xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	mempool_free(ioend, xfs_ioend_pool);
89 }
90 
91 /*
92  * Fast and loose check if this write could update the on-disk inode size.
93  */
94 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95 {
96 	return ioend->io_offset + ioend->io_size >
97 		XFS_I(ioend->io_inode)->i_d.di_size;
98 }
99 
100 STATIC int
101 xfs_setfilesize_trans_alloc(
102 	struct xfs_ioend	*ioend)
103 {
104 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
105 	struct xfs_trans	*tp;
106 	int			error;
107 
108 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109 
110 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111 	if (error) {
112 		xfs_trans_cancel(tp);
113 		return error;
114 	}
115 
116 	ioend->io_append_trans = tp;
117 
118 	/*
119 	 * We may pass freeze protection with a transaction.  So tell lockdep
120 	 * we released it.
121 	 */
122 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
123 	/*
124 	 * We hand off the transaction to the completion thread now, so
125 	 * clear the flag here.
126 	 */
127 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
128 	return 0;
129 }
130 
131 /*
132  * Update on-disk file size now that data has been written to disk.
133  */
134 STATIC int
135 xfs_setfilesize(
136 	struct xfs_inode	*ip,
137 	struct xfs_trans	*tp,
138 	xfs_off_t		offset,
139 	size_t			size)
140 {
141 	xfs_fsize_t		isize;
142 
143 	xfs_ilock(ip, XFS_ILOCK_EXCL);
144 	isize = xfs_new_eof(ip, offset + size);
145 	if (!isize) {
146 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
147 		xfs_trans_cancel(tp);
148 		return 0;
149 	}
150 
151 	trace_xfs_setfilesize(ip, offset, size);
152 
153 	ip->i_d.di_size = isize;
154 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
155 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
156 
157 	return xfs_trans_commit(tp);
158 }
159 
160 STATIC int
161 xfs_setfilesize_ioend(
162 	struct xfs_ioend	*ioend)
163 {
164 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
165 	struct xfs_trans	*tp = ioend->io_append_trans;
166 
167 	/*
168 	 * The transaction may have been allocated in the I/O submission thread,
169 	 * thus we need to mark ourselves as being in a transaction manually.
170 	 * Similarly for freeze protection.
171 	 */
172 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
173 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
174 
175 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
176 }
177 
178 /*
179  * Schedule IO completion handling on the final put of an ioend.
180  *
181  * If there is no work to do we might as well call it a day and free the
182  * ioend right now.
183  */
184 STATIC void
185 xfs_finish_ioend(
186 	struct xfs_ioend	*ioend)
187 {
188 	if (atomic_dec_and_test(&ioend->io_remaining)) {
189 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
190 
191 		if (ioend->io_type == XFS_IO_UNWRITTEN)
192 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
193 		else if (ioend->io_append_trans)
194 			queue_work(mp->m_data_workqueue, &ioend->io_work);
195 		else
196 			xfs_destroy_ioend(ioend);
197 	}
198 }
199 
200 /*
201  * IO write completion.
202  */
203 STATIC void
204 xfs_end_io(
205 	struct work_struct *work)
206 {
207 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
208 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
209 	int		error = 0;
210 
211 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
212 		ioend->io_error = -EIO;
213 		goto done;
214 	}
215 	if (ioend->io_error)
216 		goto done;
217 
218 	/*
219 	 * For unwritten extents we need to issue transactions to convert a
220 	 * range to normal written extens after the data I/O has finished.
221 	 */
222 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
223 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
224 						  ioend->io_size);
225 	} else if (ioend->io_append_trans) {
226 		error = xfs_setfilesize_ioend(ioend);
227 	} else {
228 		ASSERT(!xfs_ioend_is_append(ioend));
229 	}
230 
231 done:
232 	if (error)
233 		ioend->io_error = error;
234 	xfs_destroy_ioend(ioend);
235 }
236 
237 /*
238  * Allocate and initialise an IO completion structure.
239  * We need to track unwritten extent write completion here initially.
240  * We'll need to extend this for updating the ondisk inode size later
241  * (vs. incore size).
242  */
243 STATIC xfs_ioend_t *
244 xfs_alloc_ioend(
245 	struct inode		*inode,
246 	unsigned int		type)
247 {
248 	xfs_ioend_t		*ioend;
249 
250 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
251 
252 	/*
253 	 * Set the count to 1 initially, which will prevent an I/O
254 	 * completion callback from happening before we have started
255 	 * all the I/O from calling the completion routine too early.
256 	 */
257 	atomic_set(&ioend->io_remaining, 1);
258 	ioend->io_error = 0;
259 	ioend->io_list = NULL;
260 	ioend->io_type = type;
261 	ioend->io_inode = inode;
262 	ioend->io_buffer_head = NULL;
263 	ioend->io_buffer_tail = NULL;
264 	ioend->io_offset = 0;
265 	ioend->io_size = 0;
266 	ioend->io_append_trans = NULL;
267 
268 	INIT_WORK(&ioend->io_work, xfs_end_io);
269 	return ioend;
270 }
271 
272 STATIC int
273 xfs_map_blocks(
274 	struct inode		*inode,
275 	loff_t			offset,
276 	struct xfs_bmbt_irec	*imap,
277 	int			type,
278 	int			nonblocking)
279 {
280 	struct xfs_inode	*ip = XFS_I(inode);
281 	struct xfs_mount	*mp = ip->i_mount;
282 	ssize_t			count = 1 << inode->i_blkbits;
283 	xfs_fileoff_t		offset_fsb, end_fsb;
284 	int			error = 0;
285 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
286 	int			nimaps = 1;
287 
288 	if (XFS_FORCED_SHUTDOWN(mp))
289 		return -EIO;
290 
291 	if (type == XFS_IO_UNWRITTEN)
292 		bmapi_flags |= XFS_BMAPI_IGSTATE;
293 
294 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
295 		if (nonblocking)
296 			return -EAGAIN;
297 		xfs_ilock(ip, XFS_ILOCK_SHARED);
298 	}
299 
300 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
301 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
302 	ASSERT(offset <= mp->m_super->s_maxbytes);
303 
304 	if (offset + count > mp->m_super->s_maxbytes)
305 		count = mp->m_super->s_maxbytes - offset;
306 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
307 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
308 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
309 				imap, &nimaps, bmapi_flags);
310 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
311 
312 	if (error)
313 		return error;
314 
315 	if (type == XFS_IO_DELALLOC &&
316 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
317 		error = xfs_iomap_write_allocate(ip, offset, imap);
318 		if (!error)
319 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
320 		return error;
321 	}
322 
323 #ifdef DEBUG
324 	if (type == XFS_IO_UNWRITTEN) {
325 		ASSERT(nimaps);
326 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
327 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
328 	}
329 #endif
330 	if (nimaps)
331 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
332 	return 0;
333 }
334 
335 STATIC int
336 xfs_imap_valid(
337 	struct inode		*inode,
338 	struct xfs_bmbt_irec	*imap,
339 	xfs_off_t		offset)
340 {
341 	offset >>= inode->i_blkbits;
342 
343 	return offset >= imap->br_startoff &&
344 		offset < imap->br_startoff + imap->br_blockcount;
345 }
346 
347 /*
348  * BIO completion handler for buffered IO.
349  */
350 STATIC void
351 xfs_end_bio(
352 	struct bio		*bio)
353 {
354 	xfs_ioend_t		*ioend = bio->bi_private;
355 
356 	if (!ioend->io_error)
357 		ioend->io_error = bio->bi_error;
358 
359 	/* Toss bio and pass work off to an xfsdatad thread */
360 	bio->bi_private = NULL;
361 	bio->bi_end_io = NULL;
362 	bio_put(bio);
363 
364 	xfs_finish_ioend(ioend);
365 }
366 
367 STATIC void
368 xfs_submit_ioend_bio(
369 	struct writeback_control *wbc,
370 	xfs_ioend_t		*ioend,
371 	struct bio		*bio)
372 {
373 	atomic_inc(&ioend->io_remaining);
374 	bio->bi_private = ioend;
375 	bio->bi_end_io = xfs_end_bio;
376 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
377 }
378 
379 STATIC struct bio *
380 xfs_alloc_ioend_bio(
381 	struct buffer_head	*bh)
382 {
383 	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
384 
385 	ASSERT(bio->bi_private == NULL);
386 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
387 	bio->bi_bdev = bh->b_bdev;
388 	return bio;
389 }
390 
391 STATIC void
392 xfs_start_buffer_writeback(
393 	struct buffer_head	*bh)
394 {
395 	ASSERT(buffer_mapped(bh));
396 	ASSERT(buffer_locked(bh));
397 	ASSERT(!buffer_delay(bh));
398 	ASSERT(!buffer_unwritten(bh));
399 
400 	mark_buffer_async_write(bh);
401 	set_buffer_uptodate(bh);
402 	clear_buffer_dirty(bh);
403 }
404 
405 STATIC void
406 xfs_start_page_writeback(
407 	struct page		*page,
408 	int			clear_dirty,
409 	int			buffers)
410 {
411 	ASSERT(PageLocked(page));
412 	ASSERT(!PageWriteback(page));
413 
414 	/*
415 	 * if the page was not fully cleaned, we need to ensure that the higher
416 	 * layers come back to it correctly. That means we need to keep the page
417 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
418 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
419 	 * write this page in this writeback sweep will be made.
420 	 */
421 	if (clear_dirty) {
422 		clear_page_dirty_for_io(page);
423 		set_page_writeback(page);
424 	} else
425 		set_page_writeback_keepwrite(page);
426 
427 	unlock_page(page);
428 
429 	/* If no buffers on the page are to be written, finish it here */
430 	if (!buffers)
431 		end_page_writeback(page);
432 }
433 
434 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
435 {
436 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
437 }
438 
439 /*
440  * Submit all of the bios for all of the ioends we have saved up, covering the
441  * initial writepage page and also any probed pages.
442  *
443  * Because we may have multiple ioends spanning a page, we need to start
444  * writeback on all the buffers before we submit them for I/O. If we mark the
445  * buffers as we got, then we can end up with a page that only has buffers
446  * marked async write and I/O complete on can occur before we mark the other
447  * buffers async write.
448  *
449  * The end result of this is that we trip a bug in end_page_writeback() because
450  * we call it twice for the one page as the code in end_buffer_async_write()
451  * assumes that all buffers on the page are started at the same time.
452  *
453  * The fix is two passes across the ioend list - one to start writeback on the
454  * buffer_heads, and then submit them for I/O on the second pass.
455  *
456  * If @fail is non-zero, it means that we have a situation where some part of
457  * the submission process has failed after we have marked paged for writeback
458  * and unlocked them. In this situation, we need to fail the ioend chain rather
459  * than submit it to IO. This typically only happens on a filesystem shutdown.
460  */
461 STATIC void
462 xfs_submit_ioend(
463 	struct writeback_control *wbc,
464 	xfs_ioend_t		*ioend,
465 	int			fail)
466 {
467 	xfs_ioend_t		*head = ioend;
468 	xfs_ioend_t		*next;
469 	struct buffer_head	*bh;
470 	struct bio		*bio;
471 	sector_t		lastblock = 0;
472 
473 	/* Pass 1 - start writeback */
474 	do {
475 		next = ioend->io_list;
476 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
477 			xfs_start_buffer_writeback(bh);
478 	} while ((ioend = next) != NULL);
479 
480 	/* Pass 2 - submit I/O */
481 	ioend = head;
482 	do {
483 		next = ioend->io_list;
484 		bio = NULL;
485 
486 		/*
487 		 * If we are failing the IO now, just mark the ioend with an
488 		 * error and finish it. This will run IO completion immediately
489 		 * as there is only one reference to the ioend at this point in
490 		 * time.
491 		 */
492 		if (fail) {
493 			ioend->io_error = fail;
494 			xfs_finish_ioend(ioend);
495 			continue;
496 		}
497 
498 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
499 
500 			if (!bio) {
501  retry:
502 				bio = xfs_alloc_ioend_bio(bh);
503 			} else if (bh->b_blocknr != lastblock + 1) {
504 				xfs_submit_ioend_bio(wbc, ioend, bio);
505 				goto retry;
506 			}
507 
508 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
509 				xfs_submit_ioend_bio(wbc, ioend, bio);
510 				goto retry;
511 			}
512 
513 			lastblock = bh->b_blocknr;
514 		}
515 		if (bio)
516 			xfs_submit_ioend_bio(wbc, ioend, bio);
517 		xfs_finish_ioend(ioend);
518 	} while ((ioend = next) != NULL);
519 }
520 
521 /*
522  * Cancel submission of all buffer_heads so far in this endio.
523  * Toss the endio too.  Only ever called for the initial page
524  * in a writepage request, so only ever one page.
525  */
526 STATIC void
527 xfs_cancel_ioend(
528 	xfs_ioend_t		*ioend)
529 {
530 	xfs_ioend_t		*next;
531 	struct buffer_head	*bh, *next_bh;
532 
533 	do {
534 		next = ioend->io_list;
535 		bh = ioend->io_buffer_head;
536 		do {
537 			next_bh = bh->b_private;
538 			clear_buffer_async_write(bh);
539 			/*
540 			 * The unwritten flag is cleared when added to the
541 			 * ioend. We're not submitting for I/O so mark the
542 			 * buffer unwritten again for next time around.
543 			 */
544 			if (ioend->io_type == XFS_IO_UNWRITTEN)
545 				set_buffer_unwritten(bh);
546 			unlock_buffer(bh);
547 		} while ((bh = next_bh) != NULL);
548 
549 		mempool_free(ioend, xfs_ioend_pool);
550 	} while ((ioend = next) != NULL);
551 }
552 
553 /*
554  * Test to see if we've been building up a completion structure for
555  * earlier buffers -- if so, we try to append to this ioend if we
556  * can, otherwise we finish off any current ioend and start another.
557  * Return true if we've finished the given ioend.
558  */
559 STATIC void
560 xfs_add_to_ioend(
561 	struct inode		*inode,
562 	struct buffer_head	*bh,
563 	xfs_off_t		offset,
564 	unsigned int		type,
565 	xfs_ioend_t		**result,
566 	int			need_ioend)
567 {
568 	xfs_ioend_t		*ioend = *result;
569 
570 	if (!ioend || need_ioend || type != ioend->io_type) {
571 		xfs_ioend_t	*previous = *result;
572 
573 		ioend = xfs_alloc_ioend(inode, type);
574 		ioend->io_offset = offset;
575 		ioend->io_buffer_head = bh;
576 		ioend->io_buffer_tail = bh;
577 		if (previous)
578 			previous->io_list = ioend;
579 		*result = ioend;
580 	} else {
581 		ioend->io_buffer_tail->b_private = bh;
582 		ioend->io_buffer_tail = bh;
583 	}
584 
585 	bh->b_private = NULL;
586 	ioend->io_size += bh->b_size;
587 }
588 
589 STATIC void
590 xfs_map_buffer(
591 	struct inode		*inode,
592 	struct buffer_head	*bh,
593 	struct xfs_bmbt_irec	*imap,
594 	xfs_off_t		offset)
595 {
596 	sector_t		bn;
597 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
598 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
599 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
600 
601 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
602 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
603 
604 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
605 	      ((offset - iomap_offset) >> inode->i_blkbits);
606 
607 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
608 
609 	bh->b_blocknr = bn;
610 	set_buffer_mapped(bh);
611 }
612 
613 STATIC void
614 xfs_map_at_offset(
615 	struct inode		*inode,
616 	struct buffer_head	*bh,
617 	struct xfs_bmbt_irec	*imap,
618 	xfs_off_t		offset)
619 {
620 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
621 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
622 
623 	xfs_map_buffer(inode, bh, imap, offset);
624 	set_buffer_mapped(bh);
625 	clear_buffer_delay(bh);
626 	clear_buffer_unwritten(bh);
627 }
628 
629 /*
630  * Test if a given page contains at least one buffer of a given @type.
631  * If @check_all_buffers is true, then we walk all the buffers in the page to
632  * try to find one of the type passed in. If it is not set, then the caller only
633  * needs to check the first buffer on the page for a match.
634  */
635 STATIC bool
636 xfs_check_page_type(
637 	struct page		*page,
638 	unsigned int		type,
639 	bool			check_all_buffers)
640 {
641 	struct buffer_head	*bh;
642 	struct buffer_head	*head;
643 
644 	if (PageWriteback(page))
645 		return false;
646 	if (!page->mapping)
647 		return false;
648 	if (!page_has_buffers(page))
649 		return false;
650 
651 	bh = head = page_buffers(page);
652 	do {
653 		if (buffer_unwritten(bh)) {
654 			if (type == XFS_IO_UNWRITTEN)
655 				return true;
656 		} else if (buffer_delay(bh)) {
657 			if (type == XFS_IO_DELALLOC)
658 				return true;
659 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
660 			if (type == XFS_IO_OVERWRITE)
661 				return true;
662 		}
663 
664 		/* If we are only checking the first buffer, we are done now. */
665 		if (!check_all_buffers)
666 			break;
667 	} while ((bh = bh->b_this_page) != head);
668 
669 	return false;
670 }
671 
672 /*
673  * Allocate & map buffers for page given the extent map. Write it out.
674  * except for the original page of a writepage, this is called on
675  * delalloc/unwritten pages only, for the original page it is possible
676  * that the page has no mapping at all.
677  */
678 STATIC int
679 xfs_convert_page(
680 	struct inode		*inode,
681 	struct page		*page,
682 	loff_t			tindex,
683 	struct xfs_bmbt_irec	*imap,
684 	xfs_ioend_t		**ioendp,
685 	struct writeback_control *wbc)
686 {
687 	struct buffer_head	*bh, *head;
688 	xfs_off_t		end_offset;
689 	unsigned long		p_offset;
690 	unsigned int		type;
691 	int			len, page_dirty;
692 	int			count = 0, done = 0, uptodate = 1;
693  	xfs_off_t		offset = page_offset(page);
694 
695 	if (page->index != tindex)
696 		goto fail;
697 	if (!trylock_page(page))
698 		goto fail;
699 	if (PageWriteback(page))
700 		goto fail_unlock_page;
701 	if (page->mapping != inode->i_mapping)
702 		goto fail_unlock_page;
703 	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
704 		goto fail_unlock_page;
705 
706 	/*
707 	 * page_dirty is initially a count of buffers on the page before
708 	 * EOF and is decremented as we move each into a cleanable state.
709 	 *
710 	 * Derivation:
711 	 *
712 	 * End offset is the highest offset that this page should represent.
713 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
714 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
715 	 * hence give us the correct page_dirty count. On any other page,
716 	 * it will be zero and in that case we need page_dirty to be the
717 	 * count of buffers on the page.
718 	 */
719 	end_offset = min_t(unsigned long long,
720 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
721 			i_size_read(inode));
722 
723 	/*
724 	 * If the current map does not span the entire page we are about to try
725 	 * to write, then give up. The only way we can write a page that spans
726 	 * multiple mappings in a single writeback iteration is via the
727 	 * xfs_vm_writepage() function. Data integrity writeback requires the
728 	 * entire page to be written in a single attempt, otherwise the part of
729 	 * the page we don't write here doesn't get written as part of the data
730 	 * integrity sync.
731 	 *
732 	 * For normal writeback, we also don't attempt to write partial pages
733 	 * here as it simply means that write_cache_pages() will see it under
734 	 * writeback and ignore the page until some point in the future, at
735 	 * which time this will be the only page in the file that needs
736 	 * writeback.  Hence for more optimal IO patterns, we should always
737 	 * avoid partial page writeback due to multiple mappings on a page here.
738 	 */
739 	if (!xfs_imap_valid(inode, imap, end_offset))
740 		goto fail_unlock_page;
741 
742 	len = 1 << inode->i_blkbits;
743 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
744 					PAGE_CACHE_SIZE);
745 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
746 	page_dirty = p_offset / len;
747 
748 	/*
749 	 * The moment we find a buffer that doesn't match our current type
750 	 * specification or can't be written, abort the loop and start
751 	 * writeback. As per the above xfs_imap_valid() check, only
752 	 * xfs_vm_writepage() can handle partial page writeback fully - we are
753 	 * limited here to the buffers that are contiguous with the current
754 	 * ioend, and hence a buffer we can't write breaks that contiguity and
755 	 * we have to defer the rest of the IO to xfs_vm_writepage().
756 	 */
757 	bh = head = page_buffers(page);
758 	do {
759 		if (offset >= end_offset)
760 			break;
761 		if (!buffer_uptodate(bh))
762 			uptodate = 0;
763 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
764 			done = 1;
765 			break;
766 		}
767 
768 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
769 		    buffer_mapped(bh)) {
770 			if (buffer_unwritten(bh))
771 				type = XFS_IO_UNWRITTEN;
772 			else if (buffer_delay(bh))
773 				type = XFS_IO_DELALLOC;
774 			else
775 				type = XFS_IO_OVERWRITE;
776 
777 			/*
778 			 * imap should always be valid because of the above
779 			 * partial page end_offset check on the imap.
780 			 */
781 			ASSERT(xfs_imap_valid(inode, imap, offset));
782 
783 			lock_buffer(bh);
784 			if (type != XFS_IO_OVERWRITE)
785 				xfs_map_at_offset(inode, bh, imap, offset);
786 			xfs_add_to_ioend(inode, bh, offset, type,
787 					 ioendp, done);
788 
789 			page_dirty--;
790 			count++;
791 		} else {
792 			done = 1;
793 			break;
794 		}
795 	} while (offset += len, (bh = bh->b_this_page) != head);
796 
797 	if (uptodate && bh == head)
798 		SetPageUptodate(page);
799 
800 	if (count) {
801 		if (--wbc->nr_to_write <= 0 &&
802 		    wbc->sync_mode == WB_SYNC_NONE)
803 			done = 1;
804 	}
805 	xfs_start_page_writeback(page, !page_dirty, count);
806 
807 	return done;
808  fail_unlock_page:
809 	unlock_page(page);
810  fail:
811 	return 1;
812 }
813 
814 /*
815  * Convert & write out a cluster of pages in the same extent as defined
816  * by mp and following the start page.
817  */
818 STATIC void
819 xfs_cluster_write(
820 	struct inode		*inode,
821 	pgoff_t			tindex,
822 	struct xfs_bmbt_irec	*imap,
823 	xfs_ioend_t		**ioendp,
824 	struct writeback_control *wbc,
825 	pgoff_t			tlast)
826 {
827 	struct pagevec		pvec;
828 	int			done = 0, i;
829 
830 	pagevec_init(&pvec, 0);
831 	while (!done && tindex <= tlast) {
832 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
833 
834 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
835 			break;
836 
837 		for (i = 0; i < pagevec_count(&pvec); i++) {
838 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
839 					imap, ioendp, wbc);
840 			if (done)
841 				break;
842 		}
843 
844 		pagevec_release(&pvec);
845 		cond_resched();
846 	}
847 }
848 
849 STATIC void
850 xfs_vm_invalidatepage(
851 	struct page		*page,
852 	unsigned int		offset,
853 	unsigned int		length)
854 {
855 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
856 				 length);
857 	block_invalidatepage(page, offset, length);
858 }
859 
860 /*
861  * If the page has delalloc buffers on it, we need to punch them out before we
862  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
863  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
864  * is done on that same region - the delalloc extent is returned when none is
865  * supposed to be there.
866  *
867  * We prevent this by truncating away the delalloc regions on the page before
868  * invalidating it. Because they are delalloc, we can do this without needing a
869  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
870  * truncation without a transaction as there is no space left for block
871  * reservation (typically why we see a ENOSPC in writeback).
872  *
873  * This is not a performance critical path, so for now just do the punching a
874  * buffer head at a time.
875  */
876 STATIC void
877 xfs_aops_discard_page(
878 	struct page		*page)
879 {
880 	struct inode		*inode = page->mapping->host;
881 	struct xfs_inode	*ip = XFS_I(inode);
882 	struct buffer_head	*bh, *head;
883 	loff_t			offset = page_offset(page);
884 
885 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
886 		goto out_invalidate;
887 
888 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
889 		goto out_invalidate;
890 
891 	xfs_alert(ip->i_mount,
892 		"page discard on page %p, inode 0x%llx, offset %llu.",
893 			page, ip->i_ino, offset);
894 
895 	xfs_ilock(ip, XFS_ILOCK_EXCL);
896 	bh = head = page_buffers(page);
897 	do {
898 		int		error;
899 		xfs_fileoff_t	start_fsb;
900 
901 		if (!buffer_delay(bh))
902 			goto next_buffer;
903 
904 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
905 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
906 		if (error) {
907 			/* something screwed, just bail */
908 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
909 				xfs_alert(ip->i_mount,
910 			"page discard unable to remove delalloc mapping.");
911 			}
912 			break;
913 		}
914 next_buffer:
915 		offset += 1 << inode->i_blkbits;
916 
917 	} while ((bh = bh->b_this_page) != head);
918 
919 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
920 out_invalidate:
921 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
922 	return;
923 }
924 
925 /*
926  * Write out a dirty page.
927  *
928  * For delalloc space on the page we need to allocate space and flush it.
929  * For unwritten space on the page we need to start the conversion to
930  * regular allocated space.
931  * For any other dirty buffer heads on the page we should flush them.
932  */
933 STATIC int
934 xfs_vm_writepage(
935 	struct page		*page,
936 	struct writeback_control *wbc)
937 {
938 	struct inode		*inode = page->mapping->host;
939 	struct buffer_head	*bh, *head;
940 	struct xfs_bmbt_irec	imap;
941 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
942 	loff_t			offset;
943 	unsigned int		type;
944 	__uint64_t              end_offset;
945 	pgoff_t                 end_index, last_index;
946 	ssize_t			len;
947 	int			err, imap_valid = 0, uptodate = 1;
948 	int			count = 0;
949 	int			nonblocking = 0;
950 
951 	trace_xfs_writepage(inode, page, 0, 0);
952 
953 	ASSERT(page_has_buffers(page));
954 
955 	/*
956 	 * Refuse to write the page out if we are called from reclaim context.
957 	 *
958 	 * This avoids stack overflows when called from deeply used stacks in
959 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
960 	 * allow reclaim from kswapd as the stack usage there is relatively low.
961 	 *
962 	 * This should never happen except in the case of a VM regression so
963 	 * warn about it.
964 	 */
965 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
966 			PF_MEMALLOC))
967 		goto redirty;
968 
969 	/*
970 	 * Given that we do not allow direct reclaim to call us, we should
971 	 * never be called while in a filesystem transaction.
972 	 */
973 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
974 		goto redirty;
975 
976 	/* Is this page beyond the end of the file? */
977 	offset = i_size_read(inode);
978 	end_index = offset >> PAGE_CACHE_SHIFT;
979 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
980 
981 	/*
982 	 * The page index is less than the end_index, adjust the end_offset
983 	 * to the highest offset that this page should represent.
984 	 * -----------------------------------------------------
985 	 * |			file mapping	       | <EOF> |
986 	 * -----------------------------------------------------
987 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
988 	 * ^--------------------------------^----------|--------
989 	 * |     desired writeback range    |      see else    |
990 	 * ---------------------------------^------------------|
991 	 */
992 	if (page->index < end_index)
993 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
994 	else {
995 		/*
996 		 * Check whether the page to write out is beyond or straddles
997 		 * i_size or not.
998 		 * -------------------------------------------------------
999 		 * |		file mapping		        | <EOF>  |
1000 		 * -------------------------------------------------------
1001 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1002 		 * ^--------------------------------^-----------|---------
1003 		 * |				    |      Straddles     |
1004 		 * ---------------------------------^-----------|--------|
1005 		 */
1006 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1007 
1008 		/*
1009 		 * Skip the page if it is fully outside i_size, e.g. due to a
1010 		 * truncate operation that is in progress. We must redirty the
1011 		 * page so that reclaim stops reclaiming it. Otherwise
1012 		 * xfs_vm_releasepage() is called on it and gets confused.
1013 		 *
1014 		 * Note that the end_index is unsigned long, it would overflow
1015 		 * if the given offset is greater than 16TB on 32-bit system
1016 		 * and if we do check the page is fully outside i_size or not
1017 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1018 		 * will be evaluated to 0.  Hence this page will be redirtied
1019 		 * and be written out repeatedly which would result in an
1020 		 * infinite loop, the user program that perform this operation
1021 		 * will hang.  Instead, we can verify this situation by checking
1022 		 * if the page to write is totally beyond the i_size or if it's
1023 		 * offset is just equal to the EOF.
1024 		 */
1025 		if (page->index > end_index ||
1026 		    (page->index == end_index && offset_into_page == 0))
1027 			goto redirty;
1028 
1029 		/*
1030 		 * The page straddles i_size.  It must be zeroed out on each
1031 		 * and every writepage invocation because it may be mmapped.
1032 		 * "A file is mapped in multiples of the page size.  For a file
1033 		 * that is not a multiple of the page size, the remaining
1034 		 * memory is zeroed when mapped, and writes to that region are
1035 		 * not written out to the file."
1036 		 */
1037 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1038 
1039 		/* Adjust the end_offset to the end of file */
1040 		end_offset = offset;
1041 	}
1042 
1043 	len = 1 << inode->i_blkbits;
1044 
1045 	bh = head = page_buffers(page);
1046 	offset = page_offset(page);
1047 	type = XFS_IO_OVERWRITE;
1048 
1049 	if (wbc->sync_mode == WB_SYNC_NONE)
1050 		nonblocking = 1;
1051 
1052 	do {
1053 		int new_ioend = 0;
1054 
1055 		if (offset >= end_offset)
1056 			break;
1057 		if (!buffer_uptodate(bh))
1058 			uptodate = 0;
1059 
1060 		/*
1061 		 * set_page_dirty dirties all buffers in a page, independent
1062 		 * of their state.  The dirty state however is entirely
1063 		 * meaningless for holes (!mapped && uptodate), so skip
1064 		 * buffers covering holes here.
1065 		 */
1066 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1067 			imap_valid = 0;
1068 			continue;
1069 		}
1070 
1071 		if (buffer_unwritten(bh)) {
1072 			if (type != XFS_IO_UNWRITTEN) {
1073 				type = XFS_IO_UNWRITTEN;
1074 				imap_valid = 0;
1075 			}
1076 		} else if (buffer_delay(bh)) {
1077 			if (type != XFS_IO_DELALLOC) {
1078 				type = XFS_IO_DELALLOC;
1079 				imap_valid = 0;
1080 			}
1081 		} else if (buffer_uptodate(bh)) {
1082 			if (type != XFS_IO_OVERWRITE) {
1083 				type = XFS_IO_OVERWRITE;
1084 				imap_valid = 0;
1085 			}
1086 		} else {
1087 			if (PageUptodate(page))
1088 				ASSERT(buffer_mapped(bh));
1089 			/*
1090 			 * This buffer is not uptodate and will not be
1091 			 * written to disk.  Ensure that we will put any
1092 			 * subsequent writeable buffers into a new
1093 			 * ioend.
1094 			 */
1095 			imap_valid = 0;
1096 			continue;
1097 		}
1098 
1099 		if (imap_valid)
1100 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1101 		if (!imap_valid) {
1102 			/*
1103 			 * If we didn't have a valid mapping then we need to
1104 			 * put the new mapping into a separate ioend structure.
1105 			 * This ensures non-contiguous extents always have
1106 			 * separate ioends, which is particularly important
1107 			 * for unwritten extent conversion at I/O completion
1108 			 * time.
1109 			 */
1110 			new_ioend = 1;
1111 			err = xfs_map_blocks(inode, offset, &imap, type,
1112 					     nonblocking);
1113 			if (err)
1114 				goto error;
1115 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1116 		}
1117 		if (imap_valid) {
1118 			lock_buffer(bh);
1119 			if (type != XFS_IO_OVERWRITE)
1120 				xfs_map_at_offset(inode, bh, &imap, offset);
1121 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1122 					 new_ioend);
1123 			count++;
1124 		}
1125 
1126 		if (!iohead)
1127 			iohead = ioend;
1128 
1129 	} while (offset += len, ((bh = bh->b_this_page) != head));
1130 
1131 	if (uptodate && bh == head)
1132 		SetPageUptodate(page);
1133 
1134 	xfs_start_page_writeback(page, 1, count);
1135 
1136 	/* if there is no IO to be submitted for this page, we are done */
1137 	if (!ioend)
1138 		return 0;
1139 
1140 	ASSERT(iohead);
1141 
1142 	/*
1143 	 * Any errors from this point onwards need tobe reported through the IO
1144 	 * completion path as we have marked the initial page as under writeback
1145 	 * and unlocked it.
1146 	 */
1147 	if (imap_valid) {
1148 		xfs_off_t		end_index;
1149 
1150 		end_index = imap.br_startoff + imap.br_blockcount;
1151 
1152 		/* to bytes */
1153 		end_index <<= inode->i_blkbits;
1154 
1155 		/* to pages */
1156 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1157 
1158 		/* check against file size */
1159 		if (end_index > last_index)
1160 			end_index = last_index;
1161 
1162 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1163 				  wbc, end_index);
1164 	}
1165 
1166 
1167 	/*
1168 	 * Reserve log space if we might write beyond the on-disk inode size.
1169 	 */
1170 	err = 0;
1171 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1172 		err = xfs_setfilesize_trans_alloc(ioend);
1173 
1174 	xfs_submit_ioend(wbc, iohead, err);
1175 
1176 	return 0;
1177 
1178 error:
1179 	if (iohead)
1180 		xfs_cancel_ioend(iohead);
1181 
1182 	if (err == -EAGAIN)
1183 		goto redirty;
1184 
1185 	xfs_aops_discard_page(page);
1186 	ClearPageUptodate(page);
1187 	unlock_page(page);
1188 	return err;
1189 
1190 redirty:
1191 	redirty_page_for_writepage(wbc, page);
1192 	unlock_page(page);
1193 	return 0;
1194 }
1195 
1196 STATIC int
1197 xfs_vm_writepages(
1198 	struct address_space	*mapping,
1199 	struct writeback_control *wbc)
1200 {
1201 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1202 	return generic_writepages(mapping, wbc);
1203 }
1204 
1205 /*
1206  * Called to move a page into cleanable state - and from there
1207  * to be released. The page should already be clean. We always
1208  * have buffer heads in this call.
1209  *
1210  * Returns 1 if the page is ok to release, 0 otherwise.
1211  */
1212 STATIC int
1213 xfs_vm_releasepage(
1214 	struct page		*page,
1215 	gfp_t			gfp_mask)
1216 {
1217 	int			delalloc, unwritten;
1218 
1219 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1220 
1221 	xfs_count_page_state(page, &delalloc, &unwritten);
1222 
1223 	if (WARN_ON_ONCE(delalloc))
1224 		return 0;
1225 	if (WARN_ON_ONCE(unwritten))
1226 		return 0;
1227 
1228 	return try_to_free_buffers(page);
1229 }
1230 
1231 /*
1232  * When we map a DIO buffer, we may need to attach an ioend that describes the
1233  * type of write IO we are doing. This passes to the completion function the
1234  * operations it needs to perform. If the mapping is for an overwrite wholly
1235  * within the EOF then we don't need an ioend and so we don't allocate one.
1236  * This avoids the unnecessary overhead of allocating and freeing ioends for
1237  * workloads that don't require transactions on IO completion.
1238  *
1239  * If we get multiple mappings in a single IO, we might be mapping different
1240  * types. But because the direct IO can only have a single private pointer, we
1241  * need to ensure that:
1242  *
1243  * a) i) the ioend spans the entire region of unwritten mappings; or
1244  *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1245  * b) if it contains unwritten extents, it is *permanently* marked as such
1246  *
1247  * We could do this by chaining ioends like buffered IO does, but we only
1248  * actually get one IO completion callback from the direct IO, and that spans
1249  * the entire IO regardless of how many mappings and IOs are needed to complete
1250  * the DIO. There is only going to be one reference to the ioend and its life
1251  * cycle is constrained by the DIO completion code. hence we don't need
1252  * reference counting here.
1253  */
1254 static void
1255 xfs_map_direct(
1256 	struct inode		*inode,
1257 	struct buffer_head	*bh_result,
1258 	struct xfs_bmbt_irec	*imap,
1259 	xfs_off_t		offset)
1260 {
1261 	struct xfs_ioend	*ioend;
1262 	xfs_off_t		size = bh_result->b_size;
1263 	int			type;
1264 
1265 	if (ISUNWRITTEN(imap))
1266 		type = XFS_IO_UNWRITTEN;
1267 	else
1268 		type = XFS_IO_OVERWRITE;
1269 
1270 	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1271 
1272 	if (bh_result->b_private) {
1273 		ioend = bh_result->b_private;
1274 		ASSERT(ioend->io_size > 0);
1275 		ASSERT(offset >= ioend->io_offset);
1276 		if (offset + size > ioend->io_offset + ioend->io_size)
1277 			ioend->io_size = offset - ioend->io_offset + size;
1278 
1279 		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1280 			ioend->io_type = XFS_IO_UNWRITTEN;
1281 
1282 		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1283 					      ioend->io_size, ioend->io_type,
1284 					      imap);
1285 	} else if (type == XFS_IO_UNWRITTEN ||
1286 		   offset + size > i_size_read(inode)) {
1287 		ioend = xfs_alloc_ioend(inode, type);
1288 		ioend->io_offset = offset;
1289 		ioend->io_size = size;
1290 
1291 		bh_result->b_private = ioend;
1292 		set_buffer_defer_completion(bh_result);
1293 
1294 		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1295 					   imap);
1296 	} else {
1297 		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1298 					    imap);
1299 	}
1300 }
1301 
1302 /*
1303  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1304  * is, so that we can avoid repeated get_blocks calls.
1305  *
1306  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1307  * for blocks beyond EOF must be marked new so that sub block regions can be
1308  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1309  * was just allocated or is unwritten, otherwise the callers would overwrite
1310  * existing data with zeros. Hence we have to split the mapping into a range up
1311  * to and including EOF, and a second mapping for beyond EOF.
1312  */
1313 static void
1314 xfs_map_trim_size(
1315 	struct inode		*inode,
1316 	sector_t		iblock,
1317 	struct buffer_head	*bh_result,
1318 	struct xfs_bmbt_irec	*imap,
1319 	xfs_off_t		offset,
1320 	ssize_t			size)
1321 {
1322 	xfs_off_t		mapping_size;
1323 
1324 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1325 	mapping_size <<= inode->i_blkbits;
1326 
1327 	ASSERT(mapping_size > 0);
1328 	if (mapping_size > size)
1329 		mapping_size = size;
1330 	if (offset < i_size_read(inode) &&
1331 	    offset + mapping_size >= i_size_read(inode)) {
1332 		/* limit mapping to block that spans EOF */
1333 		mapping_size = roundup_64(i_size_read(inode) - offset,
1334 					  1 << inode->i_blkbits);
1335 	}
1336 	if (mapping_size > LONG_MAX)
1337 		mapping_size = LONG_MAX;
1338 
1339 	bh_result->b_size = mapping_size;
1340 }
1341 
1342 STATIC int
1343 __xfs_get_blocks(
1344 	struct inode		*inode,
1345 	sector_t		iblock,
1346 	struct buffer_head	*bh_result,
1347 	int			create,
1348 	bool			direct)
1349 {
1350 	struct xfs_inode	*ip = XFS_I(inode);
1351 	struct xfs_mount	*mp = ip->i_mount;
1352 	xfs_fileoff_t		offset_fsb, end_fsb;
1353 	int			error = 0;
1354 	int			lockmode = 0;
1355 	struct xfs_bmbt_irec	imap;
1356 	int			nimaps = 1;
1357 	xfs_off_t		offset;
1358 	ssize_t			size;
1359 	int			new = 0;
1360 
1361 	if (XFS_FORCED_SHUTDOWN(mp))
1362 		return -EIO;
1363 
1364 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1365 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1366 	size = bh_result->b_size;
1367 
1368 	if (!create && direct && offset >= i_size_read(inode))
1369 		return 0;
1370 
1371 	/*
1372 	 * Direct I/O is usually done on preallocated files, so try getting
1373 	 * a block mapping without an exclusive lock first.  For buffered
1374 	 * writes we already have the exclusive iolock anyway, so avoiding
1375 	 * a lock roundtrip here by taking the ilock exclusive from the
1376 	 * beginning is a useful micro optimization.
1377 	 */
1378 	if (create && !direct) {
1379 		lockmode = XFS_ILOCK_EXCL;
1380 		xfs_ilock(ip, lockmode);
1381 	} else {
1382 		lockmode = xfs_ilock_data_map_shared(ip);
1383 	}
1384 
1385 	ASSERT(offset <= mp->m_super->s_maxbytes);
1386 	if (offset + size > mp->m_super->s_maxbytes)
1387 		size = mp->m_super->s_maxbytes - offset;
1388 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1389 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1390 
1391 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1392 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1393 	if (error)
1394 		goto out_unlock;
1395 
1396 	if (create &&
1397 	    (!nimaps ||
1398 	     (imap.br_startblock == HOLESTARTBLOCK ||
1399 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1400 		if (direct || xfs_get_extsz_hint(ip)) {
1401 			/*
1402 			 * Drop the ilock in preparation for starting the block
1403 			 * allocation transaction.  It will be retaken
1404 			 * exclusively inside xfs_iomap_write_direct for the
1405 			 * actual allocation.
1406 			 */
1407 			xfs_iunlock(ip, lockmode);
1408 			error = xfs_iomap_write_direct(ip, offset, size,
1409 						       &imap, nimaps);
1410 			if (error)
1411 				return error;
1412 			new = 1;
1413 
1414 		} else {
1415 			/*
1416 			 * Delalloc reservations do not require a transaction,
1417 			 * we can go on without dropping the lock here. If we
1418 			 * are allocating a new delalloc block, make sure that
1419 			 * we set the new flag so that we mark the buffer new so
1420 			 * that we know that it is newly allocated if the write
1421 			 * fails.
1422 			 */
1423 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1424 				new = 1;
1425 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1426 			if (error)
1427 				goto out_unlock;
1428 
1429 			xfs_iunlock(ip, lockmode);
1430 		}
1431 		trace_xfs_get_blocks_alloc(ip, offset, size,
1432 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1433 						   : XFS_IO_DELALLOC, &imap);
1434 	} else if (nimaps) {
1435 		trace_xfs_get_blocks_found(ip, offset, size,
1436 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1437 						   : XFS_IO_OVERWRITE, &imap);
1438 		xfs_iunlock(ip, lockmode);
1439 	} else {
1440 		trace_xfs_get_blocks_notfound(ip, offset, size);
1441 		goto out_unlock;
1442 	}
1443 
1444 	/* trim mapping down to size requested */
1445 	if (direct || size > (1 << inode->i_blkbits))
1446 		xfs_map_trim_size(inode, iblock, bh_result,
1447 				  &imap, offset, size);
1448 
1449 	/*
1450 	 * For unwritten extents do not report a disk address in the buffered
1451 	 * read case (treat as if we're reading into a hole).
1452 	 */
1453 	if (imap.br_startblock != HOLESTARTBLOCK &&
1454 	    imap.br_startblock != DELAYSTARTBLOCK &&
1455 	    (create || !ISUNWRITTEN(&imap))) {
1456 		xfs_map_buffer(inode, bh_result, &imap, offset);
1457 		if (ISUNWRITTEN(&imap))
1458 			set_buffer_unwritten(bh_result);
1459 		/* direct IO needs special help */
1460 		if (create && direct)
1461 			xfs_map_direct(inode, bh_result, &imap, offset);
1462 	}
1463 
1464 	/*
1465 	 * If this is a realtime file, data may be on a different device.
1466 	 * to that pointed to from the buffer_head b_bdev currently.
1467 	 */
1468 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1469 
1470 	/*
1471 	 * If we previously allocated a block out beyond eof and we are now
1472 	 * coming back to use it then we will need to flag it as new even if it
1473 	 * has a disk address.
1474 	 *
1475 	 * With sub-block writes into unwritten extents we also need to mark
1476 	 * the buffer as new so that the unwritten parts of the buffer gets
1477 	 * correctly zeroed.
1478 	 */
1479 	if (create &&
1480 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1481 	     (offset >= i_size_read(inode)) ||
1482 	     (new || ISUNWRITTEN(&imap))))
1483 		set_buffer_new(bh_result);
1484 
1485 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1486 		BUG_ON(direct);
1487 		if (create) {
1488 			set_buffer_uptodate(bh_result);
1489 			set_buffer_mapped(bh_result);
1490 			set_buffer_delay(bh_result);
1491 		}
1492 	}
1493 
1494 	return 0;
1495 
1496 out_unlock:
1497 	xfs_iunlock(ip, lockmode);
1498 	return error;
1499 }
1500 
1501 int
1502 xfs_get_blocks(
1503 	struct inode		*inode,
1504 	sector_t		iblock,
1505 	struct buffer_head	*bh_result,
1506 	int			create)
1507 {
1508 	return __xfs_get_blocks(inode, iblock, bh_result, create, false);
1509 }
1510 
1511 int
1512 xfs_get_blocks_direct(
1513 	struct inode		*inode,
1514 	sector_t		iblock,
1515 	struct buffer_head	*bh_result,
1516 	int			create)
1517 {
1518 	return __xfs_get_blocks(inode, iblock, bh_result, create, true);
1519 }
1520 
1521 static void
1522 __xfs_end_io_direct_write(
1523 	struct inode		*inode,
1524 	struct xfs_ioend	*ioend,
1525 	loff_t			offset,
1526 	ssize_t			size)
1527 {
1528 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1529 
1530 	if (XFS_FORCED_SHUTDOWN(mp) || ioend->io_error)
1531 		goto out_end_io;
1532 
1533 	/*
1534 	 * dio completion end_io functions are only called on writes if more
1535 	 * than 0 bytes was written.
1536 	 */
1537 	ASSERT(size > 0);
1538 
1539 	/*
1540 	 * The ioend only maps whole blocks, while the IO may be sector aligned.
1541 	 * Hence the ioend offset/size may not match the IO offset/size exactly.
1542 	 * Because we don't map overwrites within EOF into the ioend, the offset
1543 	 * may not match, but only if the endio spans EOF.  Either way, write
1544 	 * the IO sizes into the ioend so that completion processing does the
1545 	 * right thing.
1546 	 */
1547 	ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1548 	ioend->io_size = size;
1549 	ioend->io_offset = offset;
1550 
1551 	/*
1552 	 * The ioend tells us whether we are doing unwritten extent conversion
1553 	 * or an append transaction that updates the on-disk file size. These
1554 	 * cases are the only cases where we should *potentially* be needing
1555 	 * to update the VFS inode size.
1556 	 *
1557 	 * We need to update the in-core inode size here so that we don't end up
1558 	 * with the on-disk inode size being outside the in-core inode size. We
1559 	 * have no other method of updating EOF for AIO, so always do it here
1560 	 * if necessary.
1561 	 *
1562 	 * We need to lock the test/set EOF update as we can be racing with
1563 	 * other IO completions here to update the EOF. Failing to serialise
1564 	 * here can result in EOF moving backwards and Bad Things Happen when
1565 	 * that occurs.
1566 	 */
1567 	spin_lock(&XFS_I(inode)->i_flags_lock);
1568 	if (offset + size > i_size_read(inode))
1569 		i_size_write(inode, offset + size);
1570 	spin_unlock(&XFS_I(inode)->i_flags_lock);
1571 
1572 	/*
1573 	 * If we are doing an append IO that needs to update the EOF on disk,
1574 	 * do the transaction reserve now so we can use common end io
1575 	 * processing. Stashing the error (if there is one) in the ioend will
1576 	 * result in the ioend processing passing on the error if it is
1577 	 * possible as we can't return it from here.
1578 	 */
1579 	if (ioend->io_type == XFS_IO_OVERWRITE)
1580 		ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1581 
1582 out_end_io:
1583 	xfs_end_io(&ioend->io_work);
1584 	return;
1585 }
1586 
1587 /*
1588  * Complete a direct I/O write request.
1589  *
1590  * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1591  * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1592  * wholly within the EOF and so there is nothing for us to do. Note that in this
1593  * case the completion can be called in interrupt context, whereas if we have an
1594  * ioend we will always be called in task context (i.e. from a workqueue).
1595  */
1596 STATIC void
1597 xfs_end_io_direct_write(
1598 	struct kiocb		*iocb,
1599 	loff_t			offset,
1600 	ssize_t			size,
1601 	void			*private)
1602 {
1603 	struct inode		*inode = file_inode(iocb->ki_filp);
1604 	struct xfs_ioend	*ioend = private;
1605 
1606 	trace_xfs_gbmap_direct_endio(XFS_I(inode), offset, size,
1607 				     ioend ? ioend->io_type : 0, NULL);
1608 
1609 	if (!ioend) {
1610 		ASSERT(offset + size <= i_size_read(inode));
1611 		return;
1612 	}
1613 
1614 	__xfs_end_io_direct_write(inode, ioend, offset, size);
1615 }
1616 
1617 /*
1618  * For DAX we need a mapping buffer callback for unwritten extent conversion
1619  * when page faults allocate blocks and then zero them. Note that in this
1620  * case the mapping indicated by the ioend may extend beyond EOF. We most
1621  * definitely do not want to extend EOF here, so we trim back the ioend size to
1622  * EOF.
1623  */
1624 #ifdef CONFIG_FS_DAX
1625 void
1626 xfs_end_io_dax_write(
1627 	struct buffer_head	*bh,
1628 	int			uptodate)
1629 {
1630 	struct xfs_ioend	*ioend = bh->b_private;
1631 	struct inode		*inode = ioend->io_inode;
1632 	ssize_t			size = ioend->io_size;
1633 
1634 	ASSERT(IS_DAX(ioend->io_inode));
1635 
1636 	/* if there was an error zeroing, then don't convert it */
1637 	if (!uptodate)
1638 		ioend->io_error = -EIO;
1639 
1640 	/*
1641 	 * Trim update to EOF, so we don't extend EOF during unwritten extent
1642 	 * conversion of partial EOF blocks.
1643 	 */
1644 	spin_lock(&XFS_I(inode)->i_flags_lock);
1645 	if (ioend->io_offset + size > i_size_read(inode))
1646 		size = i_size_read(inode) - ioend->io_offset;
1647 	spin_unlock(&XFS_I(inode)->i_flags_lock);
1648 
1649 	__xfs_end_io_direct_write(inode, ioend, ioend->io_offset, size);
1650 
1651 }
1652 #else
1653 void xfs_end_io_dax_write(struct buffer_head *bh, int uptodate) { }
1654 #endif
1655 
1656 static inline ssize_t
1657 xfs_vm_do_dio(
1658 	struct inode		*inode,
1659 	struct kiocb		*iocb,
1660 	struct iov_iter		*iter,
1661 	loff_t			offset,
1662 	void			(*endio)(struct kiocb	*iocb,
1663 					 loff_t		offset,
1664 					 ssize_t	size,
1665 					 void		*private),
1666 	int			flags)
1667 {
1668 	struct block_device	*bdev;
1669 
1670 	if (IS_DAX(inode))
1671 		return dax_do_io(iocb, inode, iter, offset,
1672 				 xfs_get_blocks_direct, endio, 0);
1673 
1674 	bdev = xfs_find_bdev_for_inode(inode);
1675 	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1676 				     xfs_get_blocks_direct, endio, NULL, flags);
1677 }
1678 
1679 STATIC ssize_t
1680 xfs_vm_direct_IO(
1681 	struct kiocb		*iocb,
1682 	struct iov_iter		*iter,
1683 	loff_t			offset)
1684 {
1685 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1686 
1687 	if (iov_iter_rw(iter) == WRITE)
1688 		return xfs_vm_do_dio(inode, iocb, iter, offset,
1689 				     xfs_end_io_direct_write, DIO_ASYNC_EXTEND);
1690 	return xfs_vm_do_dio(inode, iocb, iter, offset, NULL, 0);
1691 }
1692 
1693 /*
1694  * Punch out the delalloc blocks we have already allocated.
1695  *
1696  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1697  * as the page is still locked at this point.
1698  */
1699 STATIC void
1700 xfs_vm_kill_delalloc_range(
1701 	struct inode		*inode,
1702 	loff_t			start,
1703 	loff_t			end)
1704 {
1705 	struct xfs_inode	*ip = XFS_I(inode);
1706 	xfs_fileoff_t		start_fsb;
1707 	xfs_fileoff_t		end_fsb;
1708 	int			error;
1709 
1710 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1711 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1712 	if (end_fsb <= start_fsb)
1713 		return;
1714 
1715 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1716 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1717 						end_fsb - start_fsb);
1718 	if (error) {
1719 		/* something screwed, just bail */
1720 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1721 			xfs_alert(ip->i_mount,
1722 		"xfs_vm_write_failed: unable to clean up ino %lld",
1723 					ip->i_ino);
1724 		}
1725 	}
1726 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1727 }
1728 
1729 STATIC void
1730 xfs_vm_write_failed(
1731 	struct inode		*inode,
1732 	struct page		*page,
1733 	loff_t			pos,
1734 	unsigned		len)
1735 {
1736 	loff_t			block_offset;
1737 	loff_t			block_start;
1738 	loff_t			block_end;
1739 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1740 	loff_t			to = from + len;
1741 	struct buffer_head	*bh, *head;
1742 
1743 	/*
1744 	 * The request pos offset might be 32 or 64 bit, this is all fine
1745 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1746 	 * platform, the high 32-bit will be masked off if we evaluate the
1747 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1748 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1749 	 * which could cause the following ASSERT failed in most cases.
1750 	 * In order to avoid this, we can evaluate the block_offset of the
1751 	 * start of the page by using shifts rather than masks the mismatch
1752 	 * problem.
1753 	 */
1754 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1755 
1756 	ASSERT(block_offset + from == pos);
1757 
1758 	head = page_buffers(page);
1759 	block_start = 0;
1760 	for (bh = head; bh != head || !block_start;
1761 	     bh = bh->b_this_page, block_start = block_end,
1762 				   block_offset += bh->b_size) {
1763 		block_end = block_start + bh->b_size;
1764 
1765 		/* skip buffers before the write */
1766 		if (block_end <= from)
1767 			continue;
1768 
1769 		/* if the buffer is after the write, we're done */
1770 		if (block_start >= to)
1771 			break;
1772 
1773 		if (!buffer_delay(bh))
1774 			continue;
1775 
1776 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1777 			continue;
1778 
1779 		xfs_vm_kill_delalloc_range(inode, block_offset,
1780 					   block_offset + bh->b_size);
1781 
1782 		/*
1783 		 * This buffer does not contain data anymore. make sure anyone
1784 		 * who finds it knows that for certain.
1785 		 */
1786 		clear_buffer_delay(bh);
1787 		clear_buffer_uptodate(bh);
1788 		clear_buffer_mapped(bh);
1789 		clear_buffer_new(bh);
1790 		clear_buffer_dirty(bh);
1791 	}
1792 
1793 }
1794 
1795 /*
1796  * This used to call block_write_begin(), but it unlocks and releases the page
1797  * on error, and we need that page to be able to punch stale delalloc blocks out
1798  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1799  * the appropriate point.
1800  */
1801 STATIC int
1802 xfs_vm_write_begin(
1803 	struct file		*file,
1804 	struct address_space	*mapping,
1805 	loff_t			pos,
1806 	unsigned		len,
1807 	unsigned		flags,
1808 	struct page		**pagep,
1809 	void			**fsdata)
1810 {
1811 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1812 	struct page		*page;
1813 	int			status;
1814 
1815 	ASSERT(len <= PAGE_CACHE_SIZE);
1816 
1817 	page = grab_cache_page_write_begin(mapping, index, flags);
1818 	if (!page)
1819 		return -ENOMEM;
1820 
1821 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1822 	if (unlikely(status)) {
1823 		struct inode	*inode = mapping->host;
1824 		size_t		isize = i_size_read(inode);
1825 
1826 		xfs_vm_write_failed(inode, page, pos, len);
1827 		unlock_page(page);
1828 
1829 		/*
1830 		 * If the write is beyond EOF, we only want to kill blocks
1831 		 * allocated in this write, not blocks that were previously
1832 		 * written successfully.
1833 		 */
1834 		if (pos + len > isize) {
1835 			ssize_t start = max_t(ssize_t, pos, isize);
1836 
1837 			truncate_pagecache_range(inode, start, pos + len);
1838 		}
1839 
1840 		page_cache_release(page);
1841 		page = NULL;
1842 	}
1843 
1844 	*pagep = page;
1845 	return status;
1846 }
1847 
1848 /*
1849  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1850  * this specific write because they will never be written. Previous writes
1851  * beyond EOF where block allocation succeeded do not need to be trashed, so
1852  * only new blocks from this write should be trashed. For blocks within
1853  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1854  * written with all the other valid data.
1855  */
1856 STATIC int
1857 xfs_vm_write_end(
1858 	struct file		*file,
1859 	struct address_space	*mapping,
1860 	loff_t			pos,
1861 	unsigned		len,
1862 	unsigned		copied,
1863 	struct page		*page,
1864 	void			*fsdata)
1865 {
1866 	int			ret;
1867 
1868 	ASSERT(len <= PAGE_CACHE_SIZE);
1869 
1870 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1871 	if (unlikely(ret < len)) {
1872 		struct inode	*inode = mapping->host;
1873 		size_t		isize = i_size_read(inode);
1874 		loff_t		to = pos + len;
1875 
1876 		if (to > isize) {
1877 			/* only kill blocks in this write beyond EOF */
1878 			if (pos > isize)
1879 				isize = pos;
1880 			xfs_vm_kill_delalloc_range(inode, isize, to);
1881 			truncate_pagecache_range(inode, isize, to);
1882 		}
1883 	}
1884 	return ret;
1885 }
1886 
1887 STATIC sector_t
1888 xfs_vm_bmap(
1889 	struct address_space	*mapping,
1890 	sector_t		block)
1891 {
1892 	struct inode		*inode = (struct inode *)mapping->host;
1893 	struct xfs_inode	*ip = XFS_I(inode);
1894 
1895 	trace_xfs_vm_bmap(XFS_I(inode));
1896 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1897 	filemap_write_and_wait(mapping);
1898 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1899 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1900 }
1901 
1902 STATIC int
1903 xfs_vm_readpage(
1904 	struct file		*unused,
1905 	struct page		*page)
1906 {
1907 	return mpage_readpage(page, xfs_get_blocks);
1908 }
1909 
1910 STATIC int
1911 xfs_vm_readpages(
1912 	struct file		*unused,
1913 	struct address_space	*mapping,
1914 	struct list_head	*pages,
1915 	unsigned		nr_pages)
1916 {
1917 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1918 }
1919 
1920 /*
1921  * This is basically a copy of __set_page_dirty_buffers() with one
1922  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1923  * dirty, we'll never be able to clean them because we don't write buffers
1924  * beyond EOF, and that means we can't invalidate pages that span EOF
1925  * that have been marked dirty. Further, the dirty state can leak into
1926  * the file interior if the file is extended, resulting in all sorts of
1927  * bad things happening as the state does not match the underlying data.
1928  *
1929  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1930  * this only exist because of bufferheads and how the generic code manages them.
1931  */
1932 STATIC int
1933 xfs_vm_set_page_dirty(
1934 	struct page		*page)
1935 {
1936 	struct address_space	*mapping = page->mapping;
1937 	struct inode		*inode = mapping->host;
1938 	loff_t			end_offset;
1939 	loff_t			offset;
1940 	int			newly_dirty;
1941 	struct mem_cgroup	*memcg;
1942 
1943 	if (unlikely(!mapping))
1944 		return !TestSetPageDirty(page);
1945 
1946 	end_offset = i_size_read(inode);
1947 	offset = page_offset(page);
1948 
1949 	spin_lock(&mapping->private_lock);
1950 	if (page_has_buffers(page)) {
1951 		struct buffer_head *head = page_buffers(page);
1952 		struct buffer_head *bh = head;
1953 
1954 		do {
1955 			if (offset < end_offset)
1956 				set_buffer_dirty(bh);
1957 			bh = bh->b_this_page;
1958 			offset += 1 << inode->i_blkbits;
1959 		} while (bh != head);
1960 	}
1961 	/*
1962 	 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1963 	 * per-memcg dirty page counters.
1964 	 */
1965 	memcg = mem_cgroup_begin_page_stat(page);
1966 	newly_dirty = !TestSetPageDirty(page);
1967 	spin_unlock(&mapping->private_lock);
1968 
1969 	if (newly_dirty) {
1970 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1971 		unsigned long flags;
1972 
1973 		spin_lock_irqsave(&mapping->tree_lock, flags);
1974 		if (page->mapping) {	/* Race with truncate? */
1975 			WARN_ON_ONCE(!PageUptodate(page));
1976 			account_page_dirtied(page, mapping, memcg);
1977 			radix_tree_tag_set(&mapping->page_tree,
1978 					page_index(page), PAGECACHE_TAG_DIRTY);
1979 		}
1980 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1981 	}
1982 	mem_cgroup_end_page_stat(memcg);
1983 	if (newly_dirty)
1984 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1985 	return newly_dirty;
1986 }
1987 
1988 const struct address_space_operations xfs_address_space_operations = {
1989 	.readpage		= xfs_vm_readpage,
1990 	.readpages		= xfs_vm_readpages,
1991 	.writepage		= xfs_vm_writepage,
1992 	.writepages		= xfs_vm_writepages,
1993 	.set_page_dirty		= xfs_vm_set_page_dirty,
1994 	.releasepage		= xfs_vm_releasepage,
1995 	.invalidatepage		= xfs_vm_invalidatepage,
1996 	.write_begin		= xfs_vm_write_begin,
1997 	.write_end		= xfs_vm_write_end,
1998 	.bmap			= xfs_vm_bmap,
1999 	.direct_IO		= xfs_vm_direct_IO,
2000 	.migratepage		= buffer_migrate_page,
2001 	.is_partially_uptodate  = block_is_partially_uptodate,
2002 	.error_remove_page	= generic_error_remove_page,
2003 };
2004