xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 1eb4c977)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_alloc.h"
31 #include "xfs_error.h"
32 #include "xfs_rw.h"
33 #include "xfs_iomap.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_trace.h"
36 #include "xfs_bmap.h"
37 #include <linux/gfp.h>
38 #include <linux/mpage.h>
39 #include <linux/pagevec.h>
40 #include <linux/writeback.h>
41 
42 void
43 xfs_count_page_state(
44 	struct page		*page,
45 	int			*delalloc,
46 	int			*unwritten)
47 {
48 	struct buffer_head	*bh, *head;
49 
50 	*delalloc = *unwritten = 0;
51 
52 	bh = head = page_buffers(page);
53 	do {
54 		if (buffer_unwritten(bh))
55 			(*unwritten) = 1;
56 		else if (buffer_delay(bh))
57 			(*delalloc) = 1;
58 	} while ((bh = bh->b_this_page) != head);
59 }
60 
61 STATIC struct block_device *
62 xfs_find_bdev_for_inode(
63 	struct inode		*inode)
64 {
65 	struct xfs_inode	*ip = XFS_I(inode);
66 	struct xfs_mount	*mp = ip->i_mount;
67 
68 	if (XFS_IS_REALTIME_INODE(ip))
69 		return mp->m_rtdev_targp->bt_bdev;
70 	else
71 		return mp->m_ddev_targp->bt_bdev;
72 }
73 
74 /*
75  * We're now finished for good with this ioend structure.
76  * Update the page state via the associated buffer_heads,
77  * release holds on the inode and bio, and finally free
78  * up memory.  Do not use the ioend after this.
79  */
80 STATIC void
81 xfs_destroy_ioend(
82 	xfs_ioend_t		*ioend)
83 {
84 	struct buffer_head	*bh, *next;
85 
86 	for (bh = ioend->io_buffer_head; bh; bh = next) {
87 		next = bh->b_private;
88 		bh->b_end_io(bh, !ioend->io_error);
89 	}
90 
91 	if (ioend->io_iocb) {
92 		if (ioend->io_isasync) {
93 			aio_complete(ioend->io_iocb, ioend->io_error ?
94 					ioend->io_error : ioend->io_result, 0);
95 		}
96 		inode_dio_done(ioend->io_inode);
97 	}
98 
99 	mempool_free(ioend, xfs_ioend_pool);
100 }
101 
102 /*
103  * Fast and loose check if this write could update the on-disk inode size.
104  */
105 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
106 {
107 	return ioend->io_offset + ioend->io_size >
108 		XFS_I(ioend->io_inode)->i_d.di_size;
109 }
110 
111 STATIC int
112 xfs_setfilesize_trans_alloc(
113 	struct xfs_ioend	*ioend)
114 {
115 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
116 	struct xfs_trans	*tp;
117 	int			error;
118 
119 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
120 
121 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
122 	if (error) {
123 		xfs_trans_cancel(tp, 0);
124 		return error;
125 	}
126 
127 	ioend->io_append_trans = tp;
128 
129 	/*
130 	 * We hand off the transaction to the completion thread now, so
131 	 * clear the flag here.
132 	 */
133 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
134 	return 0;
135 }
136 
137 /*
138  * Update on-disk file size now that data has been written to disk.
139  */
140 STATIC int
141 xfs_setfilesize(
142 	struct xfs_ioend	*ioend)
143 {
144 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
145 	struct xfs_trans	*tp = ioend->io_append_trans;
146 	xfs_fsize_t		isize;
147 
148 	/*
149 	 * The transaction was allocated in the I/O submission thread,
150 	 * thus we need to mark ourselves as beeing in a transaction
151 	 * manually.
152 	 */
153 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
154 
155 	xfs_ilock(ip, XFS_ILOCK_EXCL);
156 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
157 	if (!isize) {
158 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
159 		xfs_trans_cancel(tp, 0);
160 		return 0;
161 	}
162 
163 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
164 
165 	ip->i_d.di_size = isize;
166 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
167 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
168 
169 	return xfs_trans_commit(tp, 0);
170 }
171 
172 /*
173  * Schedule IO completion handling on the final put of an ioend.
174  *
175  * If there is no work to do we might as well call it a day and free the
176  * ioend right now.
177  */
178 STATIC void
179 xfs_finish_ioend(
180 	struct xfs_ioend	*ioend)
181 {
182 	if (atomic_dec_and_test(&ioend->io_remaining)) {
183 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
184 
185 		if (ioend->io_type == IO_UNWRITTEN)
186 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
187 		else if (ioend->io_append_trans)
188 			queue_work(mp->m_data_workqueue, &ioend->io_work);
189 		else
190 			xfs_destroy_ioend(ioend);
191 	}
192 }
193 
194 /*
195  * IO write completion.
196  */
197 STATIC void
198 xfs_end_io(
199 	struct work_struct *work)
200 {
201 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
202 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
203 	int		error = 0;
204 
205 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
206 		ioend->io_error = -EIO;
207 		goto done;
208 	}
209 	if (ioend->io_error)
210 		goto done;
211 
212 	/*
213 	 * For unwritten extents we need to issue transactions to convert a
214 	 * range to normal written extens after the data I/O has finished.
215 	 */
216 	if (ioend->io_type == IO_UNWRITTEN) {
217 		/*
218 		 * For buffered I/O we never preallocate a transaction when
219 		 * doing the unwritten extent conversion, but for direct I/O
220 		 * we do not know if we are converting an unwritten extent
221 		 * or not at the point where we preallocate the transaction.
222 		 */
223 		if (ioend->io_append_trans) {
224 			ASSERT(ioend->io_isdirect);
225 
226 			current_set_flags_nested(
227 				&ioend->io_append_trans->t_pflags, PF_FSTRANS);
228 			xfs_trans_cancel(ioend->io_append_trans, 0);
229 		}
230 
231 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
232 						 ioend->io_size);
233 		if (error) {
234 			ioend->io_error = -error;
235 			goto done;
236 		}
237 	} else if (ioend->io_append_trans) {
238 		error = xfs_setfilesize(ioend);
239 		if (error)
240 			ioend->io_error = -error;
241 	} else {
242 		ASSERT(!xfs_ioend_is_append(ioend));
243 	}
244 
245 done:
246 	xfs_destroy_ioend(ioend);
247 }
248 
249 /*
250  * Call IO completion handling in caller context on the final put of an ioend.
251  */
252 STATIC void
253 xfs_finish_ioend_sync(
254 	struct xfs_ioend	*ioend)
255 {
256 	if (atomic_dec_and_test(&ioend->io_remaining))
257 		xfs_end_io(&ioend->io_work);
258 }
259 
260 /*
261  * Allocate and initialise an IO completion structure.
262  * We need to track unwritten extent write completion here initially.
263  * We'll need to extend this for updating the ondisk inode size later
264  * (vs. incore size).
265  */
266 STATIC xfs_ioend_t *
267 xfs_alloc_ioend(
268 	struct inode		*inode,
269 	unsigned int		type)
270 {
271 	xfs_ioend_t		*ioend;
272 
273 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
274 
275 	/*
276 	 * Set the count to 1 initially, which will prevent an I/O
277 	 * completion callback from happening before we have started
278 	 * all the I/O from calling the completion routine too early.
279 	 */
280 	atomic_set(&ioend->io_remaining, 1);
281 	ioend->io_isasync = 0;
282 	ioend->io_isdirect = 0;
283 	ioend->io_error = 0;
284 	ioend->io_list = NULL;
285 	ioend->io_type = type;
286 	ioend->io_inode = inode;
287 	ioend->io_buffer_head = NULL;
288 	ioend->io_buffer_tail = NULL;
289 	ioend->io_offset = 0;
290 	ioend->io_size = 0;
291 	ioend->io_iocb = NULL;
292 	ioend->io_result = 0;
293 	ioend->io_append_trans = NULL;
294 
295 	INIT_WORK(&ioend->io_work, xfs_end_io);
296 	return ioend;
297 }
298 
299 STATIC int
300 xfs_map_blocks(
301 	struct inode		*inode,
302 	loff_t			offset,
303 	struct xfs_bmbt_irec	*imap,
304 	int			type,
305 	int			nonblocking)
306 {
307 	struct xfs_inode	*ip = XFS_I(inode);
308 	struct xfs_mount	*mp = ip->i_mount;
309 	ssize_t			count = 1 << inode->i_blkbits;
310 	xfs_fileoff_t		offset_fsb, end_fsb;
311 	int			error = 0;
312 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
313 	int			nimaps = 1;
314 
315 	if (XFS_FORCED_SHUTDOWN(mp))
316 		return -XFS_ERROR(EIO);
317 
318 	if (type == IO_UNWRITTEN)
319 		bmapi_flags |= XFS_BMAPI_IGSTATE;
320 
321 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
322 		if (nonblocking)
323 			return -XFS_ERROR(EAGAIN);
324 		xfs_ilock(ip, XFS_ILOCK_SHARED);
325 	}
326 
327 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
328 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
329 	ASSERT(offset <= mp->m_maxioffset);
330 
331 	if (offset + count > mp->m_maxioffset)
332 		count = mp->m_maxioffset - offset;
333 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
334 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
335 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
336 				imap, &nimaps, bmapi_flags);
337 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
338 
339 	if (error)
340 		return -XFS_ERROR(error);
341 
342 	if (type == IO_DELALLOC &&
343 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
344 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
345 		if (!error)
346 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
347 		return -XFS_ERROR(error);
348 	}
349 
350 #ifdef DEBUG
351 	if (type == IO_UNWRITTEN) {
352 		ASSERT(nimaps);
353 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
354 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
355 	}
356 #endif
357 	if (nimaps)
358 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
359 	return 0;
360 }
361 
362 STATIC int
363 xfs_imap_valid(
364 	struct inode		*inode,
365 	struct xfs_bmbt_irec	*imap,
366 	xfs_off_t		offset)
367 {
368 	offset >>= inode->i_blkbits;
369 
370 	return offset >= imap->br_startoff &&
371 		offset < imap->br_startoff + imap->br_blockcount;
372 }
373 
374 /*
375  * BIO completion handler for buffered IO.
376  */
377 STATIC void
378 xfs_end_bio(
379 	struct bio		*bio,
380 	int			error)
381 {
382 	xfs_ioend_t		*ioend = bio->bi_private;
383 
384 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
385 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
386 
387 	/* Toss bio and pass work off to an xfsdatad thread */
388 	bio->bi_private = NULL;
389 	bio->bi_end_io = NULL;
390 	bio_put(bio);
391 
392 	xfs_finish_ioend(ioend);
393 }
394 
395 STATIC void
396 xfs_submit_ioend_bio(
397 	struct writeback_control *wbc,
398 	xfs_ioend_t		*ioend,
399 	struct bio		*bio)
400 {
401 	atomic_inc(&ioend->io_remaining);
402 	bio->bi_private = ioend;
403 	bio->bi_end_io = xfs_end_bio;
404 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
405 }
406 
407 STATIC struct bio *
408 xfs_alloc_ioend_bio(
409 	struct buffer_head	*bh)
410 {
411 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
412 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
413 
414 	ASSERT(bio->bi_private == NULL);
415 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
416 	bio->bi_bdev = bh->b_bdev;
417 	return bio;
418 }
419 
420 STATIC void
421 xfs_start_buffer_writeback(
422 	struct buffer_head	*bh)
423 {
424 	ASSERT(buffer_mapped(bh));
425 	ASSERT(buffer_locked(bh));
426 	ASSERT(!buffer_delay(bh));
427 	ASSERT(!buffer_unwritten(bh));
428 
429 	mark_buffer_async_write(bh);
430 	set_buffer_uptodate(bh);
431 	clear_buffer_dirty(bh);
432 }
433 
434 STATIC void
435 xfs_start_page_writeback(
436 	struct page		*page,
437 	int			clear_dirty,
438 	int			buffers)
439 {
440 	ASSERT(PageLocked(page));
441 	ASSERT(!PageWriteback(page));
442 	if (clear_dirty)
443 		clear_page_dirty_for_io(page);
444 	set_page_writeback(page);
445 	unlock_page(page);
446 	/* If no buffers on the page are to be written, finish it here */
447 	if (!buffers)
448 		end_page_writeback(page);
449 }
450 
451 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
452 {
453 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
454 }
455 
456 /*
457  * Submit all of the bios for all of the ioends we have saved up, covering the
458  * initial writepage page and also any probed pages.
459  *
460  * Because we may have multiple ioends spanning a page, we need to start
461  * writeback on all the buffers before we submit them for I/O. If we mark the
462  * buffers as we got, then we can end up with a page that only has buffers
463  * marked async write and I/O complete on can occur before we mark the other
464  * buffers async write.
465  *
466  * The end result of this is that we trip a bug in end_page_writeback() because
467  * we call it twice for the one page as the code in end_buffer_async_write()
468  * assumes that all buffers on the page are started at the same time.
469  *
470  * The fix is two passes across the ioend list - one to start writeback on the
471  * buffer_heads, and then submit them for I/O on the second pass.
472  */
473 STATIC void
474 xfs_submit_ioend(
475 	struct writeback_control *wbc,
476 	xfs_ioend_t		*ioend)
477 {
478 	xfs_ioend_t		*head = ioend;
479 	xfs_ioend_t		*next;
480 	struct buffer_head	*bh;
481 	struct bio		*bio;
482 	sector_t		lastblock = 0;
483 
484 	/* Pass 1 - start writeback */
485 	do {
486 		next = ioend->io_list;
487 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
488 			xfs_start_buffer_writeback(bh);
489 	} while ((ioend = next) != NULL);
490 
491 	/* Pass 2 - submit I/O */
492 	ioend = head;
493 	do {
494 		next = ioend->io_list;
495 		bio = NULL;
496 
497 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
498 
499 			if (!bio) {
500  retry:
501 				bio = xfs_alloc_ioend_bio(bh);
502 			} else if (bh->b_blocknr != lastblock + 1) {
503 				xfs_submit_ioend_bio(wbc, ioend, bio);
504 				goto retry;
505 			}
506 
507 			if (bio_add_buffer(bio, bh) != bh->b_size) {
508 				xfs_submit_ioend_bio(wbc, ioend, bio);
509 				goto retry;
510 			}
511 
512 			lastblock = bh->b_blocknr;
513 		}
514 		if (bio)
515 			xfs_submit_ioend_bio(wbc, ioend, bio);
516 		xfs_finish_ioend(ioend);
517 	} while ((ioend = next) != NULL);
518 }
519 
520 /*
521  * Cancel submission of all buffer_heads so far in this endio.
522  * Toss the endio too.  Only ever called for the initial page
523  * in a writepage request, so only ever one page.
524  */
525 STATIC void
526 xfs_cancel_ioend(
527 	xfs_ioend_t		*ioend)
528 {
529 	xfs_ioend_t		*next;
530 	struct buffer_head	*bh, *next_bh;
531 
532 	do {
533 		next = ioend->io_list;
534 		bh = ioend->io_buffer_head;
535 		do {
536 			next_bh = bh->b_private;
537 			clear_buffer_async_write(bh);
538 			unlock_buffer(bh);
539 		} while ((bh = next_bh) != NULL);
540 
541 		mempool_free(ioend, xfs_ioend_pool);
542 	} while ((ioend = next) != NULL);
543 }
544 
545 /*
546  * Test to see if we've been building up a completion structure for
547  * earlier buffers -- if so, we try to append to this ioend if we
548  * can, otherwise we finish off any current ioend and start another.
549  * Return true if we've finished the given ioend.
550  */
551 STATIC void
552 xfs_add_to_ioend(
553 	struct inode		*inode,
554 	struct buffer_head	*bh,
555 	xfs_off_t		offset,
556 	unsigned int		type,
557 	xfs_ioend_t		**result,
558 	int			need_ioend)
559 {
560 	xfs_ioend_t		*ioend = *result;
561 
562 	if (!ioend || need_ioend || type != ioend->io_type) {
563 		xfs_ioend_t	*previous = *result;
564 
565 		ioend = xfs_alloc_ioend(inode, type);
566 		ioend->io_offset = offset;
567 		ioend->io_buffer_head = bh;
568 		ioend->io_buffer_tail = bh;
569 		if (previous)
570 			previous->io_list = ioend;
571 		*result = ioend;
572 	} else {
573 		ioend->io_buffer_tail->b_private = bh;
574 		ioend->io_buffer_tail = bh;
575 	}
576 
577 	bh->b_private = NULL;
578 	ioend->io_size += bh->b_size;
579 }
580 
581 STATIC void
582 xfs_map_buffer(
583 	struct inode		*inode,
584 	struct buffer_head	*bh,
585 	struct xfs_bmbt_irec	*imap,
586 	xfs_off_t		offset)
587 {
588 	sector_t		bn;
589 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
590 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
591 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
592 
593 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
594 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
595 
596 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
597 	      ((offset - iomap_offset) >> inode->i_blkbits);
598 
599 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
600 
601 	bh->b_blocknr = bn;
602 	set_buffer_mapped(bh);
603 }
604 
605 STATIC void
606 xfs_map_at_offset(
607 	struct inode		*inode,
608 	struct buffer_head	*bh,
609 	struct xfs_bmbt_irec	*imap,
610 	xfs_off_t		offset)
611 {
612 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
613 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
614 
615 	xfs_map_buffer(inode, bh, imap, offset);
616 	set_buffer_mapped(bh);
617 	clear_buffer_delay(bh);
618 	clear_buffer_unwritten(bh);
619 }
620 
621 /*
622  * Test if a given page is suitable for writing as part of an unwritten
623  * or delayed allocate extent.
624  */
625 STATIC int
626 xfs_is_delayed_page(
627 	struct page		*page,
628 	unsigned int		type)
629 {
630 	if (PageWriteback(page))
631 		return 0;
632 
633 	if (page->mapping && page_has_buffers(page)) {
634 		struct buffer_head	*bh, *head;
635 		int			acceptable = 0;
636 
637 		bh = head = page_buffers(page);
638 		do {
639 			if (buffer_unwritten(bh))
640 				acceptable = (type == IO_UNWRITTEN);
641 			else if (buffer_delay(bh))
642 				acceptable = (type == IO_DELALLOC);
643 			else if (buffer_dirty(bh) && buffer_mapped(bh))
644 				acceptable = (type == IO_OVERWRITE);
645 			else
646 				break;
647 		} while ((bh = bh->b_this_page) != head);
648 
649 		if (acceptable)
650 			return 1;
651 	}
652 
653 	return 0;
654 }
655 
656 /*
657  * Allocate & map buffers for page given the extent map. Write it out.
658  * except for the original page of a writepage, this is called on
659  * delalloc/unwritten pages only, for the original page it is possible
660  * that the page has no mapping at all.
661  */
662 STATIC int
663 xfs_convert_page(
664 	struct inode		*inode,
665 	struct page		*page,
666 	loff_t			tindex,
667 	struct xfs_bmbt_irec	*imap,
668 	xfs_ioend_t		**ioendp,
669 	struct writeback_control *wbc)
670 {
671 	struct buffer_head	*bh, *head;
672 	xfs_off_t		end_offset;
673 	unsigned long		p_offset;
674 	unsigned int		type;
675 	int			len, page_dirty;
676 	int			count = 0, done = 0, uptodate = 1;
677  	xfs_off_t		offset = page_offset(page);
678 
679 	if (page->index != tindex)
680 		goto fail;
681 	if (!trylock_page(page))
682 		goto fail;
683 	if (PageWriteback(page))
684 		goto fail_unlock_page;
685 	if (page->mapping != inode->i_mapping)
686 		goto fail_unlock_page;
687 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
688 		goto fail_unlock_page;
689 
690 	/*
691 	 * page_dirty is initially a count of buffers on the page before
692 	 * EOF and is decremented as we move each into a cleanable state.
693 	 *
694 	 * Derivation:
695 	 *
696 	 * End offset is the highest offset that this page should represent.
697 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
698 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
699 	 * hence give us the correct page_dirty count. On any other page,
700 	 * it will be zero and in that case we need page_dirty to be the
701 	 * count of buffers on the page.
702 	 */
703 	end_offset = min_t(unsigned long long,
704 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
705 			i_size_read(inode));
706 
707 	len = 1 << inode->i_blkbits;
708 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
709 					PAGE_CACHE_SIZE);
710 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
711 	page_dirty = p_offset / len;
712 
713 	bh = head = page_buffers(page);
714 	do {
715 		if (offset >= end_offset)
716 			break;
717 		if (!buffer_uptodate(bh))
718 			uptodate = 0;
719 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
720 			done = 1;
721 			continue;
722 		}
723 
724 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
725 		    buffer_mapped(bh)) {
726 			if (buffer_unwritten(bh))
727 				type = IO_UNWRITTEN;
728 			else if (buffer_delay(bh))
729 				type = IO_DELALLOC;
730 			else
731 				type = IO_OVERWRITE;
732 
733 			if (!xfs_imap_valid(inode, imap, offset)) {
734 				done = 1;
735 				continue;
736 			}
737 
738 			lock_buffer(bh);
739 			if (type != IO_OVERWRITE)
740 				xfs_map_at_offset(inode, bh, imap, offset);
741 			xfs_add_to_ioend(inode, bh, offset, type,
742 					 ioendp, done);
743 
744 			page_dirty--;
745 			count++;
746 		} else {
747 			done = 1;
748 		}
749 	} while (offset += len, (bh = bh->b_this_page) != head);
750 
751 	if (uptodate && bh == head)
752 		SetPageUptodate(page);
753 
754 	if (count) {
755 		if (--wbc->nr_to_write <= 0 &&
756 		    wbc->sync_mode == WB_SYNC_NONE)
757 			done = 1;
758 	}
759 	xfs_start_page_writeback(page, !page_dirty, count);
760 
761 	return done;
762  fail_unlock_page:
763 	unlock_page(page);
764  fail:
765 	return 1;
766 }
767 
768 /*
769  * Convert & write out a cluster of pages in the same extent as defined
770  * by mp and following the start page.
771  */
772 STATIC void
773 xfs_cluster_write(
774 	struct inode		*inode,
775 	pgoff_t			tindex,
776 	struct xfs_bmbt_irec	*imap,
777 	xfs_ioend_t		**ioendp,
778 	struct writeback_control *wbc,
779 	pgoff_t			tlast)
780 {
781 	struct pagevec		pvec;
782 	int			done = 0, i;
783 
784 	pagevec_init(&pvec, 0);
785 	while (!done && tindex <= tlast) {
786 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
787 
788 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
789 			break;
790 
791 		for (i = 0; i < pagevec_count(&pvec); i++) {
792 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
793 					imap, ioendp, wbc);
794 			if (done)
795 				break;
796 		}
797 
798 		pagevec_release(&pvec);
799 		cond_resched();
800 	}
801 }
802 
803 STATIC void
804 xfs_vm_invalidatepage(
805 	struct page		*page,
806 	unsigned long		offset)
807 {
808 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
809 	block_invalidatepage(page, offset);
810 }
811 
812 /*
813  * If the page has delalloc buffers on it, we need to punch them out before we
814  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
815  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
816  * is done on that same region - the delalloc extent is returned when none is
817  * supposed to be there.
818  *
819  * We prevent this by truncating away the delalloc regions on the page before
820  * invalidating it. Because they are delalloc, we can do this without needing a
821  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
822  * truncation without a transaction as there is no space left for block
823  * reservation (typically why we see a ENOSPC in writeback).
824  *
825  * This is not a performance critical path, so for now just do the punching a
826  * buffer head at a time.
827  */
828 STATIC void
829 xfs_aops_discard_page(
830 	struct page		*page)
831 {
832 	struct inode		*inode = page->mapping->host;
833 	struct xfs_inode	*ip = XFS_I(inode);
834 	struct buffer_head	*bh, *head;
835 	loff_t			offset = page_offset(page);
836 
837 	if (!xfs_is_delayed_page(page, IO_DELALLOC))
838 		goto out_invalidate;
839 
840 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
841 		goto out_invalidate;
842 
843 	xfs_alert(ip->i_mount,
844 		"page discard on page %p, inode 0x%llx, offset %llu.",
845 			page, ip->i_ino, offset);
846 
847 	xfs_ilock(ip, XFS_ILOCK_EXCL);
848 	bh = head = page_buffers(page);
849 	do {
850 		int		error;
851 		xfs_fileoff_t	start_fsb;
852 
853 		if (!buffer_delay(bh))
854 			goto next_buffer;
855 
856 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
857 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
858 		if (error) {
859 			/* something screwed, just bail */
860 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
861 				xfs_alert(ip->i_mount,
862 			"page discard unable to remove delalloc mapping.");
863 			}
864 			break;
865 		}
866 next_buffer:
867 		offset += 1 << inode->i_blkbits;
868 
869 	} while ((bh = bh->b_this_page) != head);
870 
871 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
872 out_invalidate:
873 	xfs_vm_invalidatepage(page, 0);
874 	return;
875 }
876 
877 /*
878  * Write out a dirty page.
879  *
880  * For delalloc space on the page we need to allocate space and flush it.
881  * For unwritten space on the page we need to start the conversion to
882  * regular allocated space.
883  * For any other dirty buffer heads on the page we should flush them.
884  */
885 STATIC int
886 xfs_vm_writepage(
887 	struct page		*page,
888 	struct writeback_control *wbc)
889 {
890 	struct inode		*inode = page->mapping->host;
891 	struct buffer_head	*bh, *head;
892 	struct xfs_bmbt_irec	imap;
893 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
894 	loff_t			offset;
895 	unsigned int		type;
896 	__uint64_t              end_offset;
897 	pgoff_t                 end_index, last_index;
898 	ssize_t			len;
899 	int			err, imap_valid = 0, uptodate = 1;
900 	int			count = 0;
901 	int			nonblocking = 0;
902 
903 	trace_xfs_writepage(inode, page, 0);
904 
905 	ASSERT(page_has_buffers(page));
906 
907 	/*
908 	 * Refuse to write the page out if we are called from reclaim context.
909 	 *
910 	 * This avoids stack overflows when called from deeply used stacks in
911 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
912 	 * allow reclaim from kswapd as the stack usage there is relatively low.
913 	 *
914 	 * This should never happen except in the case of a VM regression so
915 	 * warn about it.
916 	 */
917 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
918 			PF_MEMALLOC))
919 		goto redirty;
920 
921 	/*
922 	 * Given that we do not allow direct reclaim to call us, we should
923 	 * never be called while in a filesystem transaction.
924 	 */
925 	if (WARN_ON(current->flags & PF_FSTRANS))
926 		goto redirty;
927 
928 	/* Is this page beyond the end of the file? */
929 	offset = i_size_read(inode);
930 	end_index = offset >> PAGE_CACHE_SHIFT;
931 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
932 	if (page->index >= end_index) {
933 		if ((page->index >= end_index + 1) ||
934 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
935 			unlock_page(page);
936 			return 0;
937 		}
938 	}
939 
940 	end_offset = min_t(unsigned long long,
941 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
942 			offset);
943 	len = 1 << inode->i_blkbits;
944 
945 	bh = head = page_buffers(page);
946 	offset = page_offset(page);
947 	type = IO_OVERWRITE;
948 
949 	if (wbc->sync_mode == WB_SYNC_NONE)
950 		nonblocking = 1;
951 
952 	do {
953 		int new_ioend = 0;
954 
955 		if (offset >= end_offset)
956 			break;
957 		if (!buffer_uptodate(bh))
958 			uptodate = 0;
959 
960 		/*
961 		 * set_page_dirty dirties all buffers in a page, independent
962 		 * of their state.  The dirty state however is entirely
963 		 * meaningless for holes (!mapped && uptodate), so skip
964 		 * buffers covering holes here.
965 		 */
966 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
967 			imap_valid = 0;
968 			continue;
969 		}
970 
971 		if (buffer_unwritten(bh)) {
972 			if (type != IO_UNWRITTEN) {
973 				type = IO_UNWRITTEN;
974 				imap_valid = 0;
975 			}
976 		} else if (buffer_delay(bh)) {
977 			if (type != IO_DELALLOC) {
978 				type = IO_DELALLOC;
979 				imap_valid = 0;
980 			}
981 		} else if (buffer_uptodate(bh)) {
982 			if (type != IO_OVERWRITE) {
983 				type = IO_OVERWRITE;
984 				imap_valid = 0;
985 			}
986 		} else {
987 			if (PageUptodate(page)) {
988 				ASSERT(buffer_mapped(bh));
989 				imap_valid = 0;
990 			}
991 			continue;
992 		}
993 
994 		if (imap_valid)
995 			imap_valid = xfs_imap_valid(inode, &imap, offset);
996 		if (!imap_valid) {
997 			/*
998 			 * If we didn't have a valid mapping then we need to
999 			 * put the new mapping into a separate ioend structure.
1000 			 * This ensures non-contiguous extents always have
1001 			 * separate ioends, which is particularly important
1002 			 * for unwritten extent conversion at I/O completion
1003 			 * time.
1004 			 */
1005 			new_ioend = 1;
1006 			err = xfs_map_blocks(inode, offset, &imap, type,
1007 					     nonblocking);
1008 			if (err)
1009 				goto error;
1010 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1011 		}
1012 		if (imap_valid) {
1013 			lock_buffer(bh);
1014 			if (type != IO_OVERWRITE)
1015 				xfs_map_at_offset(inode, bh, &imap, offset);
1016 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1017 					 new_ioend);
1018 			count++;
1019 		}
1020 
1021 		if (!iohead)
1022 			iohead = ioend;
1023 
1024 	} while (offset += len, ((bh = bh->b_this_page) != head));
1025 
1026 	if (uptodate && bh == head)
1027 		SetPageUptodate(page);
1028 
1029 	xfs_start_page_writeback(page, 1, count);
1030 
1031 	if (ioend && imap_valid) {
1032 		xfs_off_t		end_index;
1033 
1034 		end_index = imap.br_startoff + imap.br_blockcount;
1035 
1036 		/* to bytes */
1037 		end_index <<= inode->i_blkbits;
1038 
1039 		/* to pages */
1040 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1041 
1042 		/* check against file size */
1043 		if (end_index > last_index)
1044 			end_index = last_index;
1045 
1046 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1047 				  wbc, end_index);
1048 	}
1049 
1050 	if (iohead) {
1051 		/*
1052 		 * Reserve log space if we might write beyond the on-disk
1053 		 * inode size.
1054 		 */
1055 		if (ioend->io_type != IO_UNWRITTEN &&
1056 		    xfs_ioend_is_append(ioend)) {
1057 			err = xfs_setfilesize_trans_alloc(ioend);
1058 			if (err)
1059 				goto error;
1060 		}
1061 
1062 		xfs_submit_ioend(wbc, iohead);
1063 	}
1064 
1065 	return 0;
1066 
1067 error:
1068 	if (iohead)
1069 		xfs_cancel_ioend(iohead);
1070 
1071 	if (err == -EAGAIN)
1072 		goto redirty;
1073 
1074 	xfs_aops_discard_page(page);
1075 	ClearPageUptodate(page);
1076 	unlock_page(page);
1077 	return err;
1078 
1079 redirty:
1080 	redirty_page_for_writepage(wbc, page);
1081 	unlock_page(page);
1082 	return 0;
1083 }
1084 
1085 STATIC int
1086 xfs_vm_writepages(
1087 	struct address_space	*mapping,
1088 	struct writeback_control *wbc)
1089 {
1090 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1091 	return generic_writepages(mapping, wbc);
1092 }
1093 
1094 /*
1095  * Called to move a page into cleanable state - and from there
1096  * to be released. The page should already be clean. We always
1097  * have buffer heads in this call.
1098  *
1099  * Returns 1 if the page is ok to release, 0 otherwise.
1100  */
1101 STATIC int
1102 xfs_vm_releasepage(
1103 	struct page		*page,
1104 	gfp_t			gfp_mask)
1105 {
1106 	int			delalloc, unwritten;
1107 
1108 	trace_xfs_releasepage(page->mapping->host, page, 0);
1109 
1110 	xfs_count_page_state(page, &delalloc, &unwritten);
1111 
1112 	if (WARN_ON(delalloc))
1113 		return 0;
1114 	if (WARN_ON(unwritten))
1115 		return 0;
1116 
1117 	return try_to_free_buffers(page);
1118 }
1119 
1120 STATIC int
1121 __xfs_get_blocks(
1122 	struct inode		*inode,
1123 	sector_t		iblock,
1124 	struct buffer_head	*bh_result,
1125 	int			create,
1126 	int			direct)
1127 {
1128 	struct xfs_inode	*ip = XFS_I(inode);
1129 	struct xfs_mount	*mp = ip->i_mount;
1130 	xfs_fileoff_t		offset_fsb, end_fsb;
1131 	int			error = 0;
1132 	int			lockmode = 0;
1133 	struct xfs_bmbt_irec	imap;
1134 	int			nimaps = 1;
1135 	xfs_off_t		offset;
1136 	ssize_t			size;
1137 	int			new = 0;
1138 
1139 	if (XFS_FORCED_SHUTDOWN(mp))
1140 		return -XFS_ERROR(EIO);
1141 
1142 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1143 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1144 	size = bh_result->b_size;
1145 
1146 	if (!create && direct && offset >= i_size_read(inode))
1147 		return 0;
1148 
1149 	if (create) {
1150 		lockmode = XFS_ILOCK_EXCL;
1151 		xfs_ilock(ip, lockmode);
1152 	} else {
1153 		lockmode = xfs_ilock_map_shared(ip);
1154 	}
1155 
1156 	ASSERT(offset <= mp->m_maxioffset);
1157 	if (offset + size > mp->m_maxioffset)
1158 		size = mp->m_maxioffset - offset;
1159 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1160 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1161 
1162 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1163 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1164 	if (error)
1165 		goto out_unlock;
1166 
1167 	if (create &&
1168 	    (!nimaps ||
1169 	     (imap.br_startblock == HOLESTARTBLOCK ||
1170 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1171 		if (direct) {
1172 			error = xfs_iomap_write_direct(ip, offset, size,
1173 						       &imap, nimaps);
1174 		} else {
1175 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1176 		}
1177 		if (error)
1178 			goto out_unlock;
1179 
1180 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1181 	} else if (nimaps) {
1182 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1183 	} else {
1184 		trace_xfs_get_blocks_notfound(ip, offset, size);
1185 		goto out_unlock;
1186 	}
1187 	xfs_iunlock(ip, lockmode);
1188 
1189 	if (imap.br_startblock != HOLESTARTBLOCK &&
1190 	    imap.br_startblock != DELAYSTARTBLOCK) {
1191 		/*
1192 		 * For unwritten extents do not report a disk address on
1193 		 * the read case (treat as if we're reading into a hole).
1194 		 */
1195 		if (create || !ISUNWRITTEN(&imap))
1196 			xfs_map_buffer(inode, bh_result, &imap, offset);
1197 		if (create && ISUNWRITTEN(&imap)) {
1198 			if (direct)
1199 				bh_result->b_private = inode;
1200 			set_buffer_unwritten(bh_result);
1201 		}
1202 	}
1203 
1204 	/*
1205 	 * If this is a realtime file, data may be on a different device.
1206 	 * to that pointed to from the buffer_head b_bdev currently.
1207 	 */
1208 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1209 
1210 	/*
1211 	 * If we previously allocated a block out beyond eof and we are now
1212 	 * coming back to use it then we will need to flag it as new even if it
1213 	 * has a disk address.
1214 	 *
1215 	 * With sub-block writes into unwritten extents we also need to mark
1216 	 * the buffer as new so that the unwritten parts of the buffer gets
1217 	 * correctly zeroed.
1218 	 */
1219 	if (create &&
1220 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1221 	     (offset >= i_size_read(inode)) ||
1222 	     (new || ISUNWRITTEN(&imap))))
1223 		set_buffer_new(bh_result);
1224 
1225 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1226 		BUG_ON(direct);
1227 		if (create) {
1228 			set_buffer_uptodate(bh_result);
1229 			set_buffer_mapped(bh_result);
1230 			set_buffer_delay(bh_result);
1231 		}
1232 	}
1233 
1234 	/*
1235 	 * If this is O_DIRECT or the mpage code calling tell them how large
1236 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1237 	 */
1238 	if (direct || size > (1 << inode->i_blkbits)) {
1239 		xfs_off_t		mapping_size;
1240 
1241 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1242 		mapping_size <<= inode->i_blkbits;
1243 
1244 		ASSERT(mapping_size > 0);
1245 		if (mapping_size > size)
1246 			mapping_size = size;
1247 		if (mapping_size > LONG_MAX)
1248 			mapping_size = LONG_MAX;
1249 
1250 		bh_result->b_size = mapping_size;
1251 	}
1252 
1253 	return 0;
1254 
1255 out_unlock:
1256 	xfs_iunlock(ip, lockmode);
1257 	return -error;
1258 }
1259 
1260 int
1261 xfs_get_blocks(
1262 	struct inode		*inode,
1263 	sector_t		iblock,
1264 	struct buffer_head	*bh_result,
1265 	int			create)
1266 {
1267 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1268 }
1269 
1270 STATIC int
1271 xfs_get_blocks_direct(
1272 	struct inode		*inode,
1273 	sector_t		iblock,
1274 	struct buffer_head	*bh_result,
1275 	int			create)
1276 {
1277 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1278 }
1279 
1280 /*
1281  * Complete a direct I/O write request.
1282  *
1283  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1284  * need to issue a transaction to convert the range from unwritten to written
1285  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1286  * to do this and we are done.  But in case this was a successful AIO
1287  * request this handler is called from interrupt context, from which we
1288  * can't start transactions.  In that case offload the I/O completion to
1289  * the workqueues we also use for buffered I/O completion.
1290  */
1291 STATIC void
1292 xfs_end_io_direct_write(
1293 	struct kiocb		*iocb,
1294 	loff_t			offset,
1295 	ssize_t			size,
1296 	void			*private,
1297 	int			ret,
1298 	bool			is_async)
1299 {
1300 	struct xfs_ioend	*ioend = iocb->private;
1301 
1302 	/*
1303 	 * While the generic direct I/O code updates the inode size, it does
1304 	 * so only after the end_io handler is called, which means our
1305 	 * end_io handler thinks the on-disk size is outside the in-core
1306 	 * size.  To prevent this just update it a little bit earlier here.
1307 	 */
1308 	if (offset + size > i_size_read(ioend->io_inode))
1309 		i_size_write(ioend->io_inode, offset + size);
1310 
1311 	/*
1312 	 * blockdev_direct_IO can return an error even after the I/O
1313 	 * completion handler was called.  Thus we need to protect
1314 	 * against double-freeing.
1315 	 */
1316 	iocb->private = NULL;
1317 
1318 	ioend->io_offset = offset;
1319 	ioend->io_size = size;
1320 	ioend->io_iocb = iocb;
1321 	ioend->io_result = ret;
1322 	if (private && size > 0)
1323 		ioend->io_type = IO_UNWRITTEN;
1324 
1325 	if (is_async) {
1326 		ioend->io_isasync = 1;
1327 		xfs_finish_ioend(ioend);
1328 	} else {
1329 		xfs_finish_ioend_sync(ioend);
1330 	}
1331 }
1332 
1333 STATIC ssize_t
1334 xfs_vm_direct_IO(
1335 	int			rw,
1336 	struct kiocb		*iocb,
1337 	const struct iovec	*iov,
1338 	loff_t			offset,
1339 	unsigned long		nr_segs)
1340 {
1341 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1342 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1343 	struct xfs_ioend	*ioend = NULL;
1344 	ssize_t			ret;
1345 
1346 	if (rw & WRITE) {
1347 		size_t size = iov_length(iov, nr_segs);
1348 
1349 		/*
1350 		 * We need to preallocate a transaction for a size update
1351 		 * here.  In the case that this write both updates the size
1352 		 * and converts at least on unwritten extent we will cancel
1353 		 * the still clean transaction after the I/O has finished.
1354 		 */
1355 		iocb->private = ioend = xfs_alloc_ioend(inode, IO_DIRECT);
1356 		if (offset + size > XFS_I(inode)->i_d.di_size) {
1357 			ret = xfs_setfilesize_trans_alloc(ioend);
1358 			if (ret)
1359 				goto out_destroy_ioend;
1360 			ioend->io_isdirect = 1;
1361 		}
1362 
1363 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1364 					    offset, nr_segs,
1365 					    xfs_get_blocks_direct,
1366 					    xfs_end_io_direct_write, NULL, 0);
1367 		if (ret != -EIOCBQUEUED && iocb->private)
1368 			goto out_trans_cancel;
1369 	} else {
1370 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1371 					    offset, nr_segs,
1372 					    xfs_get_blocks_direct,
1373 					    NULL, NULL, 0);
1374 	}
1375 
1376 	return ret;
1377 
1378 out_trans_cancel:
1379 	if (ioend->io_append_trans) {
1380 		current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1381 					 PF_FSTRANS);
1382 		xfs_trans_cancel(ioend->io_append_trans, 0);
1383 	}
1384 out_destroy_ioend:
1385 	xfs_destroy_ioend(ioend);
1386 	return ret;
1387 }
1388 
1389 STATIC void
1390 xfs_vm_write_failed(
1391 	struct address_space	*mapping,
1392 	loff_t			to)
1393 {
1394 	struct inode		*inode = mapping->host;
1395 
1396 	if (to > inode->i_size) {
1397 		/*
1398 		 * Punch out the delalloc blocks we have already allocated.
1399 		 *
1400 		 * Don't bother with xfs_setattr given that nothing can have
1401 		 * made it to disk yet as the page is still locked at this
1402 		 * point.
1403 		 */
1404 		struct xfs_inode	*ip = XFS_I(inode);
1405 		xfs_fileoff_t		start_fsb;
1406 		xfs_fileoff_t		end_fsb;
1407 		int			error;
1408 
1409 		truncate_pagecache(inode, to, inode->i_size);
1410 
1411 		/*
1412 		 * Check if there are any blocks that are outside of i_size
1413 		 * that need to be trimmed back.
1414 		 */
1415 		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1416 		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1417 		if (end_fsb <= start_fsb)
1418 			return;
1419 
1420 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1421 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1422 							end_fsb - start_fsb);
1423 		if (error) {
1424 			/* something screwed, just bail */
1425 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1426 				xfs_alert(ip->i_mount,
1427 			"xfs_vm_write_failed: unable to clean up ino %lld",
1428 						ip->i_ino);
1429 			}
1430 		}
1431 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1432 	}
1433 }
1434 
1435 STATIC int
1436 xfs_vm_write_begin(
1437 	struct file		*file,
1438 	struct address_space	*mapping,
1439 	loff_t			pos,
1440 	unsigned		len,
1441 	unsigned		flags,
1442 	struct page		**pagep,
1443 	void			**fsdata)
1444 {
1445 	int			ret;
1446 
1447 	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1448 				pagep, xfs_get_blocks);
1449 	if (unlikely(ret))
1450 		xfs_vm_write_failed(mapping, pos + len);
1451 	return ret;
1452 }
1453 
1454 STATIC int
1455 xfs_vm_write_end(
1456 	struct file		*file,
1457 	struct address_space	*mapping,
1458 	loff_t			pos,
1459 	unsigned		len,
1460 	unsigned		copied,
1461 	struct page		*page,
1462 	void			*fsdata)
1463 {
1464 	int			ret;
1465 
1466 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1467 	if (unlikely(ret < len))
1468 		xfs_vm_write_failed(mapping, pos + len);
1469 	return ret;
1470 }
1471 
1472 STATIC sector_t
1473 xfs_vm_bmap(
1474 	struct address_space	*mapping,
1475 	sector_t		block)
1476 {
1477 	struct inode		*inode = (struct inode *)mapping->host;
1478 	struct xfs_inode	*ip = XFS_I(inode);
1479 
1480 	trace_xfs_vm_bmap(XFS_I(inode));
1481 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1482 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1483 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1484 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1485 }
1486 
1487 STATIC int
1488 xfs_vm_readpage(
1489 	struct file		*unused,
1490 	struct page		*page)
1491 {
1492 	return mpage_readpage(page, xfs_get_blocks);
1493 }
1494 
1495 STATIC int
1496 xfs_vm_readpages(
1497 	struct file		*unused,
1498 	struct address_space	*mapping,
1499 	struct list_head	*pages,
1500 	unsigned		nr_pages)
1501 {
1502 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1503 }
1504 
1505 const struct address_space_operations xfs_address_space_operations = {
1506 	.readpage		= xfs_vm_readpage,
1507 	.readpages		= xfs_vm_readpages,
1508 	.writepage		= xfs_vm_writepage,
1509 	.writepages		= xfs_vm_writepages,
1510 	.releasepage		= xfs_vm_releasepage,
1511 	.invalidatepage		= xfs_vm_invalidatepage,
1512 	.write_begin		= xfs_vm_write_begin,
1513 	.write_end		= xfs_vm_write_end,
1514 	.bmap			= xfs_vm_bmap,
1515 	.direct_IO		= xfs_vm_direct_IO,
1516 	.migratepage		= buffer_migrate_page,
1517 	.is_partially_uptodate  = block_is_partially_uptodate,
1518 	.error_remove_page	= generic_error_remove_page,
1519 };
1520