1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 21 struct xfs_writepage_ctx { 22 struct iomap_writepage_ctx ctx; 23 unsigned int data_seq; 24 unsigned int cow_seq; 25 }; 26 27 static inline struct xfs_writepage_ctx * 28 XFS_WPC(struct iomap_writepage_ctx *ctx) 29 { 30 return container_of(ctx, struct xfs_writepage_ctx, ctx); 31 } 32 33 /* 34 * Fast and loose check if this write could update the on-disk inode size. 35 */ 36 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 37 { 38 return ioend->io_offset + ioend->io_size > 39 XFS_I(ioend->io_inode)->i_disk_size; 40 } 41 42 /* 43 * Update on-disk file size now that data has been written to disk. 44 */ 45 int 46 xfs_setfilesize( 47 struct xfs_inode *ip, 48 xfs_off_t offset, 49 size_t size) 50 { 51 struct xfs_mount *mp = ip->i_mount; 52 struct xfs_trans *tp; 53 xfs_fsize_t isize; 54 int error; 55 56 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 57 if (error) 58 return error; 59 60 xfs_ilock(ip, XFS_ILOCK_EXCL); 61 isize = xfs_new_eof(ip, offset + size); 62 if (!isize) { 63 xfs_iunlock(ip, XFS_ILOCK_EXCL); 64 xfs_trans_cancel(tp); 65 return 0; 66 } 67 68 trace_xfs_setfilesize(ip, offset, size); 69 70 ip->i_disk_size = isize; 71 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 72 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 73 74 return xfs_trans_commit(tp); 75 } 76 77 /* 78 * IO write completion. 79 */ 80 STATIC void 81 xfs_end_ioend( 82 struct iomap_ioend *ioend) 83 { 84 struct xfs_inode *ip = XFS_I(ioend->io_inode); 85 struct xfs_mount *mp = ip->i_mount; 86 xfs_off_t offset = ioend->io_offset; 87 size_t size = ioend->io_size; 88 unsigned int nofs_flag; 89 int error; 90 91 /* 92 * We can allocate memory here while doing writeback on behalf of 93 * memory reclaim. To avoid memory allocation deadlocks set the 94 * task-wide nofs context for the following operations. 95 */ 96 nofs_flag = memalloc_nofs_save(); 97 98 /* 99 * Just clean up the in-memory structures if the fs has been shut down. 100 */ 101 if (xfs_is_shutdown(mp)) { 102 error = -EIO; 103 goto done; 104 } 105 106 /* 107 * Clean up all COW blocks and underlying data fork delalloc blocks on 108 * I/O error. The delalloc punch is required because this ioend was 109 * mapped to blocks in the COW fork and the associated pages are no 110 * longer dirty. If we don't remove delalloc blocks here, they become 111 * stale and can corrupt free space accounting on unmount. 112 */ 113 error = blk_status_to_errno(ioend->io_bio->bi_status); 114 if (unlikely(error)) { 115 if (ioend->io_flags & IOMAP_F_SHARED) { 116 xfs_reflink_cancel_cow_range(ip, offset, size, true); 117 xfs_bmap_punch_delalloc_range(ip, 118 XFS_B_TO_FSBT(mp, offset), 119 XFS_B_TO_FSB(mp, size)); 120 } 121 goto done; 122 } 123 124 /* 125 * Success: commit the COW or unwritten blocks if needed. 126 */ 127 if (ioend->io_flags & IOMAP_F_SHARED) 128 error = xfs_reflink_end_cow(ip, offset, size); 129 else if (ioend->io_type == IOMAP_UNWRITTEN) 130 error = xfs_iomap_write_unwritten(ip, offset, size, false); 131 132 if (!error && xfs_ioend_is_append(ioend)) 133 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 134 done: 135 iomap_finish_ioends(ioend, error); 136 memalloc_nofs_restore(nofs_flag); 137 } 138 139 /* Finish all pending io completions. */ 140 void 141 xfs_end_io( 142 struct work_struct *work) 143 { 144 struct xfs_inode *ip = 145 container_of(work, struct xfs_inode, i_ioend_work); 146 struct iomap_ioend *ioend; 147 struct list_head tmp; 148 unsigned long flags; 149 150 spin_lock_irqsave(&ip->i_ioend_lock, flags); 151 list_replace_init(&ip->i_ioend_list, &tmp); 152 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 153 154 iomap_sort_ioends(&tmp); 155 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 156 io_list))) { 157 list_del_init(&ioend->io_list); 158 iomap_ioend_try_merge(ioend, &tmp); 159 xfs_end_ioend(ioend); 160 } 161 } 162 163 STATIC void 164 xfs_end_bio( 165 struct bio *bio) 166 { 167 struct iomap_ioend *ioend = bio->bi_private; 168 struct xfs_inode *ip = XFS_I(ioend->io_inode); 169 unsigned long flags; 170 171 spin_lock_irqsave(&ip->i_ioend_lock, flags); 172 if (list_empty(&ip->i_ioend_list)) 173 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 174 &ip->i_ioend_work)); 175 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 176 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 177 } 178 179 /* 180 * Fast revalidation of the cached writeback mapping. Return true if the current 181 * mapping is valid, false otherwise. 182 */ 183 static bool 184 xfs_imap_valid( 185 struct iomap_writepage_ctx *wpc, 186 struct xfs_inode *ip, 187 loff_t offset) 188 { 189 if (offset < wpc->iomap.offset || 190 offset >= wpc->iomap.offset + wpc->iomap.length) 191 return false; 192 /* 193 * If this is a COW mapping, it is sufficient to check that the mapping 194 * covers the offset. Be careful to check this first because the caller 195 * can revalidate a COW mapping without updating the data seqno. 196 */ 197 if (wpc->iomap.flags & IOMAP_F_SHARED) 198 return true; 199 200 /* 201 * This is not a COW mapping. Check the sequence number of the data fork 202 * because concurrent changes could have invalidated the extent. Check 203 * the COW fork because concurrent changes since the last time we 204 * checked (and found nothing at this offset) could have added 205 * overlapping blocks. 206 */ 207 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) 208 return false; 209 if (xfs_inode_has_cow_data(ip) && 210 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 211 return false; 212 return true; 213 } 214 215 /* 216 * Pass in a dellalloc extent and convert it to real extents, return the real 217 * extent that maps offset_fsb in wpc->iomap. 218 * 219 * The current page is held locked so nothing could have removed the block 220 * backing offset_fsb, although it could have moved from the COW to the data 221 * fork by another thread. 222 */ 223 static int 224 xfs_convert_blocks( 225 struct iomap_writepage_ctx *wpc, 226 struct xfs_inode *ip, 227 int whichfork, 228 loff_t offset) 229 { 230 int error; 231 unsigned *seq; 232 233 if (whichfork == XFS_COW_FORK) 234 seq = &XFS_WPC(wpc)->cow_seq; 235 else 236 seq = &XFS_WPC(wpc)->data_seq; 237 238 /* 239 * Attempt to allocate whatever delalloc extent currently backs offset 240 * and put the result into wpc->iomap. Allocate in a loop because it 241 * may take several attempts to allocate real blocks for a contiguous 242 * delalloc extent if free space is sufficiently fragmented. 243 */ 244 do { 245 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 246 &wpc->iomap, seq); 247 if (error) 248 return error; 249 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 250 251 return 0; 252 } 253 254 static int 255 xfs_map_blocks( 256 struct iomap_writepage_ctx *wpc, 257 struct inode *inode, 258 loff_t offset) 259 { 260 struct xfs_inode *ip = XFS_I(inode); 261 struct xfs_mount *mp = ip->i_mount; 262 ssize_t count = i_blocksize(inode); 263 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 264 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 265 xfs_fileoff_t cow_fsb; 266 int whichfork; 267 struct xfs_bmbt_irec imap; 268 struct xfs_iext_cursor icur; 269 int retries = 0; 270 int error = 0; 271 272 if (xfs_is_shutdown(mp)) 273 return -EIO; 274 275 /* 276 * COW fork blocks can overlap data fork blocks even if the blocks 277 * aren't shared. COW I/O always takes precedent, so we must always 278 * check for overlap on reflink inodes unless the mapping is already a 279 * COW one, or the COW fork hasn't changed from the last time we looked 280 * at it. 281 * 282 * It's safe to check the COW fork if_seq here without the ILOCK because 283 * we've indirectly protected against concurrent updates: writeback has 284 * the page locked, which prevents concurrent invalidations by reflink 285 * and directio and prevents concurrent buffered writes to the same 286 * page. Changes to if_seq always happen under i_lock, which protects 287 * against concurrent updates and provides a memory barrier on the way 288 * out that ensures that we always see the current value. 289 */ 290 if (xfs_imap_valid(wpc, ip, offset)) 291 return 0; 292 293 /* 294 * If we don't have a valid map, now it's time to get a new one for this 295 * offset. This will convert delayed allocations (including COW ones) 296 * into real extents. If we return without a valid map, it means we 297 * landed in a hole and we skip the block. 298 */ 299 retry: 300 cow_fsb = NULLFILEOFF; 301 whichfork = XFS_DATA_FORK; 302 xfs_ilock(ip, XFS_ILOCK_SHARED); 303 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 304 305 /* 306 * Check if this is offset is covered by a COW extents, and if yes use 307 * it directly instead of looking up anything in the data fork. 308 */ 309 if (xfs_inode_has_cow_data(ip) && 310 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 311 cow_fsb = imap.br_startoff; 312 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 313 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 314 xfs_iunlock(ip, XFS_ILOCK_SHARED); 315 316 whichfork = XFS_COW_FORK; 317 goto allocate_blocks; 318 } 319 320 /* 321 * No COW extent overlap. Revalidate now that we may have updated 322 * ->cow_seq. If the data mapping is still valid, we're done. 323 */ 324 if (xfs_imap_valid(wpc, ip, offset)) { 325 xfs_iunlock(ip, XFS_ILOCK_SHARED); 326 return 0; 327 } 328 329 /* 330 * If we don't have a valid map, now it's time to get a new one for this 331 * offset. This will convert delayed allocations (including COW ones) 332 * into real extents. 333 */ 334 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 335 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 336 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 337 xfs_iunlock(ip, XFS_ILOCK_SHARED); 338 339 /* landed in a hole or beyond EOF? */ 340 if (imap.br_startoff > offset_fsb) { 341 imap.br_blockcount = imap.br_startoff - offset_fsb; 342 imap.br_startoff = offset_fsb; 343 imap.br_startblock = HOLESTARTBLOCK; 344 imap.br_state = XFS_EXT_NORM; 345 } 346 347 /* 348 * Truncate to the next COW extent if there is one. This is the only 349 * opportunity to do this because we can skip COW fork lookups for the 350 * subsequent blocks in the mapping; however, the requirement to treat 351 * the COW range separately remains. 352 */ 353 if (cow_fsb != NULLFILEOFF && 354 cow_fsb < imap.br_startoff + imap.br_blockcount) 355 imap.br_blockcount = cow_fsb - imap.br_startoff; 356 357 /* got a delalloc extent? */ 358 if (imap.br_startblock != HOLESTARTBLOCK && 359 isnullstartblock(imap.br_startblock)) 360 goto allocate_blocks; 361 362 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); 363 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 364 return 0; 365 allocate_blocks: 366 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 367 if (error) { 368 /* 369 * If we failed to find the extent in the COW fork we might have 370 * raced with a COW to data fork conversion or truncate. 371 * Restart the lookup to catch the extent in the data fork for 372 * the former case, but prevent additional retries to avoid 373 * looping forever for the latter case. 374 */ 375 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 376 goto retry; 377 ASSERT(error != -EAGAIN); 378 return error; 379 } 380 381 /* 382 * Due to merging the return real extent might be larger than the 383 * original delalloc one. Trim the return extent to the next COW 384 * boundary again to force a re-lookup. 385 */ 386 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 387 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 388 389 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 390 wpc->iomap.length = cow_offset - wpc->iomap.offset; 391 } 392 393 ASSERT(wpc->iomap.offset <= offset); 394 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 395 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 396 return 0; 397 } 398 399 static int 400 xfs_prepare_ioend( 401 struct iomap_ioend *ioend, 402 int status) 403 { 404 unsigned int nofs_flag; 405 406 /* 407 * We can allocate memory here while doing writeback on behalf of 408 * memory reclaim. To avoid memory allocation deadlocks set the 409 * task-wide nofs context for the following operations. 410 */ 411 nofs_flag = memalloc_nofs_save(); 412 413 /* Convert CoW extents to regular */ 414 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 415 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 416 ioend->io_offset, ioend->io_size); 417 } 418 419 memalloc_nofs_restore(nofs_flag); 420 421 /* send ioends that might require a transaction to the completion wq */ 422 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || 423 (ioend->io_flags & IOMAP_F_SHARED)) 424 ioend->io_bio->bi_end_io = xfs_end_bio; 425 return status; 426 } 427 428 /* 429 * If the page has delalloc blocks on it, we need to punch them out before we 430 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 431 * inode that can trip up a later direct I/O read operation on the same region. 432 * 433 * We prevent this by truncating away the delalloc regions on the page. Because 434 * they are delalloc, we can do this without needing a transaction. Indeed - if 435 * we get ENOSPC errors, we have to be able to do this truncation without a 436 * transaction as there is no space left for block reservation (typically why we 437 * see a ENOSPC in writeback). 438 */ 439 static void 440 xfs_discard_page( 441 struct page *page, 442 loff_t fileoff) 443 { 444 struct inode *inode = page->mapping->host; 445 struct xfs_inode *ip = XFS_I(inode); 446 struct xfs_mount *mp = ip->i_mount; 447 unsigned int pageoff = offset_in_page(fileoff); 448 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff); 449 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff); 450 int error; 451 452 if (xfs_is_shutdown(mp)) 453 goto out_invalidate; 454 455 xfs_alert_ratelimited(mp, 456 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 457 page, ip->i_ino, fileoff); 458 459 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 460 i_blocks_per_page(inode, page) - pageoff_fsb); 461 if (error && !xfs_is_shutdown(mp)) 462 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 463 out_invalidate: 464 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff); 465 } 466 467 static const struct iomap_writeback_ops xfs_writeback_ops = { 468 .map_blocks = xfs_map_blocks, 469 .prepare_ioend = xfs_prepare_ioend, 470 .discard_page = xfs_discard_page, 471 }; 472 473 STATIC int 474 xfs_vm_writepages( 475 struct address_space *mapping, 476 struct writeback_control *wbc) 477 { 478 struct xfs_writepage_ctx wpc = { }; 479 480 /* 481 * Writing back data in a transaction context can result in recursive 482 * transactions. This is bad, so issue a warning and get out of here. 483 */ 484 if (WARN_ON_ONCE(current->journal_info)) 485 return 0; 486 487 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 488 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 489 } 490 491 STATIC int 492 xfs_dax_writepages( 493 struct address_space *mapping, 494 struct writeback_control *wbc) 495 { 496 struct xfs_inode *ip = XFS_I(mapping->host); 497 498 xfs_iflags_clear(ip, XFS_ITRUNCATED); 499 return dax_writeback_mapping_range(mapping, 500 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 501 } 502 503 STATIC sector_t 504 xfs_vm_bmap( 505 struct address_space *mapping, 506 sector_t block) 507 { 508 struct xfs_inode *ip = XFS_I(mapping->host); 509 510 trace_xfs_vm_bmap(ip); 511 512 /* 513 * The swap code (ab-)uses ->bmap to get a block mapping and then 514 * bypasses the file system for actual I/O. We really can't allow 515 * that on reflinks inodes, so we have to skip out here. And yes, 516 * 0 is the magic code for a bmap error. 517 * 518 * Since we don't pass back blockdev info, we can't return bmap 519 * information for rt files either. 520 */ 521 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 522 return 0; 523 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 524 } 525 526 STATIC int 527 xfs_vm_readpage( 528 struct file *unused, 529 struct page *page) 530 { 531 return iomap_readpage(page, &xfs_read_iomap_ops); 532 } 533 534 STATIC void 535 xfs_vm_readahead( 536 struct readahead_control *rac) 537 { 538 iomap_readahead(rac, &xfs_read_iomap_ops); 539 } 540 541 static int 542 xfs_iomap_swapfile_activate( 543 struct swap_info_struct *sis, 544 struct file *swap_file, 545 sector_t *span) 546 { 547 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 548 return iomap_swapfile_activate(sis, swap_file, span, 549 &xfs_read_iomap_ops); 550 } 551 552 const struct address_space_operations xfs_address_space_operations = { 553 .readpage = xfs_vm_readpage, 554 .readahead = xfs_vm_readahead, 555 .writepages = xfs_vm_writepages, 556 .set_page_dirty = __set_page_dirty_nobuffers, 557 .releasepage = iomap_releasepage, 558 .invalidatepage = iomap_invalidatepage, 559 .bmap = xfs_vm_bmap, 560 .direct_IO = noop_direct_IO, 561 .migratepage = iomap_migrate_page, 562 .is_partially_uptodate = iomap_is_partially_uptodate, 563 .error_remove_page = generic_error_remove_page, 564 .swap_activate = xfs_iomap_swapfile_activate, 565 }; 566 567 const struct address_space_operations xfs_dax_aops = { 568 .writepages = xfs_dax_writepages, 569 .direct_IO = noop_direct_IO, 570 .set_page_dirty = __set_page_dirty_no_writeback, 571 .invalidatepage = noop_invalidatepage, 572 .swap_activate = xfs_iomap_swapfile_activate, 573 }; 574