 1841 .write_end = xfs_vm_write_end, 1842 .bmap = xfs_vm_bmap, 1843 .direct_IO = xfs_vm_direct_IO, 1844 .migratepage = buffer_migrate_page, 1845 .is_partially_uptodate = block_is_partially_uptodate, 1846 .error_remove_page = generic_error_remove_page, 1847 }; 1848