1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_shared.h" 20 #include "xfs_format.h" 21 #include "xfs_log_format.h" 22 #include "xfs_trans_resv.h" 23 #include "xfs_mount.h" 24 #include "xfs_inode.h" 25 #include "xfs_trans.h" 26 #include "xfs_inode_item.h" 27 #include "xfs_alloc.h" 28 #include "xfs_error.h" 29 #include "xfs_iomap.h" 30 #include "xfs_trace.h" 31 #include "xfs_bmap.h" 32 #include "xfs_bmap_util.h" 33 #include "xfs_bmap_btree.h" 34 #include <linux/gfp.h> 35 #include <linux/mpage.h> 36 #include <linux/pagevec.h> 37 #include <linux/writeback.h> 38 39 /* flags for direct write completions */ 40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0) 41 #define XFS_DIO_FLAG_APPEND (1 << 1) 42 43 /* 44 * structure owned by writepages passed to individual writepage calls 45 */ 46 struct xfs_writepage_ctx { 47 struct xfs_bmbt_irec imap; 48 bool imap_valid; 49 unsigned int io_type; 50 struct xfs_ioend *ioend; 51 sector_t last_block; 52 }; 53 54 void 55 xfs_count_page_state( 56 struct page *page, 57 int *delalloc, 58 int *unwritten) 59 { 60 struct buffer_head *bh, *head; 61 62 *delalloc = *unwritten = 0; 63 64 bh = head = page_buffers(page); 65 do { 66 if (buffer_unwritten(bh)) 67 (*unwritten) = 1; 68 else if (buffer_delay(bh)) 69 (*delalloc) = 1; 70 } while ((bh = bh->b_this_page) != head); 71 } 72 73 struct block_device * 74 xfs_find_bdev_for_inode( 75 struct inode *inode) 76 { 77 struct xfs_inode *ip = XFS_I(inode); 78 struct xfs_mount *mp = ip->i_mount; 79 80 if (XFS_IS_REALTIME_INODE(ip)) 81 return mp->m_rtdev_targp->bt_bdev; 82 else 83 return mp->m_ddev_targp->bt_bdev; 84 } 85 86 /* 87 * We're now finished for good with this page. Update the page state via the 88 * associated buffer_heads, paying attention to the start and end offsets that 89 * we need to process on the page. 90 * 91 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last 92 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or 93 * the page at all, as we may be racing with memory reclaim and it can free both 94 * the bufferhead chain and the page as it will see the page as clean and 95 * unused. 96 */ 97 static void 98 xfs_finish_page_writeback( 99 struct inode *inode, 100 struct bio_vec *bvec, 101 int error) 102 { 103 unsigned int end = bvec->bv_offset + bvec->bv_len - 1; 104 struct buffer_head *head, *bh, *next; 105 unsigned int off = 0; 106 unsigned int bsize; 107 108 ASSERT(bvec->bv_offset < PAGE_SIZE); 109 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0); 110 ASSERT(end < PAGE_SIZE); 111 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0); 112 113 bh = head = page_buffers(bvec->bv_page); 114 115 bsize = bh->b_size; 116 do { 117 next = bh->b_this_page; 118 if (off < bvec->bv_offset) 119 goto next_bh; 120 if (off > end) 121 break; 122 bh->b_end_io(bh, !error); 123 next_bh: 124 off += bsize; 125 } while ((bh = next) != head); 126 } 127 128 /* 129 * We're now finished for good with this ioend structure. Update the page 130 * state, release holds on bios, and finally free up memory. Do not use the 131 * ioend after this. 132 */ 133 STATIC void 134 xfs_destroy_ioend( 135 struct xfs_ioend *ioend, 136 int error) 137 { 138 struct inode *inode = ioend->io_inode; 139 struct bio *last = ioend->io_bio; 140 struct bio *bio, *next; 141 142 for (bio = &ioend->io_inline_bio; bio; bio = next) { 143 struct bio_vec *bvec; 144 int i; 145 146 /* 147 * For the last bio, bi_private points to the ioend, so we 148 * need to explicitly end the iteration here. 149 */ 150 if (bio == last) 151 next = NULL; 152 else 153 next = bio->bi_private; 154 155 /* walk each page on bio, ending page IO on them */ 156 bio_for_each_segment_all(bvec, bio, i) 157 xfs_finish_page_writeback(inode, bvec, error); 158 159 bio_put(bio); 160 } 161 } 162 163 /* 164 * Fast and loose check if this write could update the on-disk inode size. 165 */ 166 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 167 { 168 return ioend->io_offset + ioend->io_size > 169 XFS_I(ioend->io_inode)->i_d.di_size; 170 } 171 172 STATIC int 173 xfs_setfilesize_trans_alloc( 174 struct xfs_ioend *ioend) 175 { 176 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 177 struct xfs_trans *tp; 178 int error; 179 180 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 181 if (error) 182 return error; 183 184 ioend->io_append_trans = tp; 185 186 /* 187 * We may pass freeze protection with a transaction. So tell lockdep 188 * we released it. 189 */ 190 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 191 /* 192 * We hand off the transaction to the completion thread now, so 193 * clear the flag here. 194 */ 195 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 196 return 0; 197 } 198 199 /* 200 * Update on-disk file size now that data has been written to disk. 201 */ 202 STATIC int 203 xfs_setfilesize( 204 struct xfs_inode *ip, 205 struct xfs_trans *tp, 206 xfs_off_t offset, 207 size_t size) 208 { 209 xfs_fsize_t isize; 210 211 xfs_ilock(ip, XFS_ILOCK_EXCL); 212 isize = xfs_new_eof(ip, offset + size); 213 if (!isize) { 214 xfs_iunlock(ip, XFS_ILOCK_EXCL); 215 xfs_trans_cancel(tp); 216 return 0; 217 } 218 219 trace_xfs_setfilesize(ip, offset, size); 220 221 ip->i_d.di_size = isize; 222 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 223 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 224 225 return xfs_trans_commit(tp); 226 } 227 228 STATIC int 229 xfs_setfilesize_ioend( 230 struct xfs_ioend *ioend, 231 int error) 232 { 233 struct xfs_inode *ip = XFS_I(ioend->io_inode); 234 struct xfs_trans *tp = ioend->io_append_trans; 235 236 /* 237 * The transaction may have been allocated in the I/O submission thread, 238 * thus we need to mark ourselves as being in a transaction manually. 239 * Similarly for freeze protection. 240 */ 241 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 242 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 243 244 /* we abort the update if there was an IO error */ 245 if (error) { 246 xfs_trans_cancel(tp); 247 return error; 248 } 249 250 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 251 } 252 253 /* 254 * IO write completion. 255 */ 256 STATIC void 257 xfs_end_io( 258 struct work_struct *work) 259 { 260 struct xfs_ioend *ioend = 261 container_of(work, struct xfs_ioend, io_work); 262 struct xfs_inode *ip = XFS_I(ioend->io_inode); 263 int error = ioend->io_bio->bi_error; 264 265 /* 266 * Set an error if the mount has shut down and proceed with end I/O 267 * processing so it can perform whatever cleanups are necessary. 268 */ 269 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 270 error = -EIO; 271 272 /* 273 * For unwritten extents we need to issue transactions to convert a 274 * range to normal written extens after the data I/O has finished. 275 * Detecting and handling completion IO errors is done individually 276 * for each case as different cleanup operations need to be performed 277 * on error. 278 */ 279 if (ioend->io_type == XFS_IO_UNWRITTEN) { 280 if (error) 281 goto done; 282 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 283 ioend->io_size); 284 } else if (ioend->io_append_trans) { 285 error = xfs_setfilesize_ioend(ioend, error); 286 } else { 287 ASSERT(!xfs_ioend_is_append(ioend)); 288 } 289 290 done: 291 xfs_destroy_ioend(ioend, error); 292 } 293 294 STATIC void 295 xfs_end_bio( 296 struct bio *bio) 297 { 298 struct xfs_ioend *ioend = bio->bi_private; 299 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 300 301 if (ioend->io_type == XFS_IO_UNWRITTEN) 302 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 303 else if (ioend->io_append_trans) 304 queue_work(mp->m_data_workqueue, &ioend->io_work); 305 else 306 xfs_destroy_ioend(ioend, bio->bi_error); 307 } 308 309 STATIC int 310 xfs_map_blocks( 311 struct inode *inode, 312 loff_t offset, 313 struct xfs_bmbt_irec *imap, 314 int type) 315 { 316 struct xfs_inode *ip = XFS_I(inode); 317 struct xfs_mount *mp = ip->i_mount; 318 ssize_t count = 1 << inode->i_blkbits; 319 xfs_fileoff_t offset_fsb, end_fsb; 320 int error = 0; 321 int bmapi_flags = XFS_BMAPI_ENTIRE; 322 int nimaps = 1; 323 324 if (XFS_FORCED_SHUTDOWN(mp)) 325 return -EIO; 326 327 if (type == XFS_IO_UNWRITTEN) 328 bmapi_flags |= XFS_BMAPI_IGSTATE; 329 330 xfs_ilock(ip, XFS_ILOCK_SHARED); 331 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 332 (ip->i_df.if_flags & XFS_IFEXTENTS)); 333 ASSERT(offset <= mp->m_super->s_maxbytes); 334 335 if (offset + count > mp->m_super->s_maxbytes) 336 count = mp->m_super->s_maxbytes - offset; 337 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 338 offset_fsb = XFS_B_TO_FSBT(mp, offset); 339 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 340 imap, &nimaps, bmapi_flags); 341 xfs_iunlock(ip, XFS_ILOCK_SHARED); 342 343 if (error) 344 return error; 345 346 if (type == XFS_IO_DELALLOC && 347 (!nimaps || isnullstartblock(imap->br_startblock))) { 348 error = xfs_iomap_write_allocate(ip, offset, imap); 349 if (!error) 350 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 351 return error; 352 } 353 354 #ifdef DEBUG 355 if (type == XFS_IO_UNWRITTEN) { 356 ASSERT(nimaps); 357 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 358 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 359 } 360 #endif 361 if (nimaps) 362 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 363 return 0; 364 } 365 366 STATIC bool 367 xfs_imap_valid( 368 struct inode *inode, 369 struct xfs_bmbt_irec *imap, 370 xfs_off_t offset) 371 { 372 offset >>= inode->i_blkbits; 373 374 return offset >= imap->br_startoff && 375 offset < imap->br_startoff + imap->br_blockcount; 376 } 377 378 STATIC void 379 xfs_start_buffer_writeback( 380 struct buffer_head *bh) 381 { 382 ASSERT(buffer_mapped(bh)); 383 ASSERT(buffer_locked(bh)); 384 ASSERT(!buffer_delay(bh)); 385 ASSERT(!buffer_unwritten(bh)); 386 387 mark_buffer_async_write(bh); 388 set_buffer_uptodate(bh); 389 clear_buffer_dirty(bh); 390 } 391 392 STATIC void 393 xfs_start_page_writeback( 394 struct page *page, 395 int clear_dirty) 396 { 397 ASSERT(PageLocked(page)); 398 ASSERT(!PageWriteback(page)); 399 400 /* 401 * if the page was not fully cleaned, we need to ensure that the higher 402 * layers come back to it correctly. That means we need to keep the page 403 * dirty, and for WB_SYNC_ALL writeback we need to ensure the 404 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to 405 * write this page in this writeback sweep will be made. 406 */ 407 if (clear_dirty) { 408 clear_page_dirty_for_io(page); 409 set_page_writeback(page); 410 } else 411 set_page_writeback_keepwrite(page); 412 413 unlock_page(page); 414 } 415 416 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh) 417 { 418 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 419 } 420 421 /* 422 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 423 * it, and we submit that bio. The ioend may be used for multiple bio 424 * submissions, so we only want to allocate an append transaction for the ioend 425 * once. In the case of multiple bio submission, each bio will take an IO 426 * reference to the ioend to ensure that the ioend completion is only done once 427 * all bios have been submitted and the ioend is really done. 428 * 429 * If @fail is non-zero, it means that we have a situation where some part of 430 * the submission process has failed after we have marked paged for writeback 431 * and unlocked them. In this situation, we need to fail the bio and ioend 432 * rather than submit it to IO. This typically only happens on a filesystem 433 * shutdown. 434 */ 435 STATIC int 436 xfs_submit_ioend( 437 struct writeback_control *wbc, 438 struct xfs_ioend *ioend, 439 int status) 440 { 441 /* Reserve log space if we might write beyond the on-disk inode size. */ 442 if (!status && 443 ioend->io_type != XFS_IO_UNWRITTEN && 444 xfs_ioend_is_append(ioend) && 445 !ioend->io_append_trans) 446 status = xfs_setfilesize_trans_alloc(ioend); 447 448 ioend->io_bio->bi_private = ioend; 449 ioend->io_bio->bi_end_io = xfs_end_bio; 450 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE, 451 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0); 452 /* 453 * If we are failing the IO now, just mark the ioend with an 454 * error and finish it. This will run IO completion immediately 455 * as there is only one reference to the ioend at this point in 456 * time. 457 */ 458 if (status) { 459 ioend->io_bio->bi_error = status; 460 bio_endio(ioend->io_bio); 461 return status; 462 } 463 464 submit_bio(ioend->io_bio); 465 return 0; 466 } 467 468 static void 469 xfs_init_bio_from_bh( 470 struct bio *bio, 471 struct buffer_head *bh) 472 { 473 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 474 bio->bi_bdev = bh->b_bdev; 475 } 476 477 static struct xfs_ioend * 478 xfs_alloc_ioend( 479 struct inode *inode, 480 unsigned int type, 481 xfs_off_t offset, 482 struct buffer_head *bh) 483 { 484 struct xfs_ioend *ioend; 485 struct bio *bio; 486 487 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset); 488 xfs_init_bio_from_bh(bio, bh); 489 490 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 491 INIT_LIST_HEAD(&ioend->io_list); 492 ioend->io_type = type; 493 ioend->io_inode = inode; 494 ioend->io_size = 0; 495 ioend->io_offset = offset; 496 INIT_WORK(&ioend->io_work, xfs_end_io); 497 ioend->io_append_trans = NULL; 498 ioend->io_bio = bio; 499 return ioend; 500 } 501 502 /* 503 * Allocate a new bio, and chain the old bio to the new one. 504 * 505 * Note that we have to do perform the chaining in this unintuitive order 506 * so that the bi_private linkage is set up in the right direction for the 507 * traversal in xfs_destroy_ioend(). 508 */ 509 static void 510 xfs_chain_bio( 511 struct xfs_ioend *ioend, 512 struct writeback_control *wbc, 513 struct buffer_head *bh) 514 { 515 struct bio *new; 516 517 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 518 xfs_init_bio_from_bh(new, bh); 519 520 bio_chain(ioend->io_bio, new); 521 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 522 bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE, 523 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0); 524 submit_bio(ioend->io_bio); 525 ioend->io_bio = new; 526 } 527 528 /* 529 * Test to see if we've been building up a completion structure for 530 * earlier buffers -- if so, we try to append to this ioend if we 531 * can, otherwise we finish off any current ioend and start another. 532 * Return the ioend we finished off so that the caller can submit it 533 * once it has finished processing the dirty page. 534 */ 535 STATIC void 536 xfs_add_to_ioend( 537 struct inode *inode, 538 struct buffer_head *bh, 539 xfs_off_t offset, 540 struct xfs_writepage_ctx *wpc, 541 struct writeback_control *wbc, 542 struct list_head *iolist) 543 { 544 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type || 545 bh->b_blocknr != wpc->last_block + 1 || 546 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 547 if (wpc->ioend) 548 list_add(&wpc->ioend->io_list, iolist); 549 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh); 550 } 551 552 /* 553 * If the buffer doesn't fit into the bio we need to allocate a new 554 * one. This shouldn't happen more than once for a given buffer. 555 */ 556 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size) 557 xfs_chain_bio(wpc->ioend, wbc, bh); 558 559 wpc->ioend->io_size += bh->b_size; 560 wpc->last_block = bh->b_blocknr; 561 xfs_start_buffer_writeback(bh); 562 } 563 564 STATIC void 565 xfs_map_buffer( 566 struct inode *inode, 567 struct buffer_head *bh, 568 struct xfs_bmbt_irec *imap, 569 xfs_off_t offset) 570 { 571 sector_t bn; 572 struct xfs_mount *m = XFS_I(inode)->i_mount; 573 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 574 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 575 576 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 577 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 578 579 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 580 ((offset - iomap_offset) >> inode->i_blkbits); 581 582 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 583 584 bh->b_blocknr = bn; 585 set_buffer_mapped(bh); 586 } 587 588 STATIC void 589 xfs_map_at_offset( 590 struct inode *inode, 591 struct buffer_head *bh, 592 struct xfs_bmbt_irec *imap, 593 xfs_off_t offset) 594 { 595 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 596 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 597 598 xfs_map_buffer(inode, bh, imap, offset); 599 set_buffer_mapped(bh); 600 clear_buffer_delay(bh); 601 clear_buffer_unwritten(bh); 602 } 603 604 /* 605 * Test if a given page contains at least one buffer of a given @type. 606 * If @check_all_buffers is true, then we walk all the buffers in the page to 607 * try to find one of the type passed in. If it is not set, then the caller only 608 * needs to check the first buffer on the page for a match. 609 */ 610 STATIC bool 611 xfs_check_page_type( 612 struct page *page, 613 unsigned int type, 614 bool check_all_buffers) 615 { 616 struct buffer_head *bh; 617 struct buffer_head *head; 618 619 if (PageWriteback(page)) 620 return false; 621 if (!page->mapping) 622 return false; 623 if (!page_has_buffers(page)) 624 return false; 625 626 bh = head = page_buffers(page); 627 do { 628 if (buffer_unwritten(bh)) { 629 if (type == XFS_IO_UNWRITTEN) 630 return true; 631 } else if (buffer_delay(bh)) { 632 if (type == XFS_IO_DELALLOC) 633 return true; 634 } else if (buffer_dirty(bh) && buffer_mapped(bh)) { 635 if (type == XFS_IO_OVERWRITE) 636 return true; 637 } 638 639 /* If we are only checking the first buffer, we are done now. */ 640 if (!check_all_buffers) 641 break; 642 } while ((bh = bh->b_this_page) != head); 643 644 return false; 645 } 646 647 STATIC void 648 xfs_vm_invalidatepage( 649 struct page *page, 650 unsigned int offset, 651 unsigned int length) 652 { 653 trace_xfs_invalidatepage(page->mapping->host, page, offset, 654 length); 655 block_invalidatepage(page, offset, length); 656 } 657 658 /* 659 * If the page has delalloc buffers on it, we need to punch them out before we 660 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 661 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 662 * is done on that same region - the delalloc extent is returned when none is 663 * supposed to be there. 664 * 665 * We prevent this by truncating away the delalloc regions on the page before 666 * invalidating it. Because they are delalloc, we can do this without needing a 667 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 668 * truncation without a transaction as there is no space left for block 669 * reservation (typically why we see a ENOSPC in writeback). 670 * 671 * This is not a performance critical path, so for now just do the punching a 672 * buffer head at a time. 673 */ 674 STATIC void 675 xfs_aops_discard_page( 676 struct page *page) 677 { 678 struct inode *inode = page->mapping->host; 679 struct xfs_inode *ip = XFS_I(inode); 680 struct buffer_head *bh, *head; 681 loff_t offset = page_offset(page); 682 683 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true)) 684 goto out_invalidate; 685 686 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 687 goto out_invalidate; 688 689 xfs_alert(ip->i_mount, 690 "page discard on page %p, inode 0x%llx, offset %llu.", 691 page, ip->i_ino, offset); 692 693 xfs_ilock(ip, XFS_ILOCK_EXCL); 694 bh = head = page_buffers(page); 695 do { 696 int error; 697 xfs_fileoff_t start_fsb; 698 699 if (!buffer_delay(bh)) 700 goto next_buffer; 701 702 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 703 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 704 if (error) { 705 /* something screwed, just bail */ 706 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 707 xfs_alert(ip->i_mount, 708 "page discard unable to remove delalloc mapping."); 709 } 710 break; 711 } 712 next_buffer: 713 offset += 1 << inode->i_blkbits; 714 715 } while ((bh = bh->b_this_page) != head); 716 717 xfs_iunlock(ip, XFS_ILOCK_EXCL); 718 out_invalidate: 719 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 720 return; 721 } 722 723 /* 724 * We implement an immediate ioend submission policy here to avoid needing to 725 * chain multiple ioends and hence nest mempool allocations which can violate 726 * forward progress guarantees we need to provide. The current ioend we are 727 * adding buffers to is cached on the writepage context, and if the new buffer 728 * does not append to the cached ioend it will create a new ioend and cache that 729 * instead. 730 * 731 * If a new ioend is created and cached, the old ioend is returned and queued 732 * locally for submission once the entire page is processed or an error has been 733 * detected. While ioends are submitted immediately after they are completed, 734 * batching optimisations are provided by higher level block plugging. 735 * 736 * At the end of a writeback pass, there will be a cached ioend remaining on the 737 * writepage context that the caller will need to submit. 738 */ 739 static int 740 xfs_writepage_map( 741 struct xfs_writepage_ctx *wpc, 742 struct writeback_control *wbc, 743 struct inode *inode, 744 struct page *page, 745 loff_t offset, 746 __uint64_t end_offset) 747 { 748 LIST_HEAD(submit_list); 749 struct xfs_ioend *ioend, *next; 750 struct buffer_head *bh, *head; 751 ssize_t len = 1 << inode->i_blkbits; 752 int error = 0; 753 int count = 0; 754 int uptodate = 1; 755 756 bh = head = page_buffers(page); 757 offset = page_offset(page); 758 do { 759 if (offset >= end_offset) 760 break; 761 if (!buffer_uptodate(bh)) 762 uptodate = 0; 763 764 /* 765 * set_page_dirty dirties all buffers in a page, independent 766 * of their state. The dirty state however is entirely 767 * meaningless for holes (!mapped && uptodate), so skip 768 * buffers covering holes here. 769 */ 770 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 771 wpc->imap_valid = false; 772 continue; 773 } 774 775 if (buffer_unwritten(bh)) { 776 if (wpc->io_type != XFS_IO_UNWRITTEN) { 777 wpc->io_type = XFS_IO_UNWRITTEN; 778 wpc->imap_valid = false; 779 } 780 } else if (buffer_delay(bh)) { 781 if (wpc->io_type != XFS_IO_DELALLOC) { 782 wpc->io_type = XFS_IO_DELALLOC; 783 wpc->imap_valid = false; 784 } 785 } else if (buffer_uptodate(bh)) { 786 if (wpc->io_type != XFS_IO_OVERWRITE) { 787 wpc->io_type = XFS_IO_OVERWRITE; 788 wpc->imap_valid = false; 789 } 790 } else { 791 if (PageUptodate(page)) 792 ASSERT(buffer_mapped(bh)); 793 /* 794 * This buffer is not uptodate and will not be 795 * written to disk. Ensure that we will put any 796 * subsequent writeable buffers into a new 797 * ioend. 798 */ 799 wpc->imap_valid = false; 800 continue; 801 } 802 803 if (wpc->imap_valid) 804 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 805 offset); 806 if (!wpc->imap_valid) { 807 error = xfs_map_blocks(inode, offset, &wpc->imap, 808 wpc->io_type); 809 if (error) 810 goto out; 811 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, 812 offset); 813 } 814 if (wpc->imap_valid) { 815 lock_buffer(bh); 816 if (wpc->io_type != XFS_IO_OVERWRITE) 817 xfs_map_at_offset(inode, bh, &wpc->imap, offset); 818 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list); 819 count++; 820 } 821 822 } while (offset += len, ((bh = bh->b_this_page) != head)); 823 824 if (uptodate && bh == head) 825 SetPageUptodate(page); 826 827 ASSERT(wpc->ioend || list_empty(&submit_list)); 828 829 out: 830 /* 831 * On error, we have to fail the ioend here because we have locked 832 * buffers in the ioend. If we don't do this, we'll deadlock 833 * invalidating the page as that tries to lock the buffers on the page. 834 * Also, because we may have set pages under writeback, we have to make 835 * sure we run IO completion to mark the error state of the IO 836 * appropriately, so we can't cancel the ioend directly here. That means 837 * we have to mark this page as under writeback if we included any 838 * buffers from it in the ioend chain so that completion treats it 839 * correctly. 840 * 841 * If we didn't include the page in the ioend, the on error we can 842 * simply discard and unlock it as there are no other users of the page 843 * or it's buffers right now. The caller will still need to trigger 844 * submission of outstanding ioends on the writepage context so they are 845 * treated correctly on error. 846 */ 847 if (count) { 848 xfs_start_page_writeback(page, !error); 849 850 /* 851 * Preserve the original error if there was one, otherwise catch 852 * submission errors here and propagate into subsequent ioend 853 * submissions. 854 */ 855 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 856 int error2; 857 858 list_del_init(&ioend->io_list); 859 error2 = xfs_submit_ioend(wbc, ioend, error); 860 if (error2 && !error) 861 error = error2; 862 } 863 } else if (error) { 864 xfs_aops_discard_page(page); 865 ClearPageUptodate(page); 866 unlock_page(page); 867 } else { 868 /* 869 * We can end up here with no error and nothing to write if we 870 * race with a partial page truncate on a sub-page block sized 871 * filesystem. In that case we need to mark the page clean. 872 */ 873 xfs_start_page_writeback(page, 1); 874 end_page_writeback(page); 875 } 876 877 mapping_set_error(page->mapping, error); 878 return error; 879 } 880 881 /* 882 * Write out a dirty page. 883 * 884 * For delalloc space on the page we need to allocate space and flush it. 885 * For unwritten space on the page we need to start the conversion to 886 * regular allocated space. 887 * For any other dirty buffer heads on the page we should flush them. 888 */ 889 STATIC int 890 xfs_do_writepage( 891 struct page *page, 892 struct writeback_control *wbc, 893 void *data) 894 { 895 struct xfs_writepage_ctx *wpc = data; 896 struct inode *inode = page->mapping->host; 897 loff_t offset; 898 __uint64_t end_offset; 899 pgoff_t end_index; 900 901 trace_xfs_writepage(inode, page, 0, 0); 902 903 ASSERT(page_has_buffers(page)); 904 905 /* 906 * Refuse to write the page out if we are called from reclaim context. 907 * 908 * This avoids stack overflows when called from deeply used stacks in 909 * random callers for direct reclaim or memcg reclaim. We explicitly 910 * allow reclaim from kswapd as the stack usage there is relatively low. 911 * 912 * This should never happen except in the case of a VM regression so 913 * warn about it. 914 */ 915 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 916 PF_MEMALLOC)) 917 goto redirty; 918 919 /* 920 * Given that we do not allow direct reclaim to call us, we should 921 * never be called while in a filesystem transaction. 922 */ 923 if (WARN_ON_ONCE(current->flags & PF_FSTRANS)) 924 goto redirty; 925 926 /* 927 * Is this page beyond the end of the file? 928 * 929 * The page index is less than the end_index, adjust the end_offset 930 * to the highest offset that this page should represent. 931 * ----------------------------------------------------- 932 * | file mapping | <EOF> | 933 * ----------------------------------------------------- 934 * | Page ... | Page N-2 | Page N-1 | Page N | | 935 * ^--------------------------------^----------|-------- 936 * | desired writeback range | see else | 937 * ---------------------------------^------------------| 938 */ 939 offset = i_size_read(inode); 940 end_index = offset >> PAGE_SHIFT; 941 if (page->index < end_index) 942 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 943 else { 944 /* 945 * Check whether the page to write out is beyond or straddles 946 * i_size or not. 947 * ------------------------------------------------------- 948 * | file mapping | <EOF> | 949 * ------------------------------------------------------- 950 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 951 * ^--------------------------------^-----------|--------- 952 * | | Straddles | 953 * ---------------------------------^-----------|--------| 954 */ 955 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 956 957 /* 958 * Skip the page if it is fully outside i_size, e.g. due to a 959 * truncate operation that is in progress. We must redirty the 960 * page so that reclaim stops reclaiming it. Otherwise 961 * xfs_vm_releasepage() is called on it and gets confused. 962 * 963 * Note that the end_index is unsigned long, it would overflow 964 * if the given offset is greater than 16TB on 32-bit system 965 * and if we do check the page is fully outside i_size or not 966 * via "if (page->index >= end_index + 1)" as "end_index + 1" 967 * will be evaluated to 0. Hence this page will be redirtied 968 * and be written out repeatedly which would result in an 969 * infinite loop, the user program that perform this operation 970 * will hang. Instead, we can verify this situation by checking 971 * if the page to write is totally beyond the i_size or if it's 972 * offset is just equal to the EOF. 973 */ 974 if (page->index > end_index || 975 (page->index == end_index && offset_into_page == 0)) 976 goto redirty; 977 978 /* 979 * The page straddles i_size. It must be zeroed out on each 980 * and every writepage invocation because it may be mmapped. 981 * "A file is mapped in multiples of the page size. For a file 982 * that is not a multiple of the page size, the remaining 983 * memory is zeroed when mapped, and writes to that region are 984 * not written out to the file." 985 */ 986 zero_user_segment(page, offset_into_page, PAGE_SIZE); 987 988 /* Adjust the end_offset to the end of file */ 989 end_offset = offset; 990 } 991 992 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset); 993 994 redirty: 995 redirty_page_for_writepage(wbc, page); 996 unlock_page(page); 997 return 0; 998 } 999 1000 STATIC int 1001 xfs_vm_writepage( 1002 struct page *page, 1003 struct writeback_control *wbc) 1004 { 1005 struct xfs_writepage_ctx wpc = { 1006 .io_type = XFS_IO_INVALID, 1007 }; 1008 int ret; 1009 1010 ret = xfs_do_writepage(page, wbc, &wpc); 1011 if (wpc.ioend) 1012 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1013 return ret; 1014 } 1015 1016 STATIC int 1017 xfs_vm_writepages( 1018 struct address_space *mapping, 1019 struct writeback_control *wbc) 1020 { 1021 struct xfs_writepage_ctx wpc = { 1022 .io_type = XFS_IO_INVALID, 1023 }; 1024 int ret; 1025 1026 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1027 if (dax_mapping(mapping)) 1028 return dax_writeback_mapping_range(mapping, 1029 xfs_find_bdev_for_inode(mapping->host), wbc); 1030 1031 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 1032 if (wpc.ioend) 1033 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 1034 return ret; 1035 } 1036 1037 /* 1038 * Called to move a page into cleanable state - and from there 1039 * to be released. The page should already be clean. We always 1040 * have buffer heads in this call. 1041 * 1042 * Returns 1 if the page is ok to release, 0 otherwise. 1043 */ 1044 STATIC int 1045 xfs_vm_releasepage( 1046 struct page *page, 1047 gfp_t gfp_mask) 1048 { 1049 int delalloc, unwritten; 1050 1051 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1052 1053 /* 1054 * mm accommodates an old ext3 case where clean pages might not have had 1055 * the dirty bit cleared. Thus, it can send actual dirty pages to 1056 * ->releasepage() via shrink_active_list(). Conversely, 1057 * block_invalidatepage() can send pages that are still marked dirty 1058 * but otherwise have invalidated buffers. 1059 * 1060 * We've historically freed buffers on the latter. Instead, quietly 1061 * filter out all dirty pages to avoid spurious buffer state warnings. 1062 * This can likely be removed once shrink_active_list() is fixed. 1063 */ 1064 if (PageDirty(page)) 1065 return 0; 1066 1067 xfs_count_page_state(page, &delalloc, &unwritten); 1068 1069 if (WARN_ON_ONCE(delalloc)) 1070 return 0; 1071 if (WARN_ON_ONCE(unwritten)) 1072 return 0; 1073 1074 return try_to_free_buffers(page); 1075 } 1076 1077 /* 1078 * When we map a DIO buffer, we may need to pass flags to 1079 * xfs_end_io_direct_write to tell it what kind of write IO we are doing. 1080 * 1081 * Note that for DIO, an IO to the highest supported file block offset (i.e. 1082 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64 1083 * bit variable. Hence if we see this overflow, we have to assume that the IO is 1084 * extending the file size. We won't know for sure until IO completion is run 1085 * and the actual max write offset is communicated to the IO completion 1086 * routine. 1087 */ 1088 static void 1089 xfs_map_direct( 1090 struct inode *inode, 1091 struct buffer_head *bh_result, 1092 struct xfs_bmbt_irec *imap, 1093 xfs_off_t offset) 1094 { 1095 uintptr_t *flags = (uintptr_t *)&bh_result->b_private; 1096 xfs_off_t size = bh_result->b_size; 1097 1098 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size, 1099 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap); 1100 1101 if (ISUNWRITTEN(imap)) { 1102 *flags |= XFS_DIO_FLAG_UNWRITTEN; 1103 set_buffer_defer_completion(bh_result); 1104 } else if (offset + size > i_size_read(inode) || offset + size < 0) { 1105 *flags |= XFS_DIO_FLAG_APPEND; 1106 set_buffer_defer_completion(bh_result); 1107 } 1108 } 1109 1110 /* 1111 * If this is O_DIRECT or the mpage code calling tell them how large the mapping 1112 * is, so that we can avoid repeated get_blocks calls. 1113 * 1114 * If the mapping spans EOF, then we have to break the mapping up as the mapping 1115 * for blocks beyond EOF must be marked new so that sub block regions can be 1116 * correctly zeroed. We can't do this for mappings within EOF unless the mapping 1117 * was just allocated or is unwritten, otherwise the callers would overwrite 1118 * existing data with zeros. Hence we have to split the mapping into a range up 1119 * to and including EOF, and a second mapping for beyond EOF. 1120 */ 1121 static void 1122 xfs_map_trim_size( 1123 struct inode *inode, 1124 sector_t iblock, 1125 struct buffer_head *bh_result, 1126 struct xfs_bmbt_irec *imap, 1127 xfs_off_t offset, 1128 ssize_t size) 1129 { 1130 xfs_off_t mapping_size; 1131 1132 mapping_size = imap->br_startoff + imap->br_blockcount - iblock; 1133 mapping_size <<= inode->i_blkbits; 1134 1135 ASSERT(mapping_size > 0); 1136 if (mapping_size > size) 1137 mapping_size = size; 1138 if (offset < i_size_read(inode) && 1139 offset + mapping_size >= i_size_read(inode)) { 1140 /* limit mapping to block that spans EOF */ 1141 mapping_size = roundup_64(i_size_read(inode) - offset, 1142 1 << inode->i_blkbits); 1143 } 1144 if (mapping_size > LONG_MAX) 1145 mapping_size = LONG_MAX; 1146 1147 bh_result->b_size = mapping_size; 1148 } 1149 1150 STATIC int 1151 __xfs_get_blocks( 1152 struct inode *inode, 1153 sector_t iblock, 1154 struct buffer_head *bh_result, 1155 int create, 1156 bool direct, 1157 bool dax_fault) 1158 { 1159 struct xfs_inode *ip = XFS_I(inode); 1160 struct xfs_mount *mp = ip->i_mount; 1161 xfs_fileoff_t offset_fsb, end_fsb; 1162 int error = 0; 1163 int lockmode = 0; 1164 struct xfs_bmbt_irec imap; 1165 int nimaps = 1; 1166 xfs_off_t offset; 1167 ssize_t size; 1168 int new = 0; 1169 1170 BUG_ON(create && !direct); 1171 1172 if (XFS_FORCED_SHUTDOWN(mp)) 1173 return -EIO; 1174 1175 offset = (xfs_off_t)iblock << inode->i_blkbits; 1176 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1177 size = bh_result->b_size; 1178 1179 if (!create && offset >= i_size_read(inode)) 1180 return 0; 1181 1182 /* 1183 * Direct I/O is usually done on preallocated files, so try getting 1184 * a block mapping without an exclusive lock first. 1185 */ 1186 lockmode = xfs_ilock_data_map_shared(ip); 1187 1188 ASSERT(offset <= mp->m_super->s_maxbytes); 1189 if (offset + size > mp->m_super->s_maxbytes) 1190 size = mp->m_super->s_maxbytes - offset; 1191 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1192 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1193 1194 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1195 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1196 if (error) 1197 goto out_unlock; 1198 1199 /* for DAX, we convert unwritten extents directly */ 1200 if (create && 1201 (!nimaps || 1202 (imap.br_startblock == HOLESTARTBLOCK || 1203 imap.br_startblock == DELAYSTARTBLOCK) || 1204 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) { 1205 /* 1206 * xfs_iomap_write_direct() expects the shared lock. It 1207 * is unlocked on return. 1208 */ 1209 if (lockmode == XFS_ILOCK_EXCL) 1210 xfs_ilock_demote(ip, lockmode); 1211 1212 error = xfs_iomap_write_direct(ip, offset, size, 1213 &imap, nimaps); 1214 if (error) 1215 return error; 1216 new = 1; 1217 1218 trace_xfs_get_blocks_alloc(ip, offset, size, 1219 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1220 : XFS_IO_DELALLOC, &imap); 1221 } else if (nimaps) { 1222 trace_xfs_get_blocks_found(ip, offset, size, 1223 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN 1224 : XFS_IO_OVERWRITE, &imap); 1225 xfs_iunlock(ip, lockmode); 1226 } else { 1227 trace_xfs_get_blocks_notfound(ip, offset, size); 1228 goto out_unlock; 1229 } 1230 1231 if (IS_DAX(inode) && create) { 1232 ASSERT(!ISUNWRITTEN(&imap)); 1233 /* zeroing is not needed at a higher layer */ 1234 new = 0; 1235 } 1236 1237 /* trim mapping down to size requested */ 1238 xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size); 1239 1240 /* 1241 * For unwritten extents do not report a disk address in the buffered 1242 * read case (treat as if we're reading into a hole). 1243 */ 1244 if (imap.br_startblock != HOLESTARTBLOCK && 1245 imap.br_startblock != DELAYSTARTBLOCK && 1246 (create || !ISUNWRITTEN(&imap))) { 1247 xfs_map_buffer(inode, bh_result, &imap, offset); 1248 if (ISUNWRITTEN(&imap)) 1249 set_buffer_unwritten(bh_result); 1250 /* direct IO needs special help */ 1251 if (create) { 1252 if (dax_fault) 1253 ASSERT(!ISUNWRITTEN(&imap)); 1254 else 1255 xfs_map_direct(inode, bh_result, &imap, offset); 1256 } 1257 } 1258 1259 /* 1260 * If this is a realtime file, data may be on a different device. 1261 * to that pointed to from the buffer_head b_bdev currently. 1262 */ 1263 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1264 1265 /* 1266 * If we previously allocated a block out beyond eof and we are now 1267 * coming back to use it then we will need to flag it as new even if it 1268 * has a disk address. 1269 * 1270 * With sub-block writes into unwritten extents we also need to mark 1271 * the buffer as new so that the unwritten parts of the buffer gets 1272 * correctly zeroed. 1273 */ 1274 if (create && 1275 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1276 (offset >= i_size_read(inode)) || 1277 (new || ISUNWRITTEN(&imap)))) 1278 set_buffer_new(bh_result); 1279 1280 BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK); 1281 1282 return 0; 1283 1284 out_unlock: 1285 xfs_iunlock(ip, lockmode); 1286 return error; 1287 } 1288 1289 int 1290 xfs_get_blocks( 1291 struct inode *inode, 1292 sector_t iblock, 1293 struct buffer_head *bh_result, 1294 int create) 1295 { 1296 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false); 1297 } 1298 1299 int 1300 xfs_get_blocks_direct( 1301 struct inode *inode, 1302 sector_t iblock, 1303 struct buffer_head *bh_result, 1304 int create) 1305 { 1306 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false); 1307 } 1308 1309 int 1310 xfs_get_blocks_dax_fault( 1311 struct inode *inode, 1312 sector_t iblock, 1313 struct buffer_head *bh_result, 1314 int create) 1315 { 1316 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true); 1317 } 1318 1319 /* 1320 * Complete a direct I/O write request. 1321 * 1322 * xfs_map_direct passes us some flags in the private data to tell us what to 1323 * do. If no flags are set, then the write IO is an overwrite wholly within 1324 * the existing allocated file size and so there is nothing for us to do. 1325 * 1326 * Note that in this case the completion can be called in interrupt context, 1327 * whereas if we have flags set we will always be called in task context 1328 * (i.e. from a workqueue). 1329 */ 1330 int 1331 xfs_end_io_direct_write( 1332 struct kiocb *iocb, 1333 loff_t offset, 1334 ssize_t size, 1335 void *private) 1336 { 1337 struct inode *inode = file_inode(iocb->ki_filp); 1338 struct xfs_inode *ip = XFS_I(inode); 1339 struct xfs_mount *mp = ip->i_mount; 1340 uintptr_t flags = (uintptr_t)private; 1341 int error = 0; 1342 1343 trace_xfs_end_io_direct_write(ip, offset, size); 1344 1345 if (XFS_FORCED_SHUTDOWN(mp)) 1346 return -EIO; 1347 1348 if (size <= 0) 1349 return size; 1350 1351 /* 1352 * The flags tell us whether we are doing unwritten extent conversions 1353 * or an append transaction that updates the on-disk file size. These 1354 * cases are the only cases where we should *potentially* be needing 1355 * to update the VFS inode size. 1356 */ 1357 if (flags == 0) { 1358 ASSERT(offset + size <= i_size_read(inode)); 1359 return 0; 1360 } 1361 1362 /* 1363 * We need to update the in-core inode size here so that we don't end up 1364 * with the on-disk inode size being outside the in-core inode size. We 1365 * have no other method of updating EOF for AIO, so always do it here 1366 * if necessary. 1367 * 1368 * We need to lock the test/set EOF update as we can be racing with 1369 * other IO completions here to update the EOF. Failing to serialise 1370 * here can result in EOF moving backwards and Bad Things Happen when 1371 * that occurs. 1372 */ 1373 spin_lock(&ip->i_flags_lock); 1374 if (offset + size > i_size_read(inode)) 1375 i_size_write(inode, offset + size); 1376 spin_unlock(&ip->i_flags_lock); 1377 1378 if (flags & XFS_DIO_FLAG_UNWRITTEN) { 1379 trace_xfs_end_io_direct_write_unwritten(ip, offset, size); 1380 1381 error = xfs_iomap_write_unwritten(ip, offset, size); 1382 } else if (flags & XFS_DIO_FLAG_APPEND) { 1383 struct xfs_trans *tp; 1384 1385 trace_xfs_end_io_direct_write_append(ip, offset, size); 1386 1387 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, 1388 &tp); 1389 if (!error) 1390 error = xfs_setfilesize(ip, tp, offset, size); 1391 } 1392 1393 return error; 1394 } 1395 1396 STATIC ssize_t 1397 xfs_vm_direct_IO( 1398 struct kiocb *iocb, 1399 struct iov_iter *iter) 1400 { 1401 /* 1402 * We just need the method present so that open/fcntl allow direct I/O. 1403 */ 1404 return -EINVAL; 1405 } 1406 1407 STATIC sector_t 1408 xfs_vm_bmap( 1409 struct address_space *mapping, 1410 sector_t block) 1411 { 1412 struct inode *inode = (struct inode *)mapping->host; 1413 struct xfs_inode *ip = XFS_I(inode); 1414 1415 trace_xfs_vm_bmap(XFS_I(inode)); 1416 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1417 filemap_write_and_wait(mapping); 1418 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1419 return generic_block_bmap(mapping, block, xfs_get_blocks); 1420 } 1421 1422 STATIC int 1423 xfs_vm_readpage( 1424 struct file *unused, 1425 struct page *page) 1426 { 1427 trace_xfs_vm_readpage(page->mapping->host, 1); 1428 return mpage_readpage(page, xfs_get_blocks); 1429 } 1430 1431 STATIC int 1432 xfs_vm_readpages( 1433 struct file *unused, 1434 struct address_space *mapping, 1435 struct list_head *pages, 1436 unsigned nr_pages) 1437 { 1438 trace_xfs_vm_readpages(mapping->host, nr_pages); 1439 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1440 } 1441 1442 /* 1443 * This is basically a copy of __set_page_dirty_buffers() with one 1444 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them 1445 * dirty, we'll never be able to clean them because we don't write buffers 1446 * beyond EOF, and that means we can't invalidate pages that span EOF 1447 * that have been marked dirty. Further, the dirty state can leak into 1448 * the file interior if the file is extended, resulting in all sorts of 1449 * bad things happening as the state does not match the underlying data. 1450 * 1451 * XXX: this really indicates that bufferheads in XFS need to die. Warts like 1452 * this only exist because of bufferheads and how the generic code manages them. 1453 */ 1454 STATIC int 1455 xfs_vm_set_page_dirty( 1456 struct page *page) 1457 { 1458 struct address_space *mapping = page->mapping; 1459 struct inode *inode = mapping->host; 1460 loff_t end_offset; 1461 loff_t offset; 1462 int newly_dirty; 1463 1464 if (unlikely(!mapping)) 1465 return !TestSetPageDirty(page); 1466 1467 end_offset = i_size_read(inode); 1468 offset = page_offset(page); 1469 1470 spin_lock(&mapping->private_lock); 1471 if (page_has_buffers(page)) { 1472 struct buffer_head *head = page_buffers(page); 1473 struct buffer_head *bh = head; 1474 1475 do { 1476 if (offset < end_offset) 1477 set_buffer_dirty(bh); 1478 bh = bh->b_this_page; 1479 offset += 1 << inode->i_blkbits; 1480 } while (bh != head); 1481 } 1482 /* 1483 * Lock out page->mem_cgroup migration to keep PageDirty 1484 * synchronized with per-memcg dirty page counters. 1485 */ 1486 lock_page_memcg(page); 1487 newly_dirty = !TestSetPageDirty(page); 1488 spin_unlock(&mapping->private_lock); 1489 1490 if (newly_dirty) { 1491 /* sigh - __set_page_dirty() is static, so copy it here, too */ 1492 unsigned long flags; 1493 1494 spin_lock_irqsave(&mapping->tree_lock, flags); 1495 if (page->mapping) { /* Race with truncate? */ 1496 WARN_ON_ONCE(!PageUptodate(page)); 1497 account_page_dirtied(page, mapping); 1498 radix_tree_tag_set(&mapping->page_tree, 1499 page_index(page), PAGECACHE_TAG_DIRTY); 1500 } 1501 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1502 } 1503 unlock_page_memcg(page); 1504 if (newly_dirty) 1505 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1506 return newly_dirty; 1507 } 1508 1509 const struct address_space_operations xfs_address_space_operations = { 1510 .readpage = xfs_vm_readpage, 1511 .readpages = xfs_vm_readpages, 1512 .writepage = xfs_vm_writepage, 1513 .writepages = xfs_vm_writepages, 1514 .set_page_dirty = xfs_vm_set_page_dirty, 1515 .releasepage = xfs_vm_releasepage, 1516 .invalidatepage = xfs_vm_invalidatepage, 1517 .bmap = xfs_vm_bmap, 1518 .direct_IO = xfs_vm_direct_IO, 1519 .migratepage = buffer_migrate_page, 1520 .is_partially_uptodate = block_is_partially_uptodate, 1521 .error_remove_page = generic_error_remove_page, 1522 }; 1523