xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 20055477)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_trace.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include <linux/aio.h>
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 void
41 xfs_count_page_state(
42 	struct page		*page,
43 	int			*delalloc,
44 	int			*unwritten)
45 {
46 	struct buffer_head	*bh, *head;
47 
48 	*delalloc = *unwritten = 0;
49 
50 	bh = head = page_buffers(page);
51 	do {
52 		if (buffer_unwritten(bh))
53 			(*unwritten) = 1;
54 		else if (buffer_delay(bh))
55 			(*delalloc) = 1;
56 	} while ((bh = bh->b_this_page) != head);
57 }
58 
59 STATIC struct block_device *
60 xfs_find_bdev_for_inode(
61 	struct inode		*inode)
62 {
63 	struct xfs_inode	*ip = XFS_I(inode);
64 	struct xfs_mount	*mp = ip->i_mount;
65 
66 	if (XFS_IS_REALTIME_INODE(ip))
67 		return mp->m_rtdev_targp->bt_bdev;
68 	else
69 		return mp->m_ddev_targp->bt_bdev;
70 }
71 
72 /*
73  * We're now finished for good with this ioend structure.
74  * Update the page state via the associated buffer_heads,
75  * release holds on the inode and bio, and finally free
76  * up memory.  Do not use the ioend after this.
77  */
78 STATIC void
79 xfs_destroy_ioend(
80 	xfs_ioend_t		*ioend)
81 {
82 	struct buffer_head	*bh, *next;
83 
84 	for (bh = ioend->io_buffer_head; bh; bh = next) {
85 		next = bh->b_private;
86 		bh->b_end_io(bh, !ioend->io_error);
87 	}
88 
89 	mempool_free(ioend, xfs_ioend_pool);
90 }
91 
92 /*
93  * Fast and loose check if this write could update the on-disk inode size.
94  */
95 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
96 {
97 	return ioend->io_offset + ioend->io_size >
98 		XFS_I(ioend->io_inode)->i_d.di_size;
99 }
100 
101 STATIC int
102 xfs_setfilesize_trans_alloc(
103 	struct xfs_ioend	*ioend)
104 {
105 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
106 	struct xfs_trans	*tp;
107 	int			error;
108 
109 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
110 
111 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
112 	if (error) {
113 		xfs_trans_cancel(tp, 0);
114 		return error;
115 	}
116 
117 	ioend->io_append_trans = tp;
118 
119 	/*
120 	 * We may pass freeze protection with a transaction.  So tell lockdep
121 	 * we released it.
122 	 */
123 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
124 		      1, _THIS_IP_);
125 	/*
126 	 * We hand off the transaction to the completion thread now, so
127 	 * clear the flag here.
128 	 */
129 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
130 	return 0;
131 }
132 
133 /*
134  * Update on-disk file size now that data has been written to disk.
135  */
136 STATIC int
137 xfs_setfilesize(
138 	struct xfs_ioend	*ioend)
139 {
140 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
141 	struct xfs_trans	*tp = ioend->io_append_trans;
142 	xfs_fsize_t		isize;
143 
144 	/*
145 	 * The transaction may have been allocated in the I/O submission thread,
146 	 * thus we need to mark ourselves as beeing in a transaction manually.
147 	 * Similarly for freeze protection.
148 	 */
149 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
150 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
151 			   0, 1, _THIS_IP_);
152 
153 	xfs_ilock(ip, XFS_ILOCK_EXCL);
154 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
155 	if (!isize) {
156 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
157 		xfs_trans_cancel(tp, 0);
158 		return 0;
159 	}
160 
161 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
162 
163 	ip->i_d.di_size = isize;
164 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
165 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
166 
167 	return xfs_trans_commit(tp, 0);
168 }
169 
170 /*
171  * Schedule IO completion handling on the final put of an ioend.
172  *
173  * If there is no work to do we might as well call it a day and free the
174  * ioend right now.
175  */
176 STATIC void
177 xfs_finish_ioend(
178 	struct xfs_ioend	*ioend)
179 {
180 	if (atomic_dec_and_test(&ioend->io_remaining)) {
181 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
182 
183 		if (ioend->io_type == XFS_IO_UNWRITTEN)
184 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
185 		else if (ioend->io_append_trans ||
186 			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
187 			queue_work(mp->m_data_workqueue, &ioend->io_work);
188 		else
189 			xfs_destroy_ioend(ioend);
190 	}
191 }
192 
193 /*
194  * IO write completion.
195  */
196 STATIC void
197 xfs_end_io(
198 	struct work_struct *work)
199 {
200 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
201 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
202 	int		error = 0;
203 
204 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
205 		ioend->io_error = -EIO;
206 		goto done;
207 	}
208 	if (ioend->io_error)
209 		goto done;
210 
211 	/*
212 	 * For unwritten extents we need to issue transactions to convert a
213 	 * range to normal written extens after the data I/O has finished.
214 	 */
215 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
216 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
217 						  ioend->io_size);
218 	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
219 		/*
220 		 * For direct I/O we do not know if we need to allocate blocks
221 		 * or not so we can't preallocate an append transaction as that
222 		 * results in nested reservations and log space deadlocks. Hence
223 		 * allocate the transaction here. While this is sub-optimal and
224 		 * can block IO completion for some time, we're stuck with doing
225 		 * it this way until we can pass the ioend to the direct IO
226 		 * allocation callbacks and avoid nesting that way.
227 		 */
228 		error = xfs_setfilesize_trans_alloc(ioend);
229 		if (error)
230 			goto done;
231 		error = xfs_setfilesize(ioend);
232 	} else if (ioend->io_append_trans) {
233 		error = xfs_setfilesize(ioend);
234 	} else {
235 		ASSERT(!xfs_ioend_is_append(ioend));
236 	}
237 
238 done:
239 	if (error)
240 		ioend->io_error = -error;
241 	xfs_destroy_ioend(ioend);
242 }
243 
244 /*
245  * Call IO completion handling in caller context on the final put of an ioend.
246  */
247 STATIC void
248 xfs_finish_ioend_sync(
249 	struct xfs_ioend	*ioend)
250 {
251 	if (atomic_dec_and_test(&ioend->io_remaining))
252 		xfs_end_io(&ioend->io_work);
253 }
254 
255 /*
256  * Allocate and initialise an IO completion structure.
257  * We need to track unwritten extent write completion here initially.
258  * We'll need to extend this for updating the ondisk inode size later
259  * (vs. incore size).
260  */
261 STATIC xfs_ioend_t *
262 xfs_alloc_ioend(
263 	struct inode		*inode,
264 	unsigned int		type)
265 {
266 	xfs_ioend_t		*ioend;
267 
268 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
269 
270 	/*
271 	 * Set the count to 1 initially, which will prevent an I/O
272 	 * completion callback from happening before we have started
273 	 * all the I/O from calling the completion routine too early.
274 	 */
275 	atomic_set(&ioend->io_remaining, 1);
276 	ioend->io_isdirect = 0;
277 	ioend->io_error = 0;
278 	ioend->io_list = NULL;
279 	ioend->io_type = type;
280 	ioend->io_inode = inode;
281 	ioend->io_buffer_head = NULL;
282 	ioend->io_buffer_tail = NULL;
283 	ioend->io_offset = 0;
284 	ioend->io_size = 0;
285 	ioend->io_append_trans = NULL;
286 
287 	INIT_WORK(&ioend->io_work, xfs_end_io);
288 	return ioend;
289 }
290 
291 STATIC int
292 xfs_map_blocks(
293 	struct inode		*inode,
294 	loff_t			offset,
295 	struct xfs_bmbt_irec	*imap,
296 	int			type,
297 	int			nonblocking)
298 {
299 	struct xfs_inode	*ip = XFS_I(inode);
300 	struct xfs_mount	*mp = ip->i_mount;
301 	ssize_t			count = 1 << inode->i_blkbits;
302 	xfs_fileoff_t		offset_fsb, end_fsb;
303 	int			error = 0;
304 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
305 	int			nimaps = 1;
306 
307 	if (XFS_FORCED_SHUTDOWN(mp))
308 		return -XFS_ERROR(EIO);
309 
310 	if (type == XFS_IO_UNWRITTEN)
311 		bmapi_flags |= XFS_BMAPI_IGSTATE;
312 
313 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
314 		if (nonblocking)
315 			return -XFS_ERROR(EAGAIN);
316 		xfs_ilock(ip, XFS_ILOCK_SHARED);
317 	}
318 
319 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
320 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
321 	ASSERT(offset <= mp->m_super->s_maxbytes);
322 
323 	if (offset + count > mp->m_super->s_maxbytes)
324 		count = mp->m_super->s_maxbytes - offset;
325 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
326 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
327 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
328 				imap, &nimaps, bmapi_flags);
329 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
330 
331 	if (error)
332 		return -XFS_ERROR(error);
333 
334 	if (type == XFS_IO_DELALLOC &&
335 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
336 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
337 		if (!error)
338 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
339 		return -XFS_ERROR(error);
340 	}
341 
342 #ifdef DEBUG
343 	if (type == XFS_IO_UNWRITTEN) {
344 		ASSERT(nimaps);
345 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
346 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
347 	}
348 #endif
349 	if (nimaps)
350 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
351 	return 0;
352 }
353 
354 STATIC int
355 xfs_imap_valid(
356 	struct inode		*inode,
357 	struct xfs_bmbt_irec	*imap,
358 	xfs_off_t		offset)
359 {
360 	offset >>= inode->i_blkbits;
361 
362 	return offset >= imap->br_startoff &&
363 		offset < imap->br_startoff + imap->br_blockcount;
364 }
365 
366 /*
367  * BIO completion handler for buffered IO.
368  */
369 STATIC void
370 xfs_end_bio(
371 	struct bio		*bio,
372 	int			error)
373 {
374 	xfs_ioend_t		*ioend = bio->bi_private;
375 
376 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
377 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
378 
379 	/* Toss bio and pass work off to an xfsdatad thread */
380 	bio->bi_private = NULL;
381 	bio->bi_end_io = NULL;
382 	bio_put(bio);
383 
384 	xfs_finish_ioend(ioend);
385 }
386 
387 STATIC void
388 xfs_submit_ioend_bio(
389 	struct writeback_control *wbc,
390 	xfs_ioend_t		*ioend,
391 	struct bio		*bio)
392 {
393 	atomic_inc(&ioend->io_remaining);
394 	bio->bi_private = ioend;
395 	bio->bi_end_io = xfs_end_bio;
396 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397 }
398 
399 STATIC struct bio *
400 xfs_alloc_ioend_bio(
401 	struct buffer_head	*bh)
402 {
403 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
404 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
405 
406 	ASSERT(bio->bi_private == NULL);
407 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
408 	bio->bi_bdev = bh->b_bdev;
409 	return bio;
410 }
411 
412 STATIC void
413 xfs_start_buffer_writeback(
414 	struct buffer_head	*bh)
415 {
416 	ASSERT(buffer_mapped(bh));
417 	ASSERT(buffer_locked(bh));
418 	ASSERT(!buffer_delay(bh));
419 	ASSERT(!buffer_unwritten(bh));
420 
421 	mark_buffer_async_write(bh);
422 	set_buffer_uptodate(bh);
423 	clear_buffer_dirty(bh);
424 }
425 
426 STATIC void
427 xfs_start_page_writeback(
428 	struct page		*page,
429 	int			clear_dirty,
430 	int			buffers)
431 {
432 	ASSERT(PageLocked(page));
433 	ASSERT(!PageWriteback(page));
434 	if (clear_dirty)
435 		clear_page_dirty_for_io(page);
436 	set_page_writeback(page);
437 	unlock_page(page);
438 	/* If no buffers on the page are to be written, finish it here */
439 	if (!buffers)
440 		end_page_writeback(page);
441 }
442 
443 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444 {
445 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446 }
447 
448 /*
449  * Submit all of the bios for all of the ioends we have saved up, covering the
450  * initial writepage page and also any probed pages.
451  *
452  * Because we may have multiple ioends spanning a page, we need to start
453  * writeback on all the buffers before we submit them for I/O. If we mark the
454  * buffers as we got, then we can end up with a page that only has buffers
455  * marked async write and I/O complete on can occur before we mark the other
456  * buffers async write.
457  *
458  * The end result of this is that we trip a bug in end_page_writeback() because
459  * we call it twice for the one page as the code in end_buffer_async_write()
460  * assumes that all buffers on the page are started at the same time.
461  *
462  * The fix is two passes across the ioend list - one to start writeback on the
463  * buffer_heads, and then submit them for I/O on the second pass.
464  *
465  * If @fail is non-zero, it means that we have a situation where some part of
466  * the submission process has failed after we have marked paged for writeback
467  * and unlocked them. In this situation, we need to fail the ioend chain rather
468  * than submit it to IO. This typically only happens on a filesystem shutdown.
469  */
470 STATIC void
471 xfs_submit_ioend(
472 	struct writeback_control *wbc,
473 	xfs_ioend_t		*ioend,
474 	int			fail)
475 {
476 	xfs_ioend_t		*head = ioend;
477 	xfs_ioend_t		*next;
478 	struct buffer_head	*bh;
479 	struct bio		*bio;
480 	sector_t		lastblock = 0;
481 
482 	/* Pass 1 - start writeback */
483 	do {
484 		next = ioend->io_list;
485 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
486 			xfs_start_buffer_writeback(bh);
487 	} while ((ioend = next) != NULL);
488 
489 	/* Pass 2 - submit I/O */
490 	ioend = head;
491 	do {
492 		next = ioend->io_list;
493 		bio = NULL;
494 
495 		/*
496 		 * If we are failing the IO now, just mark the ioend with an
497 		 * error and finish it. This will run IO completion immediately
498 		 * as there is only one reference to the ioend at this point in
499 		 * time.
500 		 */
501 		if (fail) {
502 			ioend->io_error = -fail;
503 			xfs_finish_ioend(ioend);
504 			continue;
505 		}
506 
507 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
508 
509 			if (!bio) {
510  retry:
511 				bio = xfs_alloc_ioend_bio(bh);
512 			} else if (bh->b_blocknr != lastblock + 1) {
513 				xfs_submit_ioend_bio(wbc, ioend, bio);
514 				goto retry;
515 			}
516 
517 			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
518 				xfs_submit_ioend_bio(wbc, ioend, bio);
519 				goto retry;
520 			}
521 
522 			lastblock = bh->b_blocknr;
523 		}
524 		if (bio)
525 			xfs_submit_ioend_bio(wbc, ioend, bio);
526 		xfs_finish_ioend(ioend);
527 	} while ((ioend = next) != NULL);
528 }
529 
530 /*
531  * Cancel submission of all buffer_heads so far in this endio.
532  * Toss the endio too.  Only ever called for the initial page
533  * in a writepage request, so only ever one page.
534  */
535 STATIC void
536 xfs_cancel_ioend(
537 	xfs_ioend_t		*ioend)
538 {
539 	xfs_ioend_t		*next;
540 	struct buffer_head	*bh, *next_bh;
541 
542 	do {
543 		next = ioend->io_list;
544 		bh = ioend->io_buffer_head;
545 		do {
546 			next_bh = bh->b_private;
547 			clear_buffer_async_write(bh);
548 			unlock_buffer(bh);
549 		} while ((bh = next_bh) != NULL);
550 
551 		mempool_free(ioend, xfs_ioend_pool);
552 	} while ((ioend = next) != NULL);
553 }
554 
555 /*
556  * Test to see if we've been building up a completion structure for
557  * earlier buffers -- if so, we try to append to this ioend if we
558  * can, otherwise we finish off any current ioend and start another.
559  * Return true if we've finished the given ioend.
560  */
561 STATIC void
562 xfs_add_to_ioend(
563 	struct inode		*inode,
564 	struct buffer_head	*bh,
565 	xfs_off_t		offset,
566 	unsigned int		type,
567 	xfs_ioend_t		**result,
568 	int			need_ioend)
569 {
570 	xfs_ioend_t		*ioend = *result;
571 
572 	if (!ioend || need_ioend || type != ioend->io_type) {
573 		xfs_ioend_t	*previous = *result;
574 
575 		ioend = xfs_alloc_ioend(inode, type);
576 		ioend->io_offset = offset;
577 		ioend->io_buffer_head = bh;
578 		ioend->io_buffer_tail = bh;
579 		if (previous)
580 			previous->io_list = ioend;
581 		*result = ioend;
582 	} else {
583 		ioend->io_buffer_tail->b_private = bh;
584 		ioend->io_buffer_tail = bh;
585 	}
586 
587 	bh->b_private = NULL;
588 	ioend->io_size += bh->b_size;
589 }
590 
591 STATIC void
592 xfs_map_buffer(
593 	struct inode		*inode,
594 	struct buffer_head	*bh,
595 	struct xfs_bmbt_irec	*imap,
596 	xfs_off_t		offset)
597 {
598 	sector_t		bn;
599 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
600 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
601 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
602 
603 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
604 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
605 
606 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
607 	      ((offset - iomap_offset) >> inode->i_blkbits);
608 
609 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
610 
611 	bh->b_blocknr = bn;
612 	set_buffer_mapped(bh);
613 }
614 
615 STATIC void
616 xfs_map_at_offset(
617 	struct inode		*inode,
618 	struct buffer_head	*bh,
619 	struct xfs_bmbt_irec	*imap,
620 	xfs_off_t		offset)
621 {
622 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
623 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
624 
625 	xfs_map_buffer(inode, bh, imap, offset);
626 	set_buffer_mapped(bh);
627 	clear_buffer_delay(bh);
628 	clear_buffer_unwritten(bh);
629 }
630 
631 /*
632  * Test if a given page is suitable for writing as part of an unwritten
633  * or delayed allocate extent.
634  */
635 STATIC int
636 xfs_check_page_type(
637 	struct page		*page,
638 	unsigned int		type)
639 {
640 	if (PageWriteback(page))
641 		return 0;
642 
643 	if (page->mapping && page_has_buffers(page)) {
644 		struct buffer_head	*bh, *head;
645 		int			acceptable = 0;
646 
647 		bh = head = page_buffers(page);
648 		do {
649 			if (buffer_unwritten(bh))
650 				acceptable += (type == XFS_IO_UNWRITTEN);
651 			else if (buffer_delay(bh))
652 				acceptable += (type == XFS_IO_DELALLOC);
653 			else if (buffer_dirty(bh) && buffer_mapped(bh))
654 				acceptable += (type == XFS_IO_OVERWRITE);
655 			else
656 				break;
657 		} while ((bh = bh->b_this_page) != head);
658 
659 		if (acceptable)
660 			return 1;
661 	}
662 
663 	return 0;
664 }
665 
666 /*
667  * Allocate & map buffers for page given the extent map. Write it out.
668  * except for the original page of a writepage, this is called on
669  * delalloc/unwritten pages only, for the original page it is possible
670  * that the page has no mapping at all.
671  */
672 STATIC int
673 xfs_convert_page(
674 	struct inode		*inode,
675 	struct page		*page,
676 	loff_t			tindex,
677 	struct xfs_bmbt_irec	*imap,
678 	xfs_ioend_t		**ioendp,
679 	struct writeback_control *wbc)
680 {
681 	struct buffer_head	*bh, *head;
682 	xfs_off_t		end_offset;
683 	unsigned long		p_offset;
684 	unsigned int		type;
685 	int			len, page_dirty;
686 	int			count = 0, done = 0, uptodate = 1;
687  	xfs_off_t		offset = page_offset(page);
688 
689 	if (page->index != tindex)
690 		goto fail;
691 	if (!trylock_page(page))
692 		goto fail;
693 	if (PageWriteback(page))
694 		goto fail_unlock_page;
695 	if (page->mapping != inode->i_mapping)
696 		goto fail_unlock_page;
697 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
698 		goto fail_unlock_page;
699 
700 	/*
701 	 * page_dirty is initially a count of buffers on the page before
702 	 * EOF and is decremented as we move each into a cleanable state.
703 	 *
704 	 * Derivation:
705 	 *
706 	 * End offset is the highest offset that this page should represent.
707 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
708 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
709 	 * hence give us the correct page_dirty count. On any other page,
710 	 * it will be zero and in that case we need page_dirty to be the
711 	 * count of buffers on the page.
712 	 */
713 	end_offset = min_t(unsigned long long,
714 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
715 			i_size_read(inode));
716 
717 	/*
718 	 * If the current map does not span the entire page we are about to try
719 	 * to write, then give up. The only way we can write a page that spans
720 	 * multiple mappings in a single writeback iteration is via the
721 	 * xfs_vm_writepage() function. Data integrity writeback requires the
722 	 * entire page to be written in a single attempt, otherwise the part of
723 	 * the page we don't write here doesn't get written as part of the data
724 	 * integrity sync.
725 	 *
726 	 * For normal writeback, we also don't attempt to write partial pages
727 	 * here as it simply means that write_cache_pages() will see it under
728 	 * writeback and ignore the page until some point in the future, at
729 	 * which time this will be the only page in the file that needs
730 	 * writeback.  Hence for more optimal IO patterns, we should always
731 	 * avoid partial page writeback due to multiple mappings on a page here.
732 	 */
733 	if (!xfs_imap_valid(inode, imap, end_offset))
734 		goto fail_unlock_page;
735 
736 	len = 1 << inode->i_blkbits;
737 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
738 					PAGE_CACHE_SIZE);
739 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
740 	page_dirty = p_offset / len;
741 
742 	bh = head = page_buffers(page);
743 	do {
744 		if (offset >= end_offset)
745 			break;
746 		if (!buffer_uptodate(bh))
747 			uptodate = 0;
748 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
749 			done = 1;
750 			continue;
751 		}
752 
753 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
754 		    buffer_mapped(bh)) {
755 			if (buffer_unwritten(bh))
756 				type = XFS_IO_UNWRITTEN;
757 			else if (buffer_delay(bh))
758 				type = XFS_IO_DELALLOC;
759 			else
760 				type = XFS_IO_OVERWRITE;
761 
762 			if (!xfs_imap_valid(inode, imap, offset)) {
763 				done = 1;
764 				continue;
765 			}
766 
767 			lock_buffer(bh);
768 			if (type != XFS_IO_OVERWRITE)
769 				xfs_map_at_offset(inode, bh, imap, offset);
770 			xfs_add_to_ioend(inode, bh, offset, type,
771 					 ioendp, done);
772 
773 			page_dirty--;
774 			count++;
775 		} else {
776 			done = 1;
777 		}
778 	} while (offset += len, (bh = bh->b_this_page) != head);
779 
780 	if (uptodate && bh == head)
781 		SetPageUptodate(page);
782 
783 	if (count) {
784 		if (--wbc->nr_to_write <= 0 &&
785 		    wbc->sync_mode == WB_SYNC_NONE)
786 			done = 1;
787 	}
788 	xfs_start_page_writeback(page, !page_dirty, count);
789 
790 	return done;
791  fail_unlock_page:
792 	unlock_page(page);
793  fail:
794 	return 1;
795 }
796 
797 /*
798  * Convert & write out a cluster of pages in the same extent as defined
799  * by mp and following the start page.
800  */
801 STATIC void
802 xfs_cluster_write(
803 	struct inode		*inode,
804 	pgoff_t			tindex,
805 	struct xfs_bmbt_irec	*imap,
806 	xfs_ioend_t		**ioendp,
807 	struct writeback_control *wbc,
808 	pgoff_t			tlast)
809 {
810 	struct pagevec		pvec;
811 	int			done = 0, i;
812 
813 	pagevec_init(&pvec, 0);
814 	while (!done && tindex <= tlast) {
815 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
816 
817 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
818 			break;
819 
820 		for (i = 0; i < pagevec_count(&pvec); i++) {
821 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
822 					imap, ioendp, wbc);
823 			if (done)
824 				break;
825 		}
826 
827 		pagevec_release(&pvec);
828 		cond_resched();
829 	}
830 }
831 
832 STATIC void
833 xfs_vm_invalidatepage(
834 	struct page		*page,
835 	unsigned int		offset,
836 	unsigned int		length)
837 {
838 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
839 				 length);
840 	block_invalidatepage(page, offset, length);
841 }
842 
843 /*
844  * If the page has delalloc buffers on it, we need to punch them out before we
845  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
846  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
847  * is done on that same region - the delalloc extent is returned when none is
848  * supposed to be there.
849  *
850  * We prevent this by truncating away the delalloc regions on the page before
851  * invalidating it. Because they are delalloc, we can do this without needing a
852  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
853  * truncation without a transaction as there is no space left for block
854  * reservation (typically why we see a ENOSPC in writeback).
855  *
856  * This is not a performance critical path, so for now just do the punching a
857  * buffer head at a time.
858  */
859 STATIC void
860 xfs_aops_discard_page(
861 	struct page		*page)
862 {
863 	struct inode		*inode = page->mapping->host;
864 	struct xfs_inode	*ip = XFS_I(inode);
865 	struct buffer_head	*bh, *head;
866 	loff_t			offset = page_offset(page);
867 
868 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
869 		goto out_invalidate;
870 
871 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
872 		goto out_invalidate;
873 
874 	xfs_alert(ip->i_mount,
875 		"page discard on page %p, inode 0x%llx, offset %llu.",
876 			page, ip->i_ino, offset);
877 
878 	xfs_ilock(ip, XFS_ILOCK_EXCL);
879 	bh = head = page_buffers(page);
880 	do {
881 		int		error;
882 		xfs_fileoff_t	start_fsb;
883 
884 		if (!buffer_delay(bh))
885 			goto next_buffer;
886 
887 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
888 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
889 		if (error) {
890 			/* something screwed, just bail */
891 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
892 				xfs_alert(ip->i_mount,
893 			"page discard unable to remove delalloc mapping.");
894 			}
895 			break;
896 		}
897 next_buffer:
898 		offset += 1 << inode->i_blkbits;
899 
900 	} while ((bh = bh->b_this_page) != head);
901 
902 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
903 out_invalidate:
904 	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
905 	return;
906 }
907 
908 /*
909  * Write out a dirty page.
910  *
911  * For delalloc space on the page we need to allocate space and flush it.
912  * For unwritten space on the page we need to start the conversion to
913  * regular allocated space.
914  * For any other dirty buffer heads on the page we should flush them.
915  */
916 STATIC int
917 xfs_vm_writepage(
918 	struct page		*page,
919 	struct writeback_control *wbc)
920 {
921 	struct inode		*inode = page->mapping->host;
922 	struct buffer_head	*bh, *head;
923 	struct xfs_bmbt_irec	imap;
924 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
925 	loff_t			offset;
926 	unsigned int		type;
927 	__uint64_t              end_offset;
928 	pgoff_t                 end_index, last_index;
929 	ssize_t			len;
930 	int			err, imap_valid = 0, uptodate = 1;
931 	int			count = 0;
932 	int			nonblocking = 0;
933 
934 	trace_xfs_writepage(inode, page, 0, 0);
935 
936 	ASSERT(page_has_buffers(page));
937 
938 	/*
939 	 * Refuse to write the page out if we are called from reclaim context.
940 	 *
941 	 * This avoids stack overflows when called from deeply used stacks in
942 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
943 	 * allow reclaim from kswapd as the stack usage there is relatively low.
944 	 *
945 	 * This should never happen except in the case of a VM regression so
946 	 * warn about it.
947 	 */
948 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
949 			PF_MEMALLOC))
950 		goto redirty;
951 
952 	/*
953 	 * Given that we do not allow direct reclaim to call us, we should
954 	 * never be called while in a filesystem transaction.
955 	 */
956 	if (WARN_ON(current->flags & PF_FSTRANS))
957 		goto redirty;
958 
959 	/* Is this page beyond the end of the file? */
960 	offset = i_size_read(inode);
961 	end_index = offset >> PAGE_CACHE_SHIFT;
962 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
963 	if (page->index >= end_index) {
964 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
965 
966 		/*
967 		 * Skip the page if it is fully outside i_size, e.g. due to a
968 		 * truncate operation that is in progress. We must redirty the
969 		 * page so that reclaim stops reclaiming it. Otherwise
970 		 * xfs_vm_releasepage() is called on it and gets confused.
971 		 */
972 		if (page->index >= end_index + 1 || offset_into_page == 0)
973 			goto redirty;
974 
975 		/*
976 		 * The page straddles i_size.  It must be zeroed out on each
977 		 * and every writepage invocation because it may be mmapped.
978 		 * "A file is mapped in multiples of the page size.  For a file
979 		 * that is not a multiple of the  page size, the remaining
980 		 * memory is zeroed when mapped, and writes to that region are
981 		 * not written out to the file."
982 		 */
983 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
984 	}
985 
986 	end_offset = min_t(unsigned long long,
987 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
988 			offset);
989 	len = 1 << inode->i_blkbits;
990 
991 	bh = head = page_buffers(page);
992 	offset = page_offset(page);
993 	type = XFS_IO_OVERWRITE;
994 
995 	if (wbc->sync_mode == WB_SYNC_NONE)
996 		nonblocking = 1;
997 
998 	do {
999 		int new_ioend = 0;
1000 
1001 		if (offset >= end_offset)
1002 			break;
1003 		if (!buffer_uptodate(bh))
1004 			uptodate = 0;
1005 
1006 		/*
1007 		 * set_page_dirty dirties all buffers in a page, independent
1008 		 * of their state.  The dirty state however is entirely
1009 		 * meaningless for holes (!mapped && uptodate), so skip
1010 		 * buffers covering holes here.
1011 		 */
1012 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1013 			imap_valid = 0;
1014 			continue;
1015 		}
1016 
1017 		if (buffer_unwritten(bh)) {
1018 			if (type != XFS_IO_UNWRITTEN) {
1019 				type = XFS_IO_UNWRITTEN;
1020 				imap_valid = 0;
1021 			}
1022 		} else if (buffer_delay(bh)) {
1023 			if (type != XFS_IO_DELALLOC) {
1024 				type = XFS_IO_DELALLOC;
1025 				imap_valid = 0;
1026 			}
1027 		} else if (buffer_uptodate(bh)) {
1028 			if (type != XFS_IO_OVERWRITE) {
1029 				type = XFS_IO_OVERWRITE;
1030 				imap_valid = 0;
1031 			}
1032 		} else {
1033 			if (PageUptodate(page))
1034 				ASSERT(buffer_mapped(bh));
1035 			/*
1036 			 * This buffer is not uptodate and will not be
1037 			 * written to disk.  Ensure that we will put any
1038 			 * subsequent writeable buffers into a new
1039 			 * ioend.
1040 			 */
1041 			imap_valid = 0;
1042 			continue;
1043 		}
1044 
1045 		if (imap_valid)
1046 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1047 		if (!imap_valid) {
1048 			/*
1049 			 * If we didn't have a valid mapping then we need to
1050 			 * put the new mapping into a separate ioend structure.
1051 			 * This ensures non-contiguous extents always have
1052 			 * separate ioends, which is particularly important
1053 			 * for unwritten extent conversion at I/O completion
1054 			 * time.
1055 			 */
1056 			new_ioend = 1;
1057 			err = xfs_map_blocks(inode, offset, &imap, type,
1058 					     nonblocking);
1059 			if (err)
1060 				goto error;
1061 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1062 		}
1063 		if (imap_valid) {
1064 			lock_buffer(bh);
1065 			if (type != XFS_IO_OVERWRITE)
1066 				xfs_map_at_offset(inode, bh, &imap, offset);
1067 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1068 					 new_ioend);
1069 			count++;
1070 		}
1071 
1072 		if (!iohead)
1073 			iohead = ioend;
1074 
1075 	} while (offset += len, ((bh = bh->b_this_page) != head));
1076 
1077 	if (uptodate && bh == head)
1078 		SetPageUptodate(page);
1079 
1080 	xfs_start_page_writeback(page, 1, count);
1081 
1082 	/* if there is no IO to be submitted for this page, we are done */
1083 	if (!ioend)
1084 		return 0;
1085 
1086 	ASSERT(iohead);
1087 
1088 	/*
1089 	 * Any errors from this point onwards need tobe reported through the IO
1090 	 * completion path as we have marked the initial page as under writeback
1091 	 * and unlocked it.
1092 	 */
1093 	if (imap_valid) {
1094 		xfs_off_t		end_index;
1095 
1096 		end_index = imap.br_startoff + imap.br_blockcount;
1097 
1098 		/* to bytes */
1099 		end_index <<= inode->i_blkbits;
1100 
1101 		/* to pages */
1102 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1103 
1104 		/* check against file size */
1105 		if (end_index > last_index)
1106 			end_index = last_index;
1107 
1108 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1109 				  wbc, end_index);
1110 	}
1111 
1112 
1113 	/*
1114 	 * Reserve log space if we might write beyond the on-disk inode size.
1115 	 */
1116 	err = 0;
1117 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1118 		err = xfs_setfilesize_trans_alloc(ioend);
1119 
1120 	xfs_submit_ioend(wbc, iohead, err);
1121 
1122 	return 0;
1123 
1124 error:
1125 	if (iohead)
1126 		xfs_cancel_ioend(iohead);
1127 
1128 	if (err == -EAGAIN)
1129 		goto redirty;
1130 
1131 	xfs_aops_discard_page(page);
1132 	ClearPageUptodate(page);
1133 	unlock_page(page);
1134 	return err;
1135 
1136 redirty:
1137 	redirty_page_for_writepage(wbc, page);
1138 	unlock_page(page);
1139 	return 0;
1140 }
1141 
1142 STATIC int
1143 xfs_vm_writepages(
1144 	struct address_space	*mapping,
1145 	struct writeback_control *wbc)
1146 {
1147 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1148 	return generic_writepages(mapping, wbc);
1149 }
1150 
1151 /*
1152  * Called to move a page into cleanable state - and from there
1153  * to be released. The page should already be clean. We always
1154  * have buffer heads in this call.
1155  *
1156  * Returns 1 if the page is ok to release, 0 otherwise.
1157  */
1158 STATIC int
1159 xfs_vm_releasepage(
1160 	struct page		*page,
1161 	gfp_t			gfp_mask)
1162 {
1163 	int			delalloc, unwritten;
1164 
1165 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1166 
1167 	xfs_count_page_state(page, &delalloc, &unwritten);
1168 
1169 	if (WARN_ON(delalloc))
1170 		return 0;
1171 	if (WARN_ON(unwritten))
1172 		return 0;
1173 
1174 	return try_to_free_buffers(page);
1175 }
1176 
1177 STATIC int
1178 __xfs_get_blocks(
1179 	struct inode		*inode,
1180 	sector_t		iblock,
1181 	struct buffer_head	*bh_result,
1182 	int			create,
1183 	int			direct)
1184 {
1185 	struct xfs_inode	*ip = XFS_I(inode);
1186 	struct xfs_mount	*mp = ip->i_mount;
1187 	xfs_fileoff_t		offset_fsb, end_fsb;
1188 	int			error = 0;
1189 	int			lockmode = 0;
1190 	struct xfs_bmbt_irec	imap;
1191 	int			nimaps = 1;
1192 	xfs_off_t		offset;
1193 	ssize_t			size;
1194 	int			new = 0;
1195 
1196 	if (XFS_FORCED_SHUTDOWN(mp))
1197 		return -XFS_ERROR(EIO);
1198 
1199 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1200 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1201 	size = bh_result->b_size;
1202 
1203 	if (!create && direct && offset >= i_size_read(inode))
1204 		return 0;
1205 
1206 	/*
1207 	 * Direct I/O is usually done on preallocated files, so try getting
1208 	 * a block mapping without an exclusive lock first.  For buffered
1209 	 * writes we already have the exclusive iolock anyway, so avoiding
1210 	 * a lock roundtrip here by taking the ilock exclusive from the
1211 	 * beginning is a useful micro optimization.
1212 	 */
1213 	if (create && !direct) {
1214 		lockmode = XFS_ILOCK_EXCL;
1215 		xfs_ilock(ip, lockmode);
1216 	} else {
1217 		lockmode = xfs_ilock_map_shared(ip);
1218 	}
1219 
1220 	ASSERT(offset <= mp->m_super->s_maxbytes);
1221 	if (offset + size > mp->m_super->s_maxbytes)
1222 		size = mp->m_super->s_maxbytes - offset;
1223 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1224 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1225 
1226 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1227 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1228 	if (error)
1229 		goto out_unlock;
1230 
1231 	if (create &&
1232 	    (!nimaps ||
1233 	     (imap.br_startblock == HOLESTARTBLOCK ||
1234 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1235 		if (direct || xfs_get_extsz_hint(ip)) {
1236 			/*
1237 			 * Drop the ilock in preparation for starting the block
1238 			 * allocation transaction.  It will be retaken
1239 			 * exclusively inside xfs_iomap_write_direct for the
1240 			 * actual allocation.
1241 			 */
1242 			xfs_iunlock(ip, lockmode);
1243 			error = xfs_iomap_write_direct(ip, offset, size,
1244 						       &imap, nimaps);
1245 			if (error)
1246 				return -error;
1247 			new = 1;
1248 		} else {
1249 			/*
1250 			 * Delalloc reservations do not require a transaction,
1251 			 * we can go on without dropping the lock here. If we
1252 			 * are allocating a new delalloc block, make sure that
1253 			 * we set the new flag so that we mark the buffer new so
1254 			 * that we know that it is newly allocated if the write
1255 			 * fails.
1256 			 */
1257 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1258 				new = 1;
1259 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1260 			if (error)
1261 				goto out_unlock;
1262 
1263 			xfs_iunlock(ip, lockmode);
1264 		}
1265 
1266 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1267 	} else if (nimaps) {
1268 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1269 		xfs_iunlock(ip, lockmode);
1270 	} else {
1271 		trace_xfs_get_blocks_notfound(ip, offset, size);
1272 		goto out_unlock;
1273 	}
1274 
1275 	if (imap.br_startblock != HOLESTARTBLOCK &&
1276 	    imap.br_startblock != DELAYSTARTBLOCK) {
1277 		/*
1278 		 * For unwritten extents do not report a disk address on
1279 		 * the read case (treat as if we're reading into a hole).
1280 		 */
1281 		if (create || !ISUNWRITTEN(&imap))
1282 			xfs_map_buffer(inode, bh_result, &imap, offset);
1283 		if (create && ISUNWRITTEN(&imap)) {
1284 			if (direct) {
1285 				bh_result->b_private = inode;
1286 				set_buffer_defer_completion(bh_result);
1287 			}
1288 			set_buffer_unwritten(bh_result);
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * If this is a realtime file, data may be on a different device.
1294 	 * to that pointed to from the buffer_head b_bdev currently.
1295 	 */
1296 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1297 
1298 	/*
1299 	 * If we previously allocated a block out beyond eof and we are now
1300 	 * coming back to use it then we will need to flag it as new even if it
1301 	 * has a disk address.
1302 	 *
1303 	 * With sub-block writes into unwritten extents we also need to mark
1304 	 * the buffer as new so that the unwritten parts of the buffer gets
1305 	 * correctly zeroed.
1306 	 */
1307 	if (create &&
1308 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1309 	     (offset >= i_size_read(inode)) ||
1310 	     (new || ISUNWRITTEN(&imap))))
1311 		set_buffer_new(bh_result);
1312 
1313 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1314 		BUG_ON(direct);
1315 		if (create) {
1316 			set_buffer_uptodate(bh_result);
1317 			set_buffer_mapped(bh_result);
1318 			set_buffer_delay(bh_result);
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * If this is O_DIRECT or the mpage code calling tell them how large
1324 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1325 	 */
1326 	if (direct || size > (1 << inode->i_blkbits)) {
1327 		xfs_off_t		mapping_size;
1328 
1329 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1330 		mapping_size <<= inode->i_blkbits;
1331 
1332 		ASSERT(mapping_size > 0);
1333 		if (mapping_size > size)
1334 			mapping_size = size;
1335 		if (mapping_size > LONG_MAX)
1336 			mapping_size = LONG_MAX;
1337 
1338 		bh_result->b_size = mapping_size;
1339 	}
1340 
1341 	return 0;
1342 
1343 out_unlock:
1344 	xfs_iunlock(ip, lockmode);
1345 	return -error;
1346 }
1347 
1348 int
1349 xfs_get_blocks(
1350 	struct inode		*inode,
1351 	sector_t		iblock,
1352 	struct buffer_head	*bh_result,
1353 	int			create)
1354 {
1355 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1356 }
1357 
1358 STATIC int
1359 xfs_get_blocks_direct(
1360 	struct inode		*inode,
1361 	sector_t		iblock,
1362 	struct buffer_head	*bh_result,
1363 	int			create)
1364 {
1365 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1366 }
1367 
1368 /*
1369  * Complete a direct I/O write request.
1370  *
1371  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1372  * need to issue a transaction to convert the range from unwritten to written
1373  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1374  * to do this and we are done.  But in case this was a successful AIO
1375  * request this handler is called from interrupt context, from which we
1376  * can't start transactions.  In that case offload the I/O completion to
1377  * the workqueues we also use for buffered I/O completion.
1378  */
1379 STATIC void
1380 xfs_end_io_direct_write(
1381 	struct kiocb		*iocb,
1382 	loff_t			offset,
1383 	ssize_t			size,
1384 	void			*private)
1385 {
1386 	struct xfs_ioend	*ioend = iocb->private;
1387 
1388 	/*
1389 	 * While the generic direct I/O code updates the inode size, it does
1390 	 * so only after the end_io handler is called, which means our
1391 	 * end_io handler thinks the on-disk size is outside the in-core
1392 	 * size.  To prevent this just update it a little bit earlier here.
1393 	 */
1394 	if (offset + size > i_size_read(ioend->io_inode))
1395 		i_size_write(ioend->io_inode, offset + size);
1396 
1397 	/*
1398 	 * blockdev_direct_IO can return an error even after the I/O
1399 	 * completion handler was called.  Thus we need to protect
1400 	 * against double-freeing.
1401 	 */
1402 	iocb->private = NULL;
1403 
1404 	ioend->io_offset = offset;
1405 	ioend->io_size = size;
1406 	if (private && size > 0)
1407 		ioend->io_type = XFS_IO_UNWRITTEN;
1408 
1409 	xfs_finish_ioend_sync(ioend);
1410 }
1411 
1412 STATIC ssize_t
1413 xfs_vm_direct_IO(
1414 	int			rw,
1415 	struct kiocb		*iocb,
1416 	const struct iovec	*iov,
1417 	loff_t			offset,
1418 	unsigned long		nr_segs)
1419 {
1420 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1421 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1422 	struct xfs_ioend	*ioend = NULL;
1423 	ssize_t			ret;
1424 
1425 	if (rw & WRITE) {
1426 		size_t size = iov_length(iov, nr_segs);
1427 
1428 		/*
1429 		 * We cannot preallocate a size update transaction here as we
1430 		 * don't know whether allocation is necessary or not. Hence we
1431 		 * can only tell IO completion that one is necessary if we are
1432 		 * not doing unwritten extent conversion.
1433 		 */
1434 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1435 		if (offset + size > XFS_I(inode)->i_d.di_size)
1436 			ioend->io_isdirect = 1;
1437 
1438 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1439 					    offset, nr_segs,
1440 					    xfs_get_blocks_direct,
1441 					    xfs_end_io_direct_write, NULL, 0);
1442 		if (ret != -EIOCBQUEUED && iocb->private)
1443 			goto out_destroy_ioend;
1444 	} else {
1445 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1446 					    offset, nr_segs,
1447 					    xfs_get_blocks_direct,
1448 					    NULL, NULL, 0);
1449 	}
1450 
1451 	return ret;
1452 
1453 out_destroy_ioend:
1454 	xfs_destroy_ioend(ioend);
1455 	return ret;
1456 }
1457 
1458 /*
1459  * Punch out the delalloc blocks we have already allocated.
1460  *
1461  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1462  * as the page is still locked at this point.
1463  */
1464 STATIC void
1465 xfs_vm_kill_delalloc_range(
1466 	struct inode		*inode,
1467 	loff_t			start,
1468 	loff_t			end)
1469 {
1470 	struct xfs_inode	*ip = XFS_I(inode);
1471 	xfs_fileoff_t		start_fsb;
1472 	xfs_fileoff_t		end_fsb;
1473 	int			error;
1474 
1475 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1476 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1477 	if (end_fsb <= start_fsb)
1478 		return;
1479 
1480 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1481 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1482 						end_fsb - start_fsb);
1483 	if (error) {
1484 		/* something screwed, just bail */
1485 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1486 			xfs_alert(ip->i_mount,
1487 		"xfs_vm_write_failed: unable to clean up ino %lld",
1488 					ip->i_ino);
1489 		}
1490 	}
1491 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1492 }
1493 
1494 STATIC void
1495 xfs_vm_write_failed(
1496 	struct inode		*inode,
1497 	struct page		*page,
1498 	loff_t			pos,
1499 	unsigned		len)
1500 {
1501 	loff_t			block_offset;
1502 	loff_t			block_start;
1503 	loff_t			block_end;
1504 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1505 	loff_t			to = from + len;
1506 	struct buffer_head	*bh, *head;
1507 
1508 	/*
1509 	 * The request pos offset might be 32 or 64 bit, this is all fine
1510 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1511 	 * platform, the high 32-bit will be masked off if we evaluate the
1512 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1513 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1514 	 * which could cause the following ASSERT failed in most cases.
1515 	 * In order to avoid this, we can evaluate the block_offset of the
1516 	 * start of the page by using shifts rather than masks the mismatch
1517 	 * problem.
1518 	 */
1519 	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1520 
1521 	ASSERT(block_offset + from == pos);
1522 
1523 	head = page_buffers(page);
1524 	block_start = 0;
1525 	for (bh = head; bh != head || !block_start;
1526 	     bh = bh->b_this_page, block_start = block_end,
1527 				   block_offset += bh->b_size) {
1528 		block_end = block_start + bh->b_size;
1529 
1530 		/* skip buffers before the write */
1531 		if (block_end <= from)
1532 			continue;
1533 
1534 		/* if the buffer is after the write, we're done */
1535 		if (block_start >= to)
1536 			break;
1537 
1538 		if (!buffer_delay(bh))
1539 			continue;
1540 
1541 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1542 			continue;
1543 
1544 		xfs_vm_kill_delalloc_range(inode, block_offset,
1545 					   block_offset + bh->b_size);
1546 	}
1547 
1548 }
1549 
1550 /*
1551  * This used to call block_write_begin(), but it unlocks and releases the page
1552  * on error, and we need that page to be able to punch stale delalloc blocks out
1553  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1554  * the appropriate point.
1555  */
1556 STATIC int
1557 xfs_vm_write_begin(
1558 	struct file		*file,
1559 	struct address_space	*mapping,
1560 	loff_t			pos,
1561 	unsigned		len,
1562 	unsigned		flags,
1563 	struct page		**pagep,
1564 	void			**fsdata)
1565 {
1566 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1567 	struct page		*page;
1568 	int			status;
1569 
1570 	ASSERT(len <= PAGE_CACHE_SIZE);
1571 
1572 	page = grab_cache_page_write_begin(mapping, index,
1573 					   flags | AOP_FLAG_NOFS);
1574 	if (!page)
1575 		return -ENOMEM;
1576 
1577 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1578 	if (unlikely(status)) {
1579 		struct inode	*inode = mapping->host;
1580 
1581 		xfs_vm_write_failed(inode, page, pos, len);
1582 		unlock_page(page);
1583 
1584 		if (pos + len > i_size_read(inode))
1585 			truncate_pagecache(inode, i_size_read(inode));
1586 
1587 		page_cache_release(page);
1588 		page = NULL;
1589 	}
1590 
1591 	*pagep = page;
1592 	return status;
1593 }
1594 
1595 /*
1596  * On failure, we only need to kill delalloc blocks beyond EOF because they
1597  * will never be written. For blocks within EOF, generic_write_end() zeros them
1598  * so they are safe to leave alone and be written with all the other valid data.
1599  */
1600 STATIC int
1601 xfs_vm_write_end(
1602 	struct file		*file,
1603 	struct address_space	*mapping,
1604 	loff_t			pos,
1605 	unsigned		len,
1606 	unsigned		copied,
1607 	struct page		*page,
1608 	void			*fsdata)
1609 {
1610 	int			ret;
1611 
1612 	ASSERT(len <= PAGE_CACHE_SIZE);
1613 
1614 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1615 	if (unlikely(ret < len)) {
1616 		struct inode	*inode = mapping->host;
1617 		size_t		isize = i_size_read(inode);
1618 		loff_t		to = pos + len;
1619 
1620 		if (to > isize) {
1621 			truncate_pagecache(inode, isize);
1622 			xfs_vm_kill_delalloc_range(inode, isize, to);
1623 		}
1624 	}
1625 	return ret;
1626 }
1627 
1628 STATIC sector_t
1629 xfs_vm_bmap(
1630 	struct address_space	*mapping,
1631 	sector_t		block)
1632 {
1633 	struct inode		*inode = (struct inode *)mapping->host;
1634 	struct xfs_inode	*ip = XFS_I(inode);
1635 
1636 	trace_xfs_vm_bmap(XFS_I(inode));
1637 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1638 	filemap_write_and_wait(mapping);
1639 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1640 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1641 }
1642 
1643 STATIC int
1644 xfs_vm_readpage(
1645 	struct file		*unused,
1646 	struct page		*page)
1647 {
1648 	return mpage_readpage(page, xfs_get_blocks);
1649 }
1650 
1651 STATIC int
1652 xfs_vm_readpages(
1653 	struct file		*unused,
1654 	struct address_space	*mapping,
1655 	struct list_head	*pages,
1656 	unsigned		nr_pages)
1657 {
1658 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1659 }
1660 
1661 const struct address_space_operations xfs_address_space_operations = {
1662 	.readpage		= xfs_vm_readpage,
1663 	.readpages		= xfs_vm_readpages,
1664 	.writepage		= xfs_vm_writepage,
1665 	.writepages		= xfs_vm_writepages,
1666 	.releasepage		= xfs_vm_releasepage,
1667 	.invalidatepage		= xfs_vm_invalidatepage,
1668 	.write_begin		= xfs_vm_write_begin,
1669 	.write_end		= xfs_vm_write_end,
1670 	.bmap			= xfs_vm_bmap,
1671 	.direct_IO		= xfs_vm_direct_IO,
1672 	.migratepage		= buffer_migrate_page,
1673 	.is_partially_uptodate  = block_is_partially_uptodate,
1674 	.error_remove_page	= generic_error_remove_page,
1675 };
1676