1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include <linux/gfp.h> 35 #include <linux/mpage.h> 36 #include <linux/pagevec.h> 37 #include <linux/writeback.h> 38 39 /* flags for direct write completions */ 40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0) 41 #define XFS_DIO_FLAG_APPEND (1 << 1) 42 43 /* 44 * structure owned by writepages passed to individual writepage calls 45 */ 46 struct xfs_writepage_ctx { 47 struct xfs_bmbt_irec imap; 48 bool imap_valid; 49 unsigned int io_type; 50 struct xfs_ioend *ioend; 51 sector_t last_block; 52 }; 53 54 void 55 xfs_count_page_state( 56 struct page *page, 57 int *delalloc, 58 int *unwritten) 59 { 60 struct buffer_head *bh, *head; 61 62 *delalloc = *unwritten = 0; 63 64 bh = head = page_buffers(page); 65 do { 66 if (buffer_unwritten(bh)) 67 (*unwritten) = 1; 68 else if (buffer_delay(bh)) 69 (*delalloc) = 1; 70 } while ((bh = bh->b_this_page) != head); 71 } 72 73 struct block_device * 74 xfs_find_bdev_for_inode( 75 struct inode *inode) 76 { 77 struct xfs_inode *ip = XFS_I(inode); 78 struct xfs_mount *mp = ip->i_mount; 79 80 if (XFS_IS_REALTIME_INODE(ip)) 81 return mp->m_rtdev_targp->bt_bdev; 82 else 83 return mp->m_ddev_targp->bt_bdev; 84 } 85 86 /* 87 * We're now finished for good with this page. Update the page state via the 88 * associated buffer_heads, paying attention to the start and end offsets that 89 * we need to process on the page. 90 */ 91 static void 92 xfs_finish_page_writeback( 93 struct inode *inode, 94 struct bio_vec *bvec, 95 int error) 96 { 97 unsigned int end = bvec->bv_offset + bvec->bv_len - 1; 98 struct buffer_head *head, *bh; 99 unsigned int off = 0; 100 101 ASSERT(bvec->bv_offset < PAGE_SIZE); 102 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0); 103 ASSERT(end < PAGE_SIZE); 104 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0); 105 106 bh = head = page_buffers(bvec->bv_page); 107 108 do { 109 if (off < bvec->bv_offset) 110 goto next_bh; 111 if (off > end) 112 break; 113 bh->b_end_io(bh, !error); 114 next_bh: 115 off += bh->b_size; 116 } while ((bh = bh->b_this_page) != head); 117 } 118 119 /* 120 * We're now finished for good with this ioend structure. Update the page 121 * state, release holds on bios, and finally free up memory. Do not use the 122 * ioend after this. 123 */ 124 STATIC void 125 xfs_destroy_ioend( 126 struct xfs_ioend *ioend, 127 int error) 128 { 129 struct inode *inode = ioend->io_inode; 130 struct bio *last = ioend->io_bio; 131 struct bio *bio, *next; 132 133 for (bio = &ioend->io_inline_bio; bio; bio = next) { 134 struct bio_vec *bvec; 135 int i; 136 137 /* 138 * For the last bio, bi_private points to the ioend, so we 139 * need to explicitly end the iteration here. 140 */ 141 if (bio == last) 142 next = NULL; 143 else 144 next = bio->bi_private; 145 146 /* walk each page on bio, ending page IO on them */ 147 bio_for_each_segment_all(bvec, bio, i) 148 xfs_finish_page_writeback(inode, bvec, error); 149 150 bio_put(bio); 151 } 152 } 153 154 /* 155 * Fast and loose check if this write could update the on-disk inode size. 156 */ 157 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 158 { 159 return ioend->io_offset + ioend->io_size > 160 XFS_I(ioend->io_inode)->i_d.di_size; 161 } 162 163 STATIC int 164 xfs_setfilesize_trans_alloc( 165 struct xfs_ioend *ioend) 166 { 167 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 168 struct xfs_trans *tp; 169 int error; 170 171 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 172 if (error) 173 return error; 174 175 ioend->io_append_trans = tp; 176 177 /* 178 * We may pass freeze protection with a transaction. So tell lockdep 179 * we released it. 180 */ 181 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 182 /* 183 * We hand off the transaction to the completion thread now, so 184 * clear the flag here. 185 */ 186 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 187 return 0; 188 } 189 190 /* 191 * Update on-disk file size now that data has been written to disk. 192 */ 193 STATIC int 194 xfs_setfilesize( 195 struct xfs_inode *ip, 196 struct xfs_trans *tp, 197 xfs_off_t offset, 198 size_t size) 199 { 200 xfs_fsize_t isize; 201 202 xfs_ilock(ip, XFS_ILOCK_EXCL); 203 isize = xfs_new_eof(ip, offset + size); 204 if (!isize) { 205 xfs_iunlock(ip, XFS_ILOCK_EXCL); 206 xfs_trans_cancel(tp); 207 return 0; 208 } 209 210 trace_xfs_setfilesize(ip, offset, size); 211 212 ip->i_d.di_size = isize; 213 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 214 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 215 216 return xfs_trans_commit(tp); 217 } 218 219 STATIC int 220 xfs_setfilesize_ioend( 221 struct xfs_ioend *ioend, 222 int error) 223 { 224 struct xfs_inode *ip = XFS_I(ioend->io_inode); 225 struct xfs_trans *tp = ioend->io_append_trans; 226 227 /* 228 * The transaction may have been allocated in the I/O submission thread, 229 * thus we need to mark ourselves as being in a transaction manually. 230 * Similarly for freeze protection. 231 */ 232 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 233 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 234 235 /* we abort the update if there was an IO error */ 236 if (error) { 237 xfs_trans_cancel(tp); 238 return error; 239 } 240 241 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 242 } 243 244 /* 245 * IO write completion. 246 */ 247 STATIC void 248 xfs_end_io( 249 struct work_struct *work) 250 { 251 struct xfs_ioend *ioend = 252 container_of(work, struct xfs_ioend, io_work); 253 struct xfs_inode *ip = XFS_I(ioend->io_inode); 254 int error = ioend->io_bio->bi_error; 255 256 /* 257 * Set an error if the mount has shut down and proceed with end I/O 258 * processing so it can perform whatever cleanups are necessary. 259 */ 260 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 261 error = -EIO; 262 263 /* 264 * For unwritten extents we need to issue transactions to convert a 265 * range to normal written extens after the data I/O has finished. 266 * Detecting and handling completion IO errors is done individually 267 * for each case as different cleanup operations need to be performed 268 * on error. 269 */ 270 if (ioend->io_type == XFS_IO_UNWRITTEN) { 271 if (error) 272 goto done; 273 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 274 ioend->io_size); 275 } else if (ioend->io_append_trans) { 276 error = xfs_setfilesize_ioend(ioend, error); 277 } else { 278 ASSERT(!xfs_ioend_is_append(ioend)); 279 } 280 281 done: 282 xfs_destroy_ioend(ioend, error); 283 } 284 285 STATIC void 286 xfs_end_bio( 287 struct bio *bio) 288 { 289 struct xfs_ioend *ioend = bio->bi_private; 290 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 291 292 if (ioend->io_type == XFS_IO_UNWRITTEN) 293 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 294 else if (ioend->io_append_trans) 295 queue_work(mp->m_data_workqueue, &ioend->io_work); 296 else 297 xfs_destroy_ioend(ioend, bio->bi_error); 298 } 299 300 STATIC int 301 xfs_map_blocks( 302 struct inode *inode, 303 loff_t offset, 304 struct xfs_bmbt_irec *imap, 305 int type) 306 { 307 struct xfs_inode *ip = XFS_I(inode); 308 struct xfs_mount *mp = ip->i_mount; 309 ssize_t count = 1 << inode->i_blkbits; 310 xfs_fileoff_t offset_fsb, end_fsb; 311 int error = 0; 312 int bmapi_flags = XFS_BMAPI_ENTIRE; 313 int nimaps = 1; 314 315 if (XFS_FORCED_SHUTDOWN(mp)) 316 return -EIO; 317 318 if (type == XFS_IO_UNWRITTEN) 319 bmapi_flags |= XFS_BMAPI_IGSTATE; 320 321 xfs_ilock(ip, XFS_ILOCK_SHARED); 322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 323 (ip->i_df.if_flags & XFS_IFEXTENTS)); 324 ASSERT(offset <= mp->m_super->s_maxbytes); 325 326 if (offset + count > mp->m_super->s_maxbytes) 327 count = mp->m_super->s_maxbytes - offset; 328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 329 offset_fsb = XFS_B_TO_FSBT(mp, offset); 330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 331 imap, &nimaps, bmapi_flags); 332 xfs_iunlock(ip, XFS_ILOCK_SHARED); 333 334 if (error) 335 return error; 336 337 if (type == XFS_IO_DELALLOC && 338 (!nimaps || isnullstartblock(imap->br_startblock))) { 339 error = xfs_iomap_write_allocate(ip, offset, imap); 340 if (!error) 341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 342 return error; 343 } 344 345 #ifdef DEBUG 346 if (type == XFS_IO_UNWRITTEN) { 347 ASSERT(nimaps); 348 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 350 } 351 #endif 352 if (nimaps) 353 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 354 return 0; 355 } 356 357 STATIC bool 358 xfs_imap_valid( 359 struct inode *inode, 360 struct xfs_bmbt_irec *imap, 361 xfs_off_t offset) 362 { 363 offset >>= inode->i_blkbits; 364 365 return offset >= imap->br_startoff && 366 offset < imap->br_startoff + imap->br_blockcount; 367 } 368 369 STATIC void 370 xfs_start_buffer_writeback( 371 struct buffer_head *bh) 372 { 373 ASSERT(buffer_mapped(bh)); 374 ASSERT(buffer_locked(bh)); 375 ASSERT(!buffer_delay(bh)); 376 ASSERT(!buffer_unwritten(bh)); 377 378 mark_buffer_async_write(bh); 379 set_buffer_uptodate(bh); 380 clear_buffer_dirty(bh); 381 } 382 383 STATIC void 384 xfs_start_page_writeback( 385 struct page *page, 386 int clear_dirty) 387 { 388 ASSERT(PageLocked(page)); 389 ASSERT(!PageWriteback(page)); 390 391 /* 392 * if the page was not fully cleaned, we need to ensure that the higher 393 * layers come back to it correctly. That means we need to keep the page 394 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 395 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 396 * write this page in this writeback sweep will be made. 397 */ 398 if (clear_dirty) { 399 clear_page_dirty_for_io(page); 400 set_page_writeback(page); 401 } else 402 set_page_writeback_keepwrite(page); 403 404 unlock_page(page); 405 } 406 407 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 408 { 409 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 410 } 411 412 /* 413 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 414 * it, and we submit that bio. The ioend may be used for multiple bio 415 * submissions, so we only want to allocate an append transaction for the ioend 416 * once. In the case of multiple bio submission, each bio will take an IO 417 * reference to the ioend to ensure that the ioend completion is only done once 418 * all bios have been submitted and the ioend is really done. 419 * 420 * If @fail is non-zero, it means that we have a situation where some part of 421 * the submission process has failed after we have marked paged for writeback 422 * and unlocked them. In this situation, we need to fail the bio and ioend 423 * rather than submit it to IO. This typically only happens on a filesystem 424 * shutdown. 425 */ 426 STATIC int 427 xfs_submit_ioend( 428 struct writeback_control *wbc, 429 struct xfs_ioend *ioend, 430 int status) 431 { 432 /* Reserve log space if we might write beyond the on-disk inode size. */ 433 if (!status && 434 ioend->io_type != XFS_IO_UNWRITTEN && 435 xfs_ioend_is_append(ioend) && 436 !ioend->io_append_trans) 437 status = xfs_setfilesize_trans_alloc(ioend); 438 439 ioend->io_bio->bi_private = ioend; 440 ioend->io_bio->bi_end_io = xfs_end_bio; 441 442 /* 443 * If we are failing the IO now, just mark the ioend with an 444 * error and finish it. This will run IO completion immediately 445 * as there is only one reference to the ioend at this point in 446 * time. 447 */ 448 if (status) { 449 ioend->io_bio->bi_error = status; 450 bio_endio(ioend->io_bio); 451 return status; 452 } 453 454 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, 455 ioend->io_bio); 456 return 0; 457 } 458 459 static void 460 xfs_init_bio_from_bh( 461 struct bio *bio, 462 struct buffer_head *bh) 463 { 464 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 465 bio->bi_bdev = bh->b_bdev; 466 } 467 468 static struct xfs_ioend * 469 xfs_alloc_ioend( 470 struct inode *inode, 471 unsigned int type, 472 xfs_off_t offset, 473 struct buffer_head *bh) 474 { 475 struct xfs_ioend *ioend; 476 struct bio *bio; 477 478 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 479 xfs_init_bio_from_bh(bio, bh); 480 481 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 482 INIT_LIST_HEAD(&ioend->io_list); 483 ioend->io_type = type; 484 ioend->io_inode = inode; 485 ioend->io_size = 0; 486 ioend->io_offset = offset; 487 INIT_WORK(&ioend->io_work, xfs_end_io); 488 ioend->io_append_trans = NULL; 489 ioend->io_bio = bio; 490 return ioend; 491 } 492 493 /* 494 * Allocate a new bio, and chain the old bio to the new one. 495 * 496 * Note that we have to do perform the chaining in this unintuitive order 497 * so that the bi_private linkage is set up in the right direction for the 498 * traversal in xfs_destroy_ioend(). 499 */ 500 static void 501 xfs_chain_bio( 502 struct xfs_ioend *ioend, 503 struct writeback_control *wbc, 504 struct buffer_head *bh) 505 { 506 struct bio *new; 507 508 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 509 xfs_init_bio_from_bh(new, bh); 510 511 bio_chain(ioend->io_bio, new); 512 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 513 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, 514 ioend->io_bio); 515 ioend->io_bio = new; 516 } 517 518 /* 519 * Test to see if we've been building up a completion structure for 520 * earlier buffers -- if so, we try to append to this ioend if we 521 * can, otherwise we finish off any current ioend and start another. 522 * Return the ioend we finished off so that the caller can submit it 523 * once it has finished processing the dirty page. 524 */ 525 STATIC void 526 xfs_add_to_ioend( 527 struct inode *inode, 528 struct buffer_head *bh, 529 xfs_off_t offset, 530 struct xfs_writepage_ctx *wpc, 531 struct writeback_control *wbc, 532 struct list_head *iolist) 533 { 534 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 535 bh->b_blocknr != wpc->last_block + 1 || 536 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 537 if (wpc->ioend) 538 list_add(&wpc->ioend->io_list, iolist); 539 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 540 } 541 542 /* 543 * If the buffer doesn't fit into the bio we need to allocate a new 544 * one. This shouldn't happen more than once for a given buffer. 545 */ 546 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 547 xfs_chain_bio(wpc->ioend, wbc, bh); 548 549 wpc->ioend->io_size += bh->b_size; 550 wpc->last_block = bh->b_blocknr; 551 xfs_start_buffer_writeback(bh); 552 } 553 554 STATIC void 555 xfs_map_buffer( 556 struct inode *inode, 557 struct buffer_head *bh, 558 struct xfs_bmbt_irec *imap, 559 xfs_off_t offset) 560 { 561 sector_t bn; 562 struct xfs_mount *m = XFS_I(inode)->i_mount; 563 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 564 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 565 566 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 567 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 568 569 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 570 ((offset - iomap_offset) >> inode->i_blkbits); 571 572 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 573 574 bh->b_blocknr = bn; 575 set_buffer_mapped(bh); 576 } 577 578 STATIC void 579 xfs_map_at_offset( 580 struct inode *inode, 581 struct buffer_head *bh, 582 struct xfs_bmbt_irec *imap, 583 xfs_off_t offset) 584 { 585 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 586 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 587 588 xfs_map_buffer(inode, bh, imap, offset); 589 set_buffer_mapped(bh); 590 clear_buffer_delay(bh); 591 clear_buffer_unwritten(bh); 592 } 593 594 /* 595 * Test if a given page contains at least one buffer of a given @type. 596 * If @check_all_buffers is true, then we walk all the buffers in the page to 597 * try to find one of the type passed in. If it is not set, then the caller only 598 * needs to check the first buffer on the page for a match. 599 */ 600 STATIC bool 601 xfs_check_page_type( 602 struct page *page, 603 unsigned int type, 604 bool check_all_buffers) 605 { 606 struct buffer_head *bh; 607 struct buffer_head *head; 608 609 if (PageWriteback(page)) 610 return false; 611 if (!page->mapping) 612 return false; 613 if (!page_has_buffers(page)) 614 return false; 615 616 bh = head = page_buffers(page); 617 do { 618 if (buffer_unwritten(bh)) { 619 if (type == XFS_IO_UNWRITTEN) 620 return true; 621 } else if (buffer_delay(bh)) { 622 if (type == XFS_IO_DELALLOC) 623 return true; 624 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 625 if (type == XFS_IO_OVERWRITE) 626 return true; 627 } 628 629 /* If we are only checking the first buffer, we are done now. */ 630 if (!check_all_buffers) 631 break; 632 } while ((bh = bh->b_this_page) != head); 633 634 return false; 635 } 636 637 STATIC void 638 xfs_vm_invalidatepage( 639 struct page *page, 640 unsigned int offset, 641 unsigned int length) 642 { 643 trace_xfs_invalidatepage(page->mapping->host, page, offset, 644 length); 645 block_invalidatepage(page, offset, length); 646 } 647 648 /* 649 * If the page has delalloc buffers on it, we need to punch them out before we 650 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 651 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 652 * is done on that same region - the delalloc extent is returned when none is 653 * supposed to be there. 654 * 655 * We prevent this by truncating away the delalloc regions on the page before 656 * invalidating it. Because they are delalloc, we can do this without needing a 657 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 658 * truncation without a transaction as there is no space left for block 659 * reservation (typically why we see a ENOSPC in writeback). 660 * 661 * This is not a performance critical path, so for now just do the punching a 662 * buffer head at a time. 663 */ 664 STATIC void 665 xfs_aops_discard_page( 666 struct page *page) 667 { 668 struct inode *inode = page->mapping->host; 669 struct xfs_inode *ip = XFS_I(inode); 670 struct buffer_head *bh, *head; 671 loff_t offset = page_offset(page); 672 673 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 674 goto out_invalidate; 675 676 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 677 goto out_invalidate; 678 679 xfs_alert(ip->i_mount, 680 "page discard on page %p, inode 0x%llx, offset %llu.", 681 page, ip->i_ino, offset); 682 683 xfs_ilock(ip, XFS_ILOCK_EXCL); 684 bh = head = page_buffers(page); 685 do { 686 int error; 687 xfs_fileoff_t start_fsb; 688 689 if (!buffer_delay(bh)) 690 goto next_buffer; 691 692 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 693 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 694 if (error) { 695 /* something screwed, just bail */ 696 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 697 xfs_alert(ip->i_mount, 698 "page discard unable to remove delalloc mapping."); 699 } 700 break; 701 } 702 next_buffer: 703 offset += 1 << inode->i_blkbits; 704 705 } while ((bh = bh->b_this_page) != head); 706 707 xfs_iunlock(ip, XFS_ILOCK_EXCL); 708 out_invalidate: 709 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 710 return; 711 } 712 713 /* 714 * We implement an immediate ioend submission policy here to avoid needing to 715 * chain multiple ioends and hence nest mempool allocations which can violate 716 * forward progress guarantees we need to provide. The current ioend we are 717 * adding buffers to is cached on the writepage context, and if the new buffer 718 * does not append to the cached ioend it will create a new ioend and cache that 719 * instead. 720 * 721 * If a new ioend is created and cached, the old ioend is returned and queued 722 * locally for submission once the entire page is processed or an error has been 723 * detected. While ioends are submitted immediately after they are completed, 724 * batching optimisations are provided by higher level block plugging. 725 * 726 * At the end of a writeback pass, there will be a cached ioend remaining on the 727 * writepage context that the caller will need to submit. 728 */ 729 static int 730 xfs_writepage_map( 731 struct xfs_writepage_ctx *wpc, 732 struct writeback_control *wbc, 733 struct inode *inode, 734 struct page *page, 735 loff_t offset, 736 __uint64_t end_offset) 737 { 738 LIST_HEAD(submit_list); 739 struct xfs_ioend *ioend, *next; 740 struct buffer_head *bh, *head; 741 ssize_t len = 1 << inode->i_blkbits; 742 int error = 0; 743 int count = 0; 744 int uptodate = 1; 745 746 bh = head = page_buffers(page); 747 offset = page_offset(page); 748 do { 749 if (offset >= end_offset) 750 break; 751 if (!buffer_uptodate(bh)) 752 uptodate = 0; 753 754 /* 755 * set_page_dirty dirties all buffers in a page, independent 756 * of their state. The dirty state however is entirely 757 * meaningless for holes (!mapped && uptodate), so skip 758 * buffers covering holes here. 759 */ 760 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 761 wpc->imap_valid = false; 762 continue; 763 } 764 765 if (buffer_unwritten(bh)) { 766 if (wpc->io_type != XFS_IO_UNWRITTEN) { 767 wpc->io_type = XFS_IO_UNWRITTEN; 768 wpc->imap_valid = false; 769 } 770 } else if (buffer_delay(bh)) { 771 if (wpc->io_type != XFS_IO_DELALLOC) { 772 wpc->io_type = XFS_IO_DELALLOC; 773 wpc->imap_valid = false; 774 } 775 } else if (buffer_uptodate(bh)) { 776 if (wpc->io_type != XFS_IO_OVERWRITE) { 777 wpc->io_type = XFS_IO_OVERWRITE; 778 wpc->imap_valid = false; 779 } 780 } else { 781 if (PageUptodate(page)) 782 ASSERT(buffer_mapped(bh)); 783 /* 784 * This buffer is not uptodate and will not be 785 * written to disk. Ensure that we will put any 786 * subsequent writeable buffers into a new 787 * ioend. 788 */ 789 wpc->imap_valid = false; 790 continue; 791 } 792 793 if (wpc->imap_valid) 794 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 795 offset); 796 if (!wpc->imap_valid) { 797 error = xfs_map_blocks(inode, offset, &wpc->imap, 798 wpc->io_type); 799 if (error) 800 goto out; 801 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 802 offset); 803 } 804 if (wpc->imap_valid) { 805 lock_buffer(bh); 806 if (wpc->io_type != XFS_IO_OVERWRITE) 807 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 808 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 809 count++; 810 } 811 812 } while (offset += len, ((bh = bh->b_this_page) != head)); 813 814 if (uptodate && bh == head) 815 SetPageUptodate(page); 816 817 ASSERT(wpc->ioend || list_empty(&submit_list)); 818 819 out: 820 /* 821 * On error, we have to fail the ioend here because we have locked 822 * buffers in the ioend. If we don't do this, we'll deadlock 823 * invalidating the page as that tries to lock the buffers on the page. 824 * Also, because we may have set pages under writeback, we have to make 825 * sure we run IO completion to mark the error state of the IO 826 * appropriately, so we can't cancel the ioend directly here. That means 827 * we have to mark this page as under writeback if we included any 828 * buffers from it in the ioend chain so that completion treats it 829 * correctly. 830 * 831 * If we didn't include the page in the ioend, the on error we can 832 * simply discard and unlock it as there are no other users of the page 833 * or it's buffers right now. The caller will still need to trigger 834 * submission of outstanding ioends on the writepage context so they are 835 * treated correctly on error. 836 */ 837 if (count) { 838 xfs_start_page_writeback(page, !error); 839 840 /* 841 * Preserve the original error if there was one, otherwise catch 842 * submission errors here and propagate into subsequent ioend 843 * submissions. 844 */ 845 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 846 int error2; 847 848 list_del_init(&ioend->io_list); 849 error2 = xfs_submit_ioend(wbc, ioend, error); 850 if (error2 && !error) 851 error = error2; 852 } 853 } else if (error) { 854 xfs_aops_discard_page(page); 855 ClearPageUptodate(page); 856 unlock_page(page); 857 } else { 858 /* 859 * We can end up here with no error and nothing to write if we 860 * race with a partial page truncate on a sub-page block sized 861 * filesystem. In that case we need to mark the page clean. 862 */ 863 xfs_start_page_writeback(page, 1); 864 end_page_writeback(page); 865 } 866 867 mapping_set_error(page->mapping, error); 868 return error; 869 } 870 871 /* 872 * Write out a dirty page. 873 * 874 * For delalloc space on the page we need to allocate space and flush it. 875 * For unwritten space on the page we need to start the conversion to 876 * regular allocated space. 877 * For any other dirty buffer heads on the page we should flush them. 878 */ 879 STATIC int 880 xfs_do_writepage( 881 struct page *page, 882 struct writeback_control *wbc, 883 void *data) 884 { 885 struct xfs_writepage_ctx *wpc = data; 886 struct inode *inode = page->mapping->host; 887 loff_t offset; 888 __uint64_t end_offset; 889 pgoff_t end_index; 890 891 trace_xfs_writepage(inode, page, 0, 0); 892 893 ASSERT(page_has_buffers(page)); 894 895 /* 896 * Refuse to write the page out if we are called from reclaim context. 897 * 898 * This avoids stack overflows when called from deeply used stacks in 899 * random callers for direct reclaim or memcg reclaim. We explicitly 900 * allow reclaim from kswapd as the stack usage there is relatively low. 901 * 902 * This should never happen except in the case of a VM regression so 903 * warn about it. 904 */ 905 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 906 PF_MEMALLOC)) 907 goto redirty; 908 909 /* 910 * Given that we do not allow direct reclaim to call us, we should 911 * never be called while in a filesystem transaction. 912 */ 913 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 914 goto redirty; 915 916 /* 917 * Is this page beyond the end of the file? 918 * 919 * The page index is less than the end_index, adjust the end_offset 920 * to the highest offset that this page should represent. 921 * ----------------------------------------------------- 922 * | file mapping | <EOF> | 923 * ----------------------------------------------------- 924 * | Page ... | Page N-2 | Page N-1 | Page N | | 925 * ^--------------------------------^----------|-------- 926 * | desired writeback range | see else | 927 * ---------------------------------^------------------| 928 */ 929 offset = i_size_read(inode); 930 end_index = offset >> PAGE_SHIFT; 931 if (page->index < end_index) 932 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 933 else { 934 /* 935 * Check whether the page to write out is beyond or straddles 936 * i_size or not. 937 * ------------------------------------------------------- 938 * | file mapping | <EOF> | 939 * ------------------------------------------------------- 940 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 941 * ^--------------------------------^-----------|--------- 942 * | | Straddles | 943 * ---------------------------------^-----------|--------| 944 */ 945 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 946 947 /* 948 * Skip the page if it is fully outside i_size, e.g. due to a 949 * truncate operation that is in progress. We must redirty the 950 * page so that reclaim stops reclaiming it. Otherwise 951 * xfs_vm_releasepage() is called on it and gets confused. 952 * 953 * Note that the end_index is unsigned long, it would overflow 954 * if the given offset is greater than 16TB on 32-bit system 955 * and if we do check the page is fully outside i_size or not 956 * via "if (page->index >= end_index + 1)" as "end_index + 1" 957 * will be evaluated to 0. Hence this page will be redirtied 958 * and be written out repeatedly which would result in an 959 * infinite loop, the user program that perform this operation 960 * will hang. Instead, we can verify this situation by checking 961 * if the page to write is totally beyond the i_size or if it's 962 * offset is just equal to the EOF. 963 */ 964 if (page->index > end_index || 965 (page->index == end_index && offset_into_page == 0)) 966 goto redirty; 967 968 /* 969 * The page straddles i_size. It must be zeroed out on each 970 * and every writepage invocation because it may be mmapped. 971 * "A file is mapped in multiples of the page size. For a file 972 * that is not a multiple of the page size, the remaining 973 * memory is zeroed when mapped, and writes to that region are 974 * not written out to the file." 975 */ 976 zero_user_segment(page, offset_into_page, PAGE_SIZE); 977 978 /* Adjust the end_offset to the end of file */ 979 end_offset = offset; 980 } 981 982 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 983 984 redirty: 985 redirty_page_for_writepage(wbc, page); 986 unlock_page(page); 987 return 0; 988 } 989 990 STATIC int 991 xfs_vm_writepage( 992 struct page *page, 993 struct writeback_control *wbc) 994 { 995 struct xfs_writepage_ctx wpc = { 996 .io_type = XFS_IO_INVALID, 997 }; 998 int ret; 999 1000 ret = xfs_do_writepage(page, wbc, &wpc); 1001 if (wpc.ioend) 1002 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1003 return ret; 1004 } 1005 1006 STATIC int 1007 xfs_vm_writepages( 1008 struct address_space *mapping, 1009 struct writeback_control *wbc) 1010 { 1011 struct xfs_writepage_ctx wpc = { 1012 .io_type = XFS_IO_INVALID, 1013 }; 1014 int ret; 1015 1016 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1017 if (dax_mapping(mapping)) 1018 return dax_writeback_mapping_range(mapping, 1019 xfs_find_bdev_for_inode(mapping->host), wbc); 1020 1021 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1022 if (wpc.ioend) 1023 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1024 return ret; 1025 } 1026 1027 /* 1028 * Called to move a page into cleanable state - and from there 1029 * to be released. The page should already be clean. We always 1030 * have buffer heads in this call. 1031 * 1032 * Returns 1 if the page is ok to release, 0 otherwise. 1033 */ 1034 STATIC int 1035 xfs_vm_releasepage( 1036 struct page *page, 1037 gfp_t gfp_mask) 1038 { 1039 int delalloc, unwritten; 1040 1041 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1042 1043 xfs_count_page_state(page, &delalloc, &unwritten); 1044 1045 if (WARN_ON_ONCE(delalloc)) 1046 return 0; 1047 if (WARN_ON_ONCE(unwritten)) 1048 return 0; 1049 1050 return try_to_free_buffers(page); 1051 } 1052 1053 /* 1054 * When we map a DIO buffer, we may need to pass flags to 1055 * xfs_end_io_direct_write to tell it what kind of write IO we are doing. 1056 * 1057 * Note that for DIO, an IO to the highest supported file block offset (i.e. 1058 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64 1059 * bit variable. Hence if we see this overflow, we have to assume that the IO is 1060 * extending the file size. We won't know for sure until IO completion is run 1061 * and the actual max write offset is communicated to the IO completion 1062 * routine. 1063 */ 1064 static void 1065 xfs_map_direct( 1066 struct inode *inode, 1067 struct buffer_head *bh_result, 1068 struct xfs_bmbt_irec *imap, 1069 xfs_off_t offset) 1070 { 1071 uintptr_t *flags = (uintptr_t *)&bh_result->b_private; 1072 xfs_off_t size = bh_result->b_size; 1073 1074 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size, 1075 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap); 1076 1077 if (ISUNWRITTEN(imap)) { 1078 *flags |= XFS_DIO_FLAG_UNWRITTEN; 1079 set_buffer_defer_completion(bh_result); 1080 } else if (offset + size > i_size_read(inode) || offset + size < 0) { 1081 *flags |= XFS_DIO_FLAG_APPEND; 1082 set_buffer_defer_completion(bh_result); 1083 } 1084 } 1085 1086 /* 1087 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1088 * is, so that we can avoid repeated get_blocks calls. 1089 * 1090 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1091 * for blocks beyond EOF must be marked new so that sub block regions can be 1092 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1093 * was just allocated or is unwritten, otherwise the callers would overwrite 1094 * existing data with zeros. Hence we have to split the mapping into a range up 1095 * to and including EOF, and a second mapping for beyond EOF. 1096 */ 1097 static void 1098 xfs_map_trim_size( 1099 struct inode *inode, 1100 sector_t iblock, 1101 struct buffer_head *bh_result, 1102 struct xfs_bmbt_irec *imap, 1103 xfs_off_t offset, 1104 ssize_t size) 1105 { 1106 xfs_off_t mapping_size; 1107 1108 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1109 mapping_size <<= inode->i_blkbits; 1110 1111 ASSERT(mapping_size > 0); 1112 if (mapping_size > size) 1113 mapping_size = size; 1114 if (offset < i_size_read(inode) && 1115 offset + mapping_size >= i_size_read(inode)) { 1116 /* limit mapping to block that spans EOF */ 1117 mapping_size = roundup_64(i_size_read(inode) - offset, 1118 1 << inode->i_blkbits); 1119 } 1120 if (mapping_size > LONG_MAX) 1121 mapping_size = LONG_MAX; 1122 1123 bh_result->b_size = mapping_size; 1124 } 1125 1126 STATIC int 1127 __xfs_get_blocks( 1128 struct inode *inode, 1129 sector_t iblock, 1130 struct buffer_head *bh_result, 1131 int create, 1132 bool direct, 1133 bool dax_fault) 1134 { 1135 struct xfs_inode *ip = XFS_I(inode); 1136 struct xfs_mount *mp = ip->i_mount; 1137 xfs_fileoff_t offset_fsb, end_fsb; 1138 int error = 0; 1139 int lockmode = 0; 1140 struct xfs_bmbt_irec imap; 1141 int nimaps = 1; 1142 xfs_off_t offset; 1143 ssize_t size; 1144 int new = 0; 1145 1146 if (XFS_FORCED_SHUTDOWN(mp)) 1147 return -EIO; 1148 1149 offset = (xfs_off_t)iblock << inode->i_blkbits; 1150 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1151 size = bh_result->b_size; 1152 1153 if (!create && direct && offset >= i_size_read(inode)) 1154 return 0; 1155 1156 /* 1157 * Direct I/O is usually done on preallocated files, so try getting 1158 * a block mapping without an exclusive lock first. For buffered 1159 * writes we already have the exclusive iolock anyway, so avoiding 1160 * a lock roundtrip here by taking the ilock exclusive from the 1161 * beginning is a useful micro optimization. 1162 */ 1163 if (create && !direct) { 1164 lockmode = XFS_ILOCK_EXCL; 1165 xfs_ilock(ip, lockmode); 1166 } else { 1167 lockmode = xfs_ilock_data_map_shared(ip); 1168 } 1169 1170 ASSERT(offset <= mp->m_super->s_maxbytes); 1171 if (offset + size > mp->m_super->s_maxbytes) 1172 size = mp->m_super->s_maxbytes - offset; 1173 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1174 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1175 1176 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1177 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1178 if (error) 1179 goto out_unlock; 1180 1181 /* for DAX, we convert unwritten extents directly */ 1182 if (create && 1183 (!nimaps || 1184 (imap.br_startblock == HOLESTARTBLOCK || 1185 imap.br_startblock == DELAYSTARTBLOCK) || 1186 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) { 1187 if (direct || xfs_get_extsz_hint(ip)) { 1188 /* 1189 * xfs_iomap_write_direct() expects the shared lock. It 1190 * is unlocked on return. 1191 */ 1192 if (lockmode == XFS_ILOCK_EXCL) 1193 xfs_ilock_demote(ip, lockmode); 1194 1195 error = xfs_iomap_write_direct(ip, offset, size, 1196 &imap, nimaps); 1197 if (error) 1198 return error; 1199 new = 1; 1200 1201 } else { 1202 /* 1203 * Delalloc reservations do not require a transaction, 1204 * we can go on without dropping the lock here. If we 1205 * are allocating a new delalloc block, make sure that 1206 * we set the new flag so that we mark the buffer new so 1207 * that we know that it is newly allocated if the write 1208 * fails. 1209 */ 1210 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1211 new = 1; 1212 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1213 if (error) 1214 goto out_unlock; 1215 1216 xfs_iunlock(ip, lockmode); 1217 } 1218 trace_xfs_get_blocks_alloc(ip, offset, size, 1219 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1220 : XFS_IO_DELALLOC, &imap); 1221 } else if (nimaps) { 1222 trace_xfs_get_blocks_found(ip, offset, size, 1223 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1224 : XFS_IO_OVERWRITE, &imap); 1225 xfs_iunlock(ip, lockmode); 1226 } else { 1227 trace_xfs_get_blocks_notfound(ip, offset, size); 1228 goto out_unlock; 1229 } 1230 1231 if (IS_DAX(inode) && create) { 1232 ASSERT(!ISUNWRITTEN(&imap)); 1233 /* zeroing is not needed at a higher layer */ 1234 new = 0; 1235 } 1236 1237 /* trim mapping down to size requested */ 1238 if (direct || size > (1 << inode->i_blkbits)) 1239 xfs_map_trim_size(inode, iblock, bh_result, 1240 &imap, offset, size); 1241 1242 /* 1243 * For unwritten extents do not report a disk address in the buffered 1244 * read case (treat as if we're reading into a hole). 1245 */ 1246 if (imap.br_startblock != HOLESTARTBLOCK && 1247 imap.br_startblock != DELAYSTARTBLOCK && 1248 (create || !ISUNWRITTEN(&imap))) { 1249 xfs_map_buffer(inode, bh_result, &imap, offset); 1250 if (ISUNWRITTEN(&imap)) 1251 set_buffer_unwritten(bh_result); 1252 /* direct IO needs special help */ 1253 if (create && direct) { 1254 if (dax_fault) 1255 ASSERT(!ISUNWRITTEN(&imap)); 1256 else 1257 xfs_map_direct(inode, bh_result, &imap, offset); 1258 } 1259 } 1260 1261 /* 1262 * If this is a realtime file, data may be on a different device. 1263 * to that pointed to from the buffer_head b_bdev currently. 1264 */ 1265 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1266 1267 /* 1268 * If we previously allocated a block out beyond eof and we are now 1269 * coming back to use it then we will need to flag it as new even if it 1270 * has a disk address. 1271 * 1272 * With sub-block writes into unwritten extents we also need to mark 1273 * the buffer as new so that the unwritten parts of the buffer gets 1274 * correctly zeroed. 1275 */ 1276 if (create && 1277 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1278 (offset >= i_size_read(inode)) || 1279 (new || ISUNWRITTEN(&imap)))) 1280 set_buffer_new(bh_result); 1281 1282 if (imap.br_startblock == DELAYSTARTBLOCK) { 1283 BUG_ON(direct); 1284 if (create) { 1285 set_buffer_uptodate(bh_result); 1286 set_buffer_mapped(bh_result); 1287 set_buffer_delay(bh_result); 1288 } 1289 } 1290 1291 return 0; 1292 1293 out_unlock: 1294 xfs_iunlock(ip, lockmode); 1295 return error; 1296 } 1297 1298 int 1299 xfs_get_blocks( 1300 struct inode *inode, 1301 sector_t iblock, 1302 struct buffer_head *bh_result, 1303 int create) 1304 { 1305 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false); 1306 } 1307 1308 int 1309 xfs_get_blocks_direct( 1310 struct inode *inode, 1311 sector_t iblock, 1312 struct buffer_head *bh_result, 1313 int create) 1314 { 1315 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false); 1316 } 1317 1318 int 1319 xfs_get_blocks_dax_fault( 1320 struct inode *inode, 1321 sector_t iblock, 1322 struct buffer_head *bh_result, 1323 int create) 1324 { 1325 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true); 1326 } 1327 1328 /* 1329 * Complete a direct I/O write request. 1330 * 1331 * xfs_map_direct passes us some flags in the private data to tell us what to 1332 * do. If no flags are set, then the write IO is an overwrite wholly within 1333 * the existing allocated file size and so there is nothing for us to do. 1334 * 1335 * Note that in this case the completion can be called in interrupt context, 1336 * whereas if we have flags set we will always be called in task context 1337 * (i.e. from a workqueue). 1338 */ 1339 STATIC int 1340 xfs_end_io_direct_write( 1341 struct kiocb *iocb, 1342 loff_t offset, 1343 ssize_t size, 1344 void *private) 1345 { 1346 struct inode *inode = file_inode(iocb->ki_filp); 1347 struct xfs_inode *ip = XFS_I(inode); 1348 struct xfs_mount *mp = ip->i_mount; 1349 uintptr_t flags = (uintptr_t)private; 1350 int error = 0; 1351 1352 trace_xfs_end_io_direct_write(ip, offset, size); 1353 1354 if (XFS_FORCED_SHUTDOWN(mp)) 1355 return -EIO; 1356 1357 if (size <= 0) 1358 return size; 1359 1360 /* 1361 * The flags tell us whether we are doing unwritten extent conversions 1362 * or an append transaction that updates the on-disk file size. These 1363 * cases are the only cases where we should *potentially* be needing 1364 * to update the VFS inode size. 1365 */ 1366 if (flags == 0) { 1367 ASSERT(offset + size <= i_size_read(inode)); 1368 return 0; 1369 } 1370 1371 /* 1372 * We need to update the in-core inode size here so that we don't end up 1373 * with the on-disk inode size being outside the in-core inode size. We 1374 * have no other method of updating EOF for AIO, so always do it here 1375 * if necessary. 1376 * 1377 * We need to lock the test/set EOF update as we can be racing with 1378 * other IO completions here to update the EOF. Failing to serialise 1379 * here can result in EOF moving backwards and Bad Things Happen when 1380 * that occurs. 1381 */ 1382 spin_lock(&ip->i_flags_lock); 1383 if (offset + size > i_size_read(inode)) 1384 i_size_write(inode, offset + size); 1385 spin_unlock(&ip->i_flags_lock); 1386 1387 if (flags & XFS_DIO_FLAG_UNWRITTEN) { 1388 trace_xfs_end_io_direct_write_unwritten(ip, offset, size); 1389 1390 error = xfs_iomap_write_unwritten(ip, offset, size); 1391 } else if (flags & XFS_DIO_FLAG_APPEND) { 1392 struct xfs_trans *tp; 1393 1394 trace_xfs_end_io_direct_write_append(ip, offset, size); 1395 1396 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, 1397 &tp); 1398 if (!error) 1399 error = xfs_setfilesize(ip, tp, offset, size); 1400 } 1401 1402 return error; 1403 } 1404 1405 STATIC ssize_t 1406 xfs_vm_direct_IO( 1407 struct kiocb *iocb, 1408 struct iov_iter *iter) 1409 { 1410 struct inode *inode = iocb->ki_filp->f_mapping->host; 1411 dio_iodone_t *endio = NULL; 1412 int flags = 0; 1413 struct block_device *bdev; 1414 1415 if (iov_iter_rw(iter) == WRITE) { 1416 endio = xfs_end_io_direct_write; 1417 flags = DIO_ASYNC_EXTEND; 1418 } 1419 1420 if (IS_DAX(inode)) { 1421 return dax_do_io(iocb, inode, iter, 1422 xfs_get_blocks_direct, endio, 0); 1423 } 1424 1425 bdev = xfs_find_bdev_for_inode(inode); 1426 return __blockdev_direct_IO(iocb, inode, bdev, iter, 1427 xfs_get_blocks_direct, endio, NULL, flags); 1428 } 1429 1430 /* 1431 * Punch out the delalloc blocks we have already allocated. 1432 * 1433 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1434 * as the page is still locked at this point. 1435 */ 1436 STATIC void 1437 xfs_vm_kill_delalloc_range( 1438 struct inode *inode, 1439 loff_t start, 1440 loff_t end) 1441 { 1442 struct xfs_inode *ip = XFS_I(inode); 1443 xfs_fileoff_t start_fsb; 1444 xfs_fileoff_t end_fsb; 1445 int error; 1446 1447 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1448 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1449 if (end_fsb <= start_fsb) 1450 return; 1451 1452 xfs_ilock(ip, XFS_ILOCK_EXCL); 1453 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1454 end_fsb - start_fsb); 1455 if (error) { 1456 /* something screwed, just bail */ 1457 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1458 xfs_alert(ip->i_mount, 1459 "xfs_vm_write_failed: unable to clean up ino %lld", 1460 ip->i_ino); 1461 } 1462 } 1463 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1464 } 1465 1466 STATIC void 1467 xfs_vm_write_failed( 1468 struct inode *inode, 1469 struct page *page, 1470 loff_t pos, 1471 unsigned len) 1472 { 1473 loff_t block_offset; 1474 loff_t block_start; 1475 loff_t block_end; 1476 loff_t from = pos & (PAGE_SIZE - 1); 1477 loff_t to = from + len; 1478 struct buffer_head *bh, *head; 1479 struct xfs_mount *mp = XFS_I(inode)->i_mount; 1480 1481 /* 1482 * The request pos offset might be 32 or 64 bit, this is all fine 1483 * on 64-bit platform. However, for 64-bit pos request on 32-bit 1484 * platform, the high 32-bit will be masked off if we evaluate the 1485 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is 1486 * 0xfffff000 as an unsigned long, hence the result is incorrect 1487 * which could cause the following ASSERT failed in most cases. 1488 * In order to avoid this, we can evaluate the block_offset of the 1489 * start of the page by using shifts rather than masks the mismatch 1490 * problem. 1491 */ 1492 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT; 1493 1494 ASSERT(block_offset + from == pos); 1495 1496 head = page_buffers(page); 1497 block_start = 0; 1498 for (bh = head; bh != head || !block_start; 1499 bh = bh->b_this_page, block_start = block_end, 1500 block_offset += bh->b_size) { 1501 block_end = block_start + bh->b_size; 1502 1503 /* skip buffers before the write */ 1504 if (block_end <= from) 1505 continue; 1506 1507 /* if the buffer is after the write, we're done */ 1508 if (block_start >= to) 1509 break; 1510 1511 /* 1512 * Process delalloc and unwritten buffers beyond EOF. We can 1513 * encounter unwritten buffers in the event that a file has 1514 * post-EOF unwritten extents and an extending write happens to 1515 * fail (e.g., an unaligned write that also involves a delalloc 1516 * to the same page). 1517 */ 1518 if (!buffer_delay(bh) && !buffer_unwritten(bh)) 1519 continue; 1520 1521 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) && 1522 block_offset < i_size_read(inode)) 1523 continue; 1524 1525 if (buffer_delay(bh)) 1526 xfs_vm_kill_delalloc_range(inode, block_offset, 1527 block_offset + bh->b_size); 1528 1529 /* 1530 * This buffer does not contain data anymore. make sure anyone 1531 * who finds it knows that for certain. 1532 */ 1533 clear_buffer_delay(bh); 1534 clear_buffer_uptodate(bh); 1535 clear_buffer_mapped(bh); 1536 clear_buffer_new(bh); 1537 clear_buffer_dirty(bh); 1538 clear_buffer_unwritten(bh); 1539 } 1540 1541 } 1542 1543 /* 1544 * This used to call block_write_begin(), but it unlocks and releases the page 1545 * on error, and we need that page to be able to punch stale delalloc blocks out 1546 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1547 * the appropriate point. 1548 */ 1549 STATIC int 1550 xfs_vm_write_begin( 1551 struct file *file, 1552 struct address_space *mapping, 1553 loff_t pos, 1554 unsigned len, 1555 unsigned flags, 1556 struct page **pagep, 1557 void **fsdata) 1558 { 1559 pgoff_t index = pos >> PAGE_SHIFT; 1560 struct page *page; 1561 int status; 1562 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount; 1563 1564 ASSERT(len <= PAGE_SIZE); 1565 1566 page = grab_cache_page_write_begin(mapping, index, flags); 1567 if (!page) 1568 return -ENOMEM; 1569 1570 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1571 if (xfs_mp_fail_writes(mp)) 1572 status = -EIO; 1573 if (unlikely(status)) { 1574 struct inode *inode = mapping->host; 1575 size_t isize = i_size_read(inode); 1576 1577 xfs_vm_write_failed(inode, page, pos, len); 1578 unlock_page(page); 1579 1580 /* 1581 * If the write is beyond EOF, we only want to kill blocks 1582 * allocated in this write, not blocks that were previously 1583 * written successfully. 1584 */ 1585 if (xfs_mp_fail_writes(mp)) 1586 isize = 0; 1587 if (pos + len > isize) { 1588 ssize_t start = max_t(ssize_t, pos, isize); 1589 1590 truncate_pagecache_range(inode, start, pos + len); 1591 } 1592 1593 put_page(page); 1594 page = NULL; 1595 } 1596 1597 *pagep = page; 1598 return status; 1599 } 1600 1601 /* 1602 * On failure, we only need to kill delalloc blocks beyond EOF in the range of 1603 * this specific write because they will never be written. Previous writes 1604 * beyond EOF where block allocation succeeded do not need to be trashed, so 1605 * only new blocks from this write should be trashed. For blocks within 1606 * EOF, generic_write_end() zeros them so they are safe to leave alone and be 1607 * written with all the other valid data. 1608 */ 1609 STATIC int 1610 xfs_vm_write_end( 1611 struct file *file, 1612 struct address_space *mapping, 1613 loff_t pos, 1614 unsigned len, 1615 unsigned copied, 1616 struct page *page, 1617 void *fsdata) 1618 { 1619 int ret; 1620 1621 ASSERT(len <= PAGE_SIZE); 1622 1623 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1624 if (unlikely(ret < len)) { 1625 struct inode *inode = mapping->host; 1626 size_t isize = i_size_read(inode); 1627 loff_t to = pos + len; 1628 1629 if (to > isize) { 1630 /* only kill blocks in this write beyond EOF */ 1631 if (pos > isize) 1632 isize = pos; 1633 xfs_vm_kill_delalloc_range(inode, isize, to); 1634 truncate_pagecache_range(inode, isize, to); 1635 } 1636 } 1637 return ret; 1638 } 1639 1640 STATIC sector_t 1641 xfs_vm_bmap( 1642 struct address_space *mapping, 1643 sector_t block) 1644 { 1645 struct inode *inode = (struct inode *)mapping->host; 1646 struct xfs_inode *ip = XFS_I(inode); 1647 1648 trace_xfs_vm_bmap(XFS_I(inode)); 1649 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1650 filemap_write_and_wait(mapping); 1651 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1652 return generic_block_bmap(mapping, block, xfs_get_blocks); 1653 } 1654 1655 STATIC int 1656 xfs_vm_readpage( 1657 struct file *unused, 1658 struct page *page) 1659 { 1660 trace_xfs_vm_readpage(page->mapping->host, 1); 1661 return mpage_readpage(page, xfs_get_blocks); 1662 } 1663 1664 STATIC int 1665 xfs_vm_readpages( 1666 struct file *unused, 1667 struct address_space *mapping, 1668 struct list_head *pages, 1669 unsigned nr_pages) 1670 { 1671 trace_xfs_vm_readpages(mapping->host, nr_pages); 1672 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1673 } 1674 1675 /* 1676 * This is basically a copy of __set_page_dirty_buffers() with one 1677 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1678 * dirty, we'll never be able to clean them because we don't write buffers 1679 * beyond EOF, and that means we can't invalidate pages that span EOF 1680 * that have been marked dirty. Further, the dirty state can leak into 1681 * the file interior if the file is extended, resulting in all sorts of 1682 * bad things happening as the state does not match the underlying data. 1683 * 1684 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1685 * this only exist because of bufferheads and how the generic code manages them. 1686 */ 1687 STATIC int 1688 xfs_vm_set_page_dirty( 1689 struct page *page) 1690 { 1691 struct address_space *mapping = page->mapping; 1692 struct inode *inode = mapping->host; 1693 loff_t end_offset; 1694 loff_t offset; 1695 int newly_dirty; 1696 1697 if (unlikely(!mapping)) 1698 return !TestSetPageDirty(page); 1699 1700 end_offset = i_size_read(inode); 1701 offset = page_offset(page); 1702 1703 spin_lock(&mapping->private_lock); 1704 if (page_has_buffers(page)) { 1705 struct buffer_head *head = page_buffers(page); 1706 struct buffer_head *bh = head; 1707 1708 do { 1709 if (offset < end_offset) 1710 set_buffer_dirty(bh); 1711 bh = bh->b_this_page; 1712 offset += 1 << inode->i_blkbits; 1713 } while (bh != head); 1714 } 1715 /* 1716 * Lock out page->mem_cgroup migration to keep PageDirty 1717 * synchronized with per-memcg dirty page counters. 1718 */ 1719 lock_page_memcg(page); 1720 newly_dirty = !TestSetPageDirty(page); 1721 spin_unlock(&mapping->private_lock); 1722 1723 if (newly_dirty) { 1724 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1725 unsigned long flags; 1726 1727 spin_lock_irqsave(&mapping->tree_lock, flags); 1728 if (page->mapping) { /* Race with truncate? */ 1729 WARN_ON_ONCE(!PageUptodate(page)); 1730 account_page_dirtied(page, mapping); 1731 radix_tree_tag_set(&mapping->page_tree, 1732 page_index(page), PAGECACHE_TAG_DIRTY); 1733 } 1734 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1735 } 1736 unlock_page_memcg(page); 1737 if (newly_dirty) 1738 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1739 return newly_dirty; 1740 } 1741 1742 const struct address_space_operations xfs_address_space_operations = { 1743 .readpage = xfs_vm_readpage, 1744 .readpages = xfs_vm_readpages, 1745 .writepage = xfs_vm_writepage, 1746 .writepages = xfs_vm_writepages, 1747 .set_page_dirty = xfs_vm_set_page_dirty, 1748 .releasepage = xfs_vm_releasepage, 1749 .invalidatepage = xfs_vm_invalidatepage, 1750 .write_begin = xfs_vm_write_begin, 1751 .write_end = xfs_vm_write_end, 1752 .bmap = xfs_vm_bmap, 1753 .direct_IO = xfs_vm_direct_IO, 1754 .migratepage = buffer_migrate_page, 1755 .is_partially_uptodate = block_is_partially_uptodate, 1756 .error_remove_page = generic_error_remove_page, 1757 }; 1758