1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_bit.h" 20 #include "xfs_log.h" 21 #include "xfs_inum.h" 22 #include "xfs_sb.h" 23 #include "xfs_ag.h" 24 #include "xfs_trans.h" 25 #include "xfs_mount.h" 26 #include "xfs_bmap_btree.h" 27 #include "xfs_dinode.h" 28 #include "xfs_inode.h" 29 #include "xfs_inode_item.h" 30 #include "xfs_alloc.h" 31 #include "xfs_error.h" 32 #include "xfs_rw.h" 33 #include "xfs_iomap.h" 34 #include "xfs_vnodeops.h" 35 #include "xfs_trace.h" 36 #include "xfs_bmap.h" 37 #include <linux/gfp.h> 38 #include <linux/mpage.h> 39 #include <linux/pagevec.h> 40 #include <linux/writeback.h> 41 42 void 43 xfs_count_page_state( 44 struct page *page, 45 int *delalloc, 46 int *unwritten) 47 { 48 struct buffer_head *bh, *head; 49 50 *delalloc = *unwritten = 0; 51 52 bh = head = page_buffers(page); 53 do { 54 if (buffer_unwritten(bh)) 55 (*unwritten) = 1; 56 else if (buffer_delay(bh)) 57 (*delalloc) = 1; 58 } while ((bh = bh->b_this_page) != head); 59 } 60 61 STATIC struct block_device * 62 xfs_find_bdev_for_inode( 63 struct inode *inode) 64 { 65 struct xfs_inode *ip = XFS_I(inode); 66 struct xfs_mount *mp = ip->i_mount; 67 68 if (XFS_IS_REALTIME_INODE(ip)) 69 return mp->m_rtdev_targp->bt_bdev; 70 else 71 return mp->m_ddev_targp->bt_bdev; 72 } 73 74 /* 75 * We're now finished for good with this ioend structure. 76 * Update the page state via the associated buffer_heads, 77 * release holds on the inode and bio, and finally free 78 * up memory. Do not use the ioend after this. 79 */ 80 STATIC void 81 xfs_destroy_ioend( 82 xfs_ioend_t *ioend) 83 { 84 struct buffer_head *bh, *next; 85 86 for (bh = ioend->io_buffer_head; bh; bh = next) { 87 next = bh->b_private; 88 bh->b_end_io(bh, !ioend->io_error); 89 } 90 91 if (ioend->io_iocb) { 92 if (ioend->io_isasync) { 93 aio_complete(ioend->io_iocb, ioend->io_error ? 94 ioend->io_error : ioend->io_result, 0); 95 } 96 inode_dio_done(ioend->io_inode); 97 } 98 99 mempool_free(ioend, xfs_ioend_pool); 100 } 101 102 /* 103 * Fast and loose check if this write could update the on-disk inode size. 104 */ 105 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 106 { 107 return ioend->io_offset + ioend->io_size > 108 XFS_I(ioend->io_inode)->i_d.di_size; 109 } 110 111 STATIC int 112 xfs_setfilesize_trans_alloc( 113 struct xfs_ioend *ioend) 114 { 115 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 116 struct xfs_trans *tp; 117 int error; 118 119 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 120 121 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); 122 if (error) { 123 xfs_trans_cancel(tp, 0); 124 return error; 125 } 126 127 ioend->io_append_trans = tp; 128 129 /* 130 * We hand off the transaction to the completion thread now, so 131 * clear the flag here. 132 */ 133 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 134 return 0; 135 } 136 137 /* 138 * Update on-disk file size now that data has been written to disk. 139 */ 140 STATIC int 141 xfs_setfilesize( 142 struct xfs_ioend *ioend) 143 { 144 struct xfs_inode *ip = XFS_I(ioend->io_inode); 145 struct xfs_trans *tp = ioend->io_append_trans; 146 xfs_fsize_t isize; 147 148 /* 149 * The transaction was allocated in the I/O submission thread, 150 * thus we need to mark ourselves as beeing in a transaction 151 * manually. 152 */ 153 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 154 155 xfs_ilock(ip, XFS_ILOCK_EXCL); 156 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 157 if (!isize) { 158 xfs_iunlock(ip, XFS_ILOCK_EXCL); 159 xfs_trans_cancel(tp, 0); 160 return 0; 161 } 162 163 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 164 165 ip->i_d.di_size = isize; 166 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 167 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 168 169 return xfs_trans_commit(tp, 0); 170 } 171 172 /* 173 * Schedule IO completion handling on the final put of an ioend. 174 * 175 * If there is no work to do we might as well call it a day and free the 176 * ioend right now. 177 */ 178 STATIC void 179 xfs_finish_ioend( 180 struct xfs_ioend *ioend) 181 { 182 if (atomic_dec_and_test(&ioend->io_remaining)) { 183 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 184 185 if (ioend->io_type == IO_UNWRITTEN) 186 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 187 else if (ioend->io_append_trans) 188 queue_work(mp->m_data_workqueue, &ioend->io_work); 189 else 190 xfs_destroy_ioend(ioend); 191 } 192 } 193 194 /* 195 * IO write completion. 196 */ 197 STATIC void 198 xfs_end_io( 199 struct work_struct *work) 200 { 201 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 202 struct xfs_inode *ip = XFS_I(ioend->io_inode); 203 int error = 0; 204 205 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 206 ioend->io_error = -EIO; 207 goto done; 208 } 209 if (ioend->io_error) 210 goto done; 211 212 /* 213 * For unwritten extents we need to issue transactions to convert a 214 * range to normal written extens after the data I/O has finished. 215 */ 216 if (ioend->io_type == IO_UNWRITTEN) { 217 /* 218 * For buffered I/O we never preallocate a transaction when 219 * doing the unwritten extent conversion, but for direct I/O 220 * we do not know if we are converting an unwritten extent 221 * or not at the point where we preallocate the transaction. 222 */ 223 if (ioend->io_append_trans) { 224 ASSERT(ioend->io_isdirect); 225 226 current_set_flags_nested( 227 &ioend->io_append_trans->t_pflags, PF_FSTRANS); 228 xfs_trans_cancel(ioend->io_append_trans, 0); 229 } 230 231 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 232 ioend->io_size); 233 if (error) { 234 ioend->io_error = -error; 235 goto done; 236 } 237 } else if (ioend->io_append_trans) { 238 error = xfs_setfilesize(ioend); 239 if (error) 240 ioend->io_error = -error; 241 } else { 242 ASSERT(!xfs_ioend_is_append(ioend)); 243 } 244 245 done: 246 xfs_destroy_ioend(ioend); 247 } 248 249 /* 250 * Call IO completion handling in caller context on the final put of an ioend. 251 */ 252 STATIC void 253 xfs_finish_ioend_sync( 254 struct xfs_ioend *ioend) 255 { 256 if (atomic_dec_and_test(&ioend->io_remaining)) 257 xfs_end_io(&ioend->io_work); 258 } 259 260 /* 261 * Allocate and initialise an IO completion structure. 262 * We need to track unwritten extent write completion here initially. 263 * We'll need to extend this for updating the ondisk inode size later 264 * (vs. incore size). 265 */ 266 STATIC xfs_ioend_t * 267 xfs_alloc_ioend( 268 struct inode *inode, 269 unsigned int type) 270 { 271 xfs_ioend_t *ioend; 272 273 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 274 275 /* 276 * Set the count to 1 initially, which will prevent an I/O 277 * completion callback from happening before we have started 278 * all the I/O from calling the completion routine too early. 279 */ 280 atomic_set(&ioend->io_remaining, 1); 281 ioend->io_isasync = 0; 282 ioend->io_isdirect = 0; 283 ioend->io_error = 0; 284 ioend->io_list = NULL; 285 ioend->io_type = type; 286 ioend->io_inode = inode; 287 ioend->io_buffer_head = NULL; 288 ioend->io_buffer_tail = NULL; 289 ioend->io_offset = 0; 290 ioend->io_size = 0; 291 ioend->io_iocb = NULL; 292 ioend->io_result = 0; 293 ioend->io_append_trans = NULL; 294 295 INIT_WORK(&ioend->io_work, xfs_end_io); 296 return ioend; 297 } 298 299 STATIC int 300 xfs_map_blocks( 301 struct inode *inode, 302 loff_t offset, 303 struct xfs_bmbt_irec *imap, 304 int type, 305 int nonblocking) 306 { 307 struct xfs_inode *ip = XFS_I(inode); 308 struct xfs_mount *mp = ip->i_mount; 309 ssize_t count = 1 << inode->i_blkbits; 310 xfs_fileoff_t offset_fsb, end_fsb; 311 int error = 0; 312 int bmapi_flags = XFS_BMAPI_ENTIRE; 313 int nimaps = 1; 314 315 if (XFS_FORCED_SHUTDOWN(mp)) 316 return -XFS_ERROR(EIO); 317 318 if (type == IO_UNWRITTEN) 319 bmapi_flags |= XFS_BMAPI_IGSTATE; 320 321 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 322 if (nonblocking) 323 return -XFS_ERROR(EAGAIN); 324 xfs_ilock(ip, XFS_ILOCK_SHARED); 325 } 326 327 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 328 (ip->i_df.if_flags & XFS_IFEXTENTS)); 329 ASSERT(offset <= mp->m_maxioffset); 330 331 if (offset + count > mp->m_maxioffset) 332 count = mp->m_maxioffset - offset; 333 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 334 offset_fsb = XFS_B_TO_FSBT(mp, offset); 335 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 336 imap, &nimaps, bmapi_flags); 337 xfs_iunlock(ip, XFS_ILOCK_SHARED); 338 339 if (error) 340 return -XFS_ERROR(error); 341 342 if (type == IO_DELALLOC && 343 (!nimaps || isnullstartblock(imap->br_startblock))) { 344 error = xfs_iomap_write_allocate(ip, offset, count, imap); 345 if (!error) 346 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 347 return -XFS_ERROR(error); 348 } 349 350 #ifdef DEBUG 351 if (type == IO_UNWRITTEN) { 352 ASSERT(nimaps); 353 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 354 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 355 } 356 #endif 357 if (nimaps) 358 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 359 return 0; 360 } 361 362 STATIC int 363 xfs_imap_valid( 364 struct inode *inode, 365 struct xfs_bmbt_irec *imap, 366 xfs_off_t offset) 367 { 368 offset >>= inode->i_blkbits; 369 370 return offset >= imap->br_startoff && 371 offset < imap->br_startoff + imap->br_blockcount; 372 } 373 374 /* 375 * BIO completion handler for buffered IO. 376 */ 377 STATIC void 378 xfs_end_bio( 379 struct bio *bio, 380 int error) 381 { 382 xfs_ioend_t *ioend = bio->bi_private; 383 384 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 385 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 386 387 /* Toss bio and pass work off to an xfsdatad thread */ 388 bio->bi_private = NULL; 389 bio->bi_end_io = NULL; 390 bio_put(bio); 391 392 xfs_finish_ioend(ioend); 393 } 394 395 STATIC void 396 xfs_submit_ioend_bio( 397 struct writeback_control *wbc, 398 xfs_ioend_t *ioend, 399 struct bio *bio) 400 { 401 atomic_inc(&ioend->io_remaining); 402 bio->bi_private = ioend; 403 bio->bi_end_io = xfs_end_bio; 404 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 405 } 406 407 STATIC struct bio * 408 xfs_alloc_ioend_bio( 409 struct buffer_head *bh) 410 { 411 int nvecs = bio_get_nr_vecs(bh->b_bdev); 412 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 413 414 ASSERT(bio->bi_private == NULL); 415 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 416 bio->bi_bdev = bh->b_bdev; 417 return bio; 418 } 419 420 STATIC void 421 xfs_start_buffer_writeback( 422 struct buffer_head *bh) 423 { 424 ASSERT(buffer_mapped(bh)); 425 ASSERT(buffer_locked(bh)); 426 ASSERT(!buffer_delay(bh)); 427 ASSERT(!buffer_unwritten(bh)); 428 429 mark_buffer_async_write(bh); 430 set_buffer_uptodate(bh); 431 clear_buffer_dirty(bh); 432 } 433 434 STATIC void 435 xfs_start_page_writeback( 436 struct page *page, 437 int clear_dirty, 438 int buffers) 439 { 440 ASSERT(PageLocked(page)); 441 ASSERT(!PageWriteback(page)); 442 if (clear_dirty) 443 clear_page_dirty_for_io(page); 444 set_page_writeback(page); 445 unlock_page(page); 446 /* If no buffers on the page are to be written, finish it here */ 447 if (!buffers) 448 end_page_writeback(page); 449 } 450 451 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) 452 { 453 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 454 } 455 456 /* 457 * Submit all of the bios for all of the ioends we have saved up, covering the 458 * initial writepage page and also any probed pages. 459 * 460 * Because we may have multiple ioends spanning a page, we need to start 461 * writeback on all the buffers before we submit them for I/O. If we mark the 462 * buffers as we got, then we can end up with a page that only has buffers 463 * marked async write and I/O complete on can occur before we mark the other 464 * buffers async write. 465 * 466 * The end result of this is that we trip a bug in end_page_writeback() because 467 * we call it twice for the one page as the code in end_buffer_async_write() 468 * assumes that all buffers on the page are started at the same time. 469 * 470 * The fix is two passes across the ioend list - one to start writeback on the 471 * buffer_heads, and then submit them for I/O on the second pass. 472 */ 473 STATIC void 474 xfs_submit_ioend( 475 struct writeback_control *wbc, 476 xfs_ioend_t *ioend) 477 { 478 xfs_ioend_t *head = ioend; 479 xfs_ioend_t *next; 480 struct buffer_head *bh; 481 struct bio *bio; 482 sector_t lastblock = 0; 483 484 /* Pass 1 - start writeback */ 485 do { 486 next = ioend->io_list; 487 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 488 xfs_start_buffer_writeback(bh); 489 } while ((ioend = next) != NULL); 490 491 /* Pass 2 - submit I/O */ 492 ioend = head; 493 do { 494 next = ioend->io_list; 495 bio = NULL; 496 497 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 498 499 if (!bio) { 500 retry: 501 bio = xfs_alloc_ioend_bio(bh); 502 } else if (bh->b_blocknr != lastblock + 1) { 503 xfs_submit_ioend_bio(wbc, ioend, bio); 504 goto retry; 505 } 506 507 if (bio_add_buffer(bio, bh) != bh->b_size) { 508 xfs_submit_ioend_bio(wbc, ioend, bio); 509 goto retry; 510 } 511 512 lastblock = bh->b_blocknr; 513 } 514 if (bio) 515 xfs_submit_ioend_bio(wbc, ioend, bio); 516 xfs_finish_ioend(ioend); 517 } while ((ioend = next) != NULL); 518 } 519 520 /* 521 * Cancel submission of all buffer_heads so far in this endio. 522 * Toss the endio too. Only ever called for the initial page 523 * in a writepage request, so only ever one page. 524 */ 525 STATIC void 526 xfs_cancel_ioend( 527 xfs_ioend_t *ioend) 528 { 529 xfs_ioend_t *next; 530 struct buffer_head *bh, *next_bh; 531 532 do { 533 next = ioend->io_list; 534 bh = ioend->io_buffer_head; 535 do { 536 next_bh = bh->b_private; 537 clear_buffer_async_write(bh); 538 unlock_buffer(bh); 539 } while ((bh = next_bh) != NULL); 540 541 mempool_free(ioend, xfs_ioend_pool); 542 } while ((ioend = next) != NULL); 543 } 544 545 /* 546 * Test to see if we've been building up a completion structure for 547 * earlier buffers -- if so, we try to append to this ioend if we 548 * can, otherwise we finish off any current ioend and start another. 549 * Return true if we've finished the given ioend. 550 */ 551 STATIC void 552 xfs_add_to_ioend( 553 struct inode *inode, 554 struct buffer_head *bh, 555 xfs_off_t offset, 556 unsigned int type, 557 xfs_ioend_t **result, 558 int need_ioend) 559 { 560 xfs_ioend_t *ioend = *result; 561 562 if (!ioend || need_ioend || type != ioend->io_type) { 563 xfs_ioend_t *previous = *result; 564 565 ioend = xfs_alloc_ioend(inode, type); 566 ioend->io_offset = offset; 567 ioend->io_buffer_head = bh; 568 ioend->io_buffer_tail = bh; 569 if (previous) 570 previous->io_list = ioend; 571 *result = ioend; 572 } else { 573 ioend->io_buffer_tail->b_private = bh; 574 ioend->io_buffer_tail = bh; 575 } 576 577 bh->b_private = NULL; 578 ioend->io_size += bh->b_size; 579 } 580 581 STATIC void 582 xfs_map_buffer( 583 struct inode *inode, 584 struct buffer_head *bh, 585 struct xfs_bmbt_irec *imap, 586 xfs_off_t offset) 587 { 588 sector_t bn; 589 struct xfs_mount *m = XFS_I(inode)->i_mount; 590 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 591 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 592 593 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 594 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 595 596 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 597 ((offset - iomap_offset) >> inode->i_blkbits); 598 599 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 600 601 bh->b_blocknr = bn; 602 set_buffer_mapped(bh); 603 } 604 605 STATIC void 606 xfs_map_at_offset( 607 struct inode *inode, 608 struct buffer_head *bh, 609 struct xfs_bmbt_irec *imap, 610 xfs_off_t offset) 611 { 612 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 613 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 614 615 xfs_map_buffer(inode, bh, imap, offset); 616 set_buffer_mapped(bh); 617 clear_buffer_delay(bh); 618 clear_buffer_unwritten(bh); 619 } 620 621 /* 622 * Test if a given page is suitable for writing as part of an unwritten 623 * or delayed allocate extent. 624 */ 625 STATIC int 626 xfs_is_delayed_page( 627 struct page *page, 628 unsigned int type) 629 { 630 if (PageWriteback(page)) 631 return 0; 632 633 if (page->mapping && page_has_buffers(page)) { 634 struct buffer_head *bh, *head; 635 int acceptable = 0; 636 637 bh = head = page_buffers(page); 638 do { 639 if (buffer_unwritten(bh)) 640 acceptable = (type == IO_UNWRITTEN); 641 else if (buffer_delay(bh)) 642 acceptable = (type == IO_DELALLOC); 643 else if (buffer_dirty(bh) && buffer_mapped(bh)) 644 acceptable = (type == IO_OVERWRITE); 645 else 646 break; 647 } while ((bh = bh->b_this_page) != head); 648 649 if (acceptable) 650 return 1; 651 } 652 653 return 0; 654 } 655 656 /* 657 * Allocate & map buffers for page given the extent map. Write it out. 658 * except for the original page of a writepage, this is called on 659 * delalloc/unwritten pages only, for the original page it is possible 660 * that the page has no mapping at all. 661 */ 662 STATIC int 663 xfs_convert_page( 664 struct inode *inode, 665 struct page *page, 666 loff_t tindex, 667 struct xfs_bmbt_irec *imap, 668 xfs_ioend_t **ioendp, 669 struct writeback_control *wbc) 670 { 671 struct buffer_head *bh, *head; 672 xfs_off_t end_offset; 673 unsigned long p_offset; 674 unsigned int type; 675 int len, page_dirty; 676 int count = 0, done = 0, uptodate = 1; 677 xfs_off_t offset = page_offset(page); 678 679 if (page->index != tindex) 680 goto fail; 681 if (!trylock_page(page)) 682 goto fail; 683 if (PageWriteback(page)) 684 goto fail_unlock_page; 685 if (page->mapping != inode->i_mapping) 686 goto fail_unlock_page; 687 if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) 688 goto fail_unlock_page; 689 690 /* 691 * page_dirty is initially a count of buffers on the page before 692 * EOF and is decremented as we move each into a cleanable state. 693 * 694 * Derivation: 695 * 696 * End offset is the highest offset that this page should represent. 697 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 698 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 699 * hence give us the correct page_dirty count. On any other page, 700 * it will be zero and in that case we need page_dirty to be the 701 * count of buffers on the page. 702 */ 703 end_offset = min_t(unsigned long long, 704 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 705 i_size_read(inode)); 706 707 len = 1 << inode->i_blkbits; 708 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 709 PAGE_CACHE_SIZE); 710 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 711 page_dirty = p_offset / len; 712 713 bh = head = page_buffers(page); 714 do { 715 if (offset >= end_offset) 716 break; 717 if (!buffer_uptodate(bh)) 718 uptodate = 0; 719 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 720 done = 1; 721 continue; 722 } 723 724 if (buffer_unwritten(bh) || buffer_delay(bh) || 725 buffer_mapped(bh)) { 726 if (buffer_unwritten(bh)) 727 type = IO_UNWRITTEN; 728 else if (buffer_delay(bh)) 729 type = IO_DELALLOC; 730 else 731 type = IO_OVERWRITE; 732 733 if (!xfs_imap_valid(inode, imap, offset)) { 734 done = 1; 735 continue; 736 } 737 738 lock_buffer(bh); 739 if (type != IO_OVERWRITE) 740 xfs_map_at_offset(inode, bh, imap, offset); 741 xfs_add_to_ioend(inode, bh, offset, type, 742 ioendp, done); 743 744 page_dirty--; 745 count++; 746 } else { 747 done = 1; 748 } 749 } while (offset += len, (bh = bh->b_this_page) != head); 750 751 if (uptodate && bh == head) 752 SetPageUptodate(page); 753 754 if (count) { 755 if (--wbc->nr_to_write <= 0 && 756 wbc->sync_mode == WB_SYNC_NONE) 757 done = 1; 758 } 759 xfs_start_page_writeback(page, !page_dirty, count); 760 761 return done; 762 fail_unlock_page: 763 unlock_page(page); 764 fail: 765 return 1; 766 } 767 768 /* 769 * Convert & write out a cluster of pages in the same extent as defined 770 * by mp and following the start page. 771 */ 772 STATIC void 773 xfs_cluster_write( 774 struct inode *inode, 775 pgoff_t tindex, 776 struct xfs_bmbt_irec *imap, 777 xfs_ioend_t **ioendp, 778 struct writeback_control *wbc, 779 pgoff_t tlast) 780 { 781 struct pagevec pvec; 782 int done = 0, i; 783 784 pagevec_init(&pvec, 0); 785 while (!done && tindex <= tlast) { 786 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 787 788 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 789 break; 790 791 for (i = 0; i < pagevec_count(&pvec); i++) { 792 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 793 imap, ioendp, wbc); 794 if (done) 795 break; 796 } 797 798 pagevec_release(&pvec); 799 cond_resched(); 800 } 801 } 802 803 STATIC void 804 xfs_vm_invalidatepage( 805 struct page *page, 806 unsigned long offset) 807 { 808 trace_xfs_invalidatepage(page->mapping->host, page, offset); 809 block_invalidatepage(page, offset); 810 } 811 812 /* 813 * If the page has delalloc buffers on it, we need to punch them out before we 814 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 815 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 816 * is done on that same region - the delalloc extent is returned when none is 817 * supposed to be there. 818 * 819 * We prevent this by truncating away the delalloc regions on the page before 820 * invalidating it. Because they are delalloc, we can do this without needing a 821 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 822 * truncation without a transaction as there is no space left for block 823 * reservation (typically why we see a ENOSPC in writeback). 824 * 825 * This is not a performance critical path, so for now just do the punching a 826 * buffer head at a time. 827 */ 828 STATIC void 829 xfs_aops_discard_page( 830 struct page *page) 831 { 832 struct inode *inode = page->mapping->host; 833 struct xfs_inode *ip = XFS_I(inode); 834 struct buffer_head *bh, *head; 835 loff_t offset = page_offset(page); 836 837 if (!xfs_is_delayed_page(page, IO_DELALLOC)) 838 goto out_invalidate; 839 840 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 841 goto out_invalidate; 842 843 xfs_alert(ip->i_mount, 844 "page discard on page %p, inode 0x%llx, offset %llu.", 845 page, ip->i_ino, offset); 846 847 xfs_ilock(ip, XFS_ILOCK_EXCL); 848 bh = head = page_buffers(page); 849 do { 850 int error; 851 xfs_fileoff_t start_fsb; 852 853 if (!buffer_delay(bh)) 854 goto next_buffer; 855 856 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 857 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 858 if (error) { 859 /* something screwed, just bail */ 860 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 861 xfs_alert(ip->i_mount, 862 "page discard unable to remove delalloc mapping."); 863 } 864 break; 865 } 866 next_buffer: 867 offset += 1 << inode->i_blkbits; 868 869 } while ((bh = bh->b_this_page) != head); 870 871 xfs_iunlock(ip, XFS_ILOCK_EXCL); 872 out_invalidate: 873 xfs_vm_invalidatepage(page, 0); 874 return; 875 } 876 877 /* 878 * Write out a dirty page. 879 * 880 * For delalloc space on the page we need to allocate space and flush it. 881 * For unwritten space on the page we need to start the conversion to 882 * regular allocated space. 883 * For any other dirty buffer heads on the page we should flush them. 884 */ 885 STATIC int 886 xfs_vm_writepage( 887 struct page *page, 888 struct writeback_control *wbc) 889 { 890 struct inode *inode = page->mapping->host; 891 struct buffer_head *bh, *head; 892 struct xfs_bmbt_irec imap; 893 xfs_ioend_t *ioend = NULL, *iohead = NULL; 894 loff_t offset; 895 unsigned int type; 896 __uint64_t end_offset; 897 pgoff_t end_index, last_index; 898 ssize_t len; 899 int err, imap_valid = 0, uptodate = 1; 900 int count = 0; 901 int nonblocking = 0; 902 903 trace_xfs_writepage(inode, page, 0); 904 905 ASSERT(page_has_buffers(page)); 906 907 /* 908 * Refuse to write the page out if we are called from reclaim context. 909 * 910 * This avoids stack overflows when called from deeply used stacks in 911 * random callers for direct reclaim or memcg reclaim. We explicitly 912 * allow reclaim from kswapd as the stack usage there is relatively low. 913 * 914 * This should never happen except in the case of a VM regression so 915 * warn about it. 916 */ 917 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 918 PF_MEMALLOC)) 919 goto redirty; 920 921 /* 922 * Given that we do not allow direct reclaim to call us, we should 923 * never be called while in a filesystem transaction. 924 */ 925 if (WARN_ON(current->flags & PF_FSTRANS)) 926 goto redirty; 927 928 /* Is this page beyond the end of the file? */ 929 offset = i_size_read(inode); 930 end_index = offset >> PAGE_CACHE_SHIFT; 931 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 932 if (page->index >= end_index) { 933 if ((page->index >= end_index + 1) || 934 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { 935 unlock_page(page); 936 return 0; 937 } 938 } 939 940 end_offset = min_t(unsigned long long, 941 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 942 offset); 943 len = 1 << inode->i_blkbits; 944 945 bh = head = page_buffers(page); 946 offset = page_offset(page); 947 type = IO_OVERWRITE; 948 949 if (wbc->sync_mode == WB_SYNC_NONE) 950 nonblocking = 1; 951 952 do { 953 int new_ioend = 0; 954 955 if (offset >= end_offset) 956 break; 957 if (!buffer_uptodate(bh)) 958 uptodate = 0; 959 960 /* 961 * set_page_dirty dirties all buffers in a page, independent 962 * of their state. The dirty state however is entirely 963 * meaningless for holes (!mapped && uptodate), so skip 964 * buffers covering holes here. 965 */ 966 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 967 imap_valid = 0; 968 continue; 969 } 970 971 if (buffer_unwritten(bh)) { 972 if (type != IO_UNWRITTEN) { 973 type = IO_UNWRITTEN; 974 imap_valid = 0; 975 } 976 } else if (buffer_delay(bh)) { 977 if (type != IO_DELALLOC) { 978 type = IO_DELALLOC; 979 imap_valid = 0; 980 } 981 } else if (buffer_uptodate(bh)) { 982 if (type != IO_OVERWRITE) { 983 type = IO_OVERWRITE; 984 imap_valid = 0; 985 } 986 } else { 987 if (PageUptodate(page)) { 988 ASSERT(buffer_mapped(bh)); 989 imap_valid = 0; 990 } 991 continue; 992 } 993 994 if (imap_valid) 995 imap_valid = xfs_imap_valid(inode, &imap, offset); 996 if (!imap_valid) { 997 /* 998 * If we didn't have a valid mapping then we need to 999 * put the new mapping into a separate ioend structure. 1000 * This ensures non-contiguous extents always have 1001 * separate ioends, which is particularly important 1002 * for unwritten extent conversion at I/O completion 1003 * time. 1004 */ 1005 new_ioend = 1; 1006 err = xfs_map_blocks(inode, offset, &imap, type, 1007 nonblocking); 1008 if (err) 1009 goto error; 1010 imap_valid = xfs_imap_valid(inode, &imap, offset); 1011 } 1012 if (imap_valid) { 1013 lock_buffer(bh); 1014 if (type != IO_OVERWRITE) 1015 xfs_map_at_offset(inode, bh, &imap, offset); 1016 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1017 new_ioend); 1018 count++; 1019 } 1020 1021 if (!iohead) 1022 iohead = ioend; 1023 1024 } while (offset += len, ((bh = bh->b_this_page) != head)); 1025 1026 if (uptodate && bh == head) 1027 SetPageUptodate(page); 1028 1029 xfs_start_page_writeback(page, 1, count); 1030 1031 if (ioend && imap_valid) { 1032 xfs_off_t end_index; 1033 1034 end_index = imap.br_startoff + imap.br_blockcount; 1035 1036 /* to bytes */ 1037 end_index <<= inode->i_blkbits; 1038 1039 /* to pages */ 1040 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1041 1042 /* check against file size */ 1043 if (end_index > last_index) 1044 end_index = last_index; 1045 1046 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1047 wbc, end_index); 1048 } 1049 1050 if (iohead) { 1051 /* 1052 * Reserve log space if we might write beyond the on-disk 1053 * inode size. 1054 */ 1055 if (ioend->io_type != IO_UNWRITTEN && 1056 xfs_ioend_is_append(ioend)) { 1057 err = xfs_setfilesize_trans_alloc(ioend); 1058 if (err) 1059 goto error; 1060 } 1061 1062 xfs_submit_ioend(wbc, iohead); 1063 } 1064 1065 return 0; 1066 1067 error: 1068 if (iohead) 1069 xfs_cancel_ioend(iohead); 1070 1071 if (err == -EAGAIN) 1072 goto redirty; 1073 1074 xfs_aops_discard_page(page); 1075 ClearPageUptodate(page); 1076 unlock_page(page); 1077 return err; 1078 1079 redirty: 1080 redirty_page_for_writepage(wbc, page); 1081 unlock_page(page); 1082 return 0; 1083 } 1084 1085 STATIC int 1086 xfs_vm_writepages( 1087 struct address_space *mapping, 1088 struct writeback_control *wbc) 1089 { 1090 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1091 return generic_writepages(mapping, wbc); 1092 } 1093 1094 /* 1095 * Called to move a page into cleanable state - and from there 1096 * to be released. The page should already be clean. We always 1097 * have buffer heads in this call. 1098 * 1099 * Returns 1 if the page is ok to release, 0 otherwise. 1100 */ 1101 STATIC int 1102 xfs_vm_releasepage( 1103 struct page *page, 1104 gfp_t gfp_mask) 1105 { 1106 int delalloc, unwritten; 1107 1108 trace_xfs_releasepage(page->mapping->host, page, 0); 1109 1110 xfs_count_page_state(page, &delalloc, &unwritten); 1111 1112 if (WARN_ON(delalloc)) 1113 return 0; 1114 if (WARN_ON(unwritten)) 1115 return 0; 1116 1117 return try_to_free_buffers(page); 1118 } 1119 1120 STATIC int 1121 __xfs_get_blocks( 1122 struct inode *inode, 1123 sector_t iblock, 1124 struct buffer_head *bh_result, 1125 int create, 1126 int direct) 1127 { 1128 struct xfs_inode *ip = XFS_I(inode); 1129 struct xfs_mount *mp = ip->i_mount; 1130 xfs_fileoff_t offset_fsb, end_fsb; 1131 int error = 0; 1132 int lockmode = 0; 1133 struct xfs_bmbt_irec imap; 1134 int nimaps = 1; 1135 xfs_off_t offset; 1136 ssize_t size; 1137 int new = 0; 1138 1139 if (XFS_FORCED_SHUTDOWN(mp)) 1140 return -XFS_ERROR(EIO); 1141 1142 offset = (xfs_off_t)iblock << inode->i_blkbits; 1143 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1144 size = bh_result->b_size; 1145 1146 if (!create && direct && offset >= i_size_read(inode)) 1147 return 0; 1148 1149 if (create) { 1150 lockmode = XFS_ILOCK_EXCL; 1151 xfs_ilock(ip, lockmode); 1152 } else { 1153 lockmode = xfs_ilock_map_shared(ip); 1154 } 1155 1156 ASSERT(offset <= mp->m_maxioffset); 1157 if (offset + size > mp->m_maxioffset) 1158 size = mp->m_maxioffset - offset; 1159 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1160 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1161 1162 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1163 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1164 if (error) 1165 goto out_unlock; 1166 1167 if (create && 1168 (!nimaps || 1169 (imap.br_startblock == HOLESTARTBLOCK || 1170 imap.br_startblock == DELAYSTARTBLOCK))) { 1171 if (direct) { 1172 error = xfs_iomap_write_direct(ip, offset, size, 1173 &imap, nimaps); 1174 } else { 1175 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1176 } 1177 if (error) 1178 goto out_unlock; 1179 1180 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1181 } else if (nimaps) { 1182 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1183 } else { 1184 trace_xfs_get_blocks_notfound(ip, offset, size); 1185 goto out_unlock; 1186 } 1187 xfs_iunlock(ip, lockmode); 1188 1189 if (imap.br_startblock != HOLESTARTBLOCK && 1190 imap.br_startblock != DELAYSTARTBLOCK) { 1191 /* 1192 * For unwritten extents do not report a disk address on 1193 * the read case (treat as if we're reading into a hole). 1194 */ 1195 if (create || !ISUNWRITTEN(&imap)) 1196 xfs_map_buffer(inode, bh_result, &imap, offset); 1197 if (create && ISUNWRITTEN(&imap)) { 1198 if (direct) 1199 bh_result->b_private = inode; 1200 set_buffer_unwritten(bh_result); 1201 } 1202 } 1203 1204 /* 1205 * If this is a realtime file, data may be on a different device. 1206 * to that pointed to from the buffer_head b_bdev currently. 1207 */ 1208 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1209 1210 /* 1211 * If we previously allocated a block out beyond eof and we are now 1212 * coming back to use it then we will need to flag it as new even if it 1213 * has a disk address. 1214 * 1215 * With sub-block writes into unwritten extents we also need to mark 1216 * the buffer as new so that the unwritten parts of the buffer gets 1217 * correctly zeroed. 1218 */ 1219 if (create && 1220 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1221 (offset >= i_size_read(inode)) || 1222 (new || ISUNWRITTEN(&imap)))) 1223 set_buffer_new(bh_result); 1224 1225 if (imap.br_startblock == DELAYSTARTBLOCK) { 1226 BUG_ON(direct); 1227 if (create) { 1228 set_buffer_uptodate(bh_result); 1229 set_buffer_mapped(bh_result); 1230 set_buffer_delay(bh_result); 1231 } 1232 } 1233 1234 /* 1235 * If this is O_DIRECT or the mpage code calling tell them how large 1236 * the mapping is, so that we can avoid repeated get_blocks calls. 1237 */ 1238 if (direct || size > (1 << inode->i_blkbits)) { 1239 xfs_off_t mapping_size; 1240 1241 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1242 mapping_size <<= inode->i_blkbits; 1243 1244 ASSERT(mapping_size > 0); 1245 if (mapping_size > size) 1246 mapping_size = size; 1247 if (mapping_size > LONG_MAX) 1248 mapping_size = LONG_MAX; 1249 1250 bh_result->b_size = mapping_size; 1251 } 1252 1253 return 0; 1254 1255 out_unlock: 1256 xfs_iunlock(ip, lockmode); 1257 return -error; 1258 } 1259 1260 int 1261 xfs_get_blocks( 1262 struct inode *inode, 1263 sector_t iblock, 1264 struct buffer_head *bh_result, 1265 int create) 1266 { 1267 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1268 } 1269 1270 STATIC int 1271 xfs_get_blocks_direct( 1272 struct inode *inode, 1273 sector_t iblock, 1274 struct buffer_head *bh_result, 1275 int create) 1276 { 1277 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1278 } 1279 1280 /* 1281 * Complete a direct I/O write request. 1282 * 1283 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1284 * need to issue a transaction to convert the range from unwritten to written 1285 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1286 * to do this and we are done. But in case this was a successful AIO 1287 * request this handler is called from interrupt context, from which we 1288 * can't start transactions. In that case offload the I/O completion to 1289 * the workqueues we also use for buffered I/O completion. 1290 */ 1291 STATIC void 1292 xfs_end_io_direct_write( 1293 struct kiocb *iocb, 1294 loff_t offset, 1295 ssize_t size, 1296 void *private, 1297 int ret, 1298 bool is_async) 1299 { 1300 struct xfs_ioend *ioend = iocb->private; 1301 1302 /* 1303 * While the generic direct I/O code updates the inode size, it does 1304 * so only after the end_io handler is called, which means our 1305 * end_io handler thinks the on-disk size is outside the in-core 1306 * size. To prevent this just update it a little bit earlier here. 1307 */ 1308 if (offset + size > i_size_read(ioend->io_inode)) 1309 i_size_write(ioend->io_inode, offset + size); 1310 1311 /* 1312 * blockdev_direct_IO can return an error even after the I/O 1313 * completion handler was called. Thus we need to protect 1314 * against double-freeing. 1315 */ 1316 iocb->private = NULL; 1317 1318 ioend->io_offset = offset; 1319 ioend->io_size = size; 1320 ioend->io_iocb = iocb; 1321 ioend->io_result = ret; 1322 if (private && size > 0) 1323 ioend->io_type = IO_UNWRITTEN; 1324 1325 if (is_async) { 1326 ioend->io_isasync = 1; 1327 xfs_finish_ioend(ioend); 1328 } else { 1329 xfs_finish_ioend_sync(ioend); 1330 } 1331 } 1332 1333 STATIC ssize_t 1334 xfs_vm_direct_IO( 1335 int rw, 1336 struct kiocb *iocb, 1337 const struct iovec *iov, 1338 loff_t offset, 1339 unsigned long nr_segs) 1340 { 1341 struct inode *inode = iocb->ki_filp->f_mapping->host; 1342 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1343 struct xfs_ioend *ioend = NULL; 1344 ssize_t ret; 1345 1346 if (rw & WRITE) { 1347 size_t size = iov_length(iov, nr_segs); 1348 1349 /* 1350 * We need to preallocate a transaction for a size update 1351 * here. In the case that this write both updates the size 1352 * and converts at least on unwritten extent we will cancel 1353 * the still clean transaction after the I/O has finished. 1354 */ 1355 iocb->private = ioend = xfs_alloc_ioend(inode, IO_DIRECT); 1356 if (offset + size > XFS_I(inode)->i_d.di_size) { 1357 ret = xfs_setfilesize_trans_alloc(ioend); 1358 if (ret) 1359 goto out_destroy_ioend; 1360 ioend->io_isdirect = 1; 1361 } 1362 1363 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1364 offset, nr_segs, 1365 xfs_get_blocks_direct, 1366 xfs_end_io_direct_write, NULL, 0); 1367 if (ret != -EIOCBQUEUED && iocb->private) 1368 goto out_trans_cancel; 1369 } else { 1370 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1371 offset, nr_segs, 1372 xfs_get_blocks_direct, 1373 NULL, NULL, 0); 1374 } 1375 1376 return ret; 1377 1378 out_trans_cancel: 1379 if (ioend->io_append_trans) { 1380 current_set_flags_nested(&ioend->io_append_trans->t_pflags, 1381 PF_FSTRANS); 1382 xfs_trans_cancel(ioend->io_append_trans, 0); 1383 } 1384 out_destroy_ioend: 1385 xfs_destroy_ioend(ioend); 1386 return ret; 1387 } 1388 1389 STATIC void 1390 xfs_vm_write_failed( 1391 struct address_space *mapping, 1392 loff_t to) 1393 { 1394 struct inode *inode = mapping->host; 1395 1396 if (to > inode->i_size) { 1397 /* 1398 * Punch out the delalloc blocks we have already allocated. 1399 * 1400 * Don't bother with xfs_setattr given that nothing can have 1401 * made it to disk yet as the page is still locked at this 1402 * point. 1403 */ 1404 struct xfs_inode *ip = XFS_I(inode); 1405 xfs_fileoff_t start_fsb; 1406 xfs_fileoff_t end_fsb; 1407 int error; 1408 1409 truncate_pagecache(inode, to, inode->i_size); 1410 1411 /* 1412 * Check if there are any blocks that are outside of i_size 1413 * that need to be trimmed back. 1414 */ 1415 start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; 1416 end_fsb = XFS_B_TO_FSB(ip->i_mount, to); 1417 if (end_fsb <= start_fsb) 1418 return; 1419 1420 xfs_ilock(ip, XFS_ILOCK_EXCL); 1421 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1422 end_fsb - start_fsb); 1423 if (error) { 1424 /* something screwed, just bail */ 1425 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1426 xfs_alert(ip->i_mount, 1427 "xfs_vm_write_failed: unable to clean up ino %lld", 1428 ip->i_ino); 1429 } 1430 } 1431 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1432 } 1433 } 1434 1435 STATIC int 1436 xfs_vm_write_begin( 1437 struct file *file, 1438 struct address_space *mapping, 1439 loff_t pos, 1440 unsigned len, 1441 unsigned flags, 1442 struct page **pagep, 1443 void **fsdata) 1444 { 1445 int ret; 1446 1447 ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, 1448 pagep, xfs_get_blocks); 1449 if (unlikely(ret)) 1450 xfs_vm_write_failed(mapping, pos + len); 1451 return ret; 1452 } 1453 1454 STATIC int 1455 xfs_vm_write_end( 1456 struct file *file, 1457 struct address_space *mapping, 1458 loff_t pos, 1459 unsigned len, 1460 unsigned copied, 1461 struct page *page, 1462 void *fsdata) 1463 { 1464 int ret; 1465 1466 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1467 if (unlikely(ret < len)) 1468 xfs_vm_write_failed(mapping, pos + len); 1469 return ret; 1470 } 1471 1472 STATIC sector_t 1473 xfs_vm_bmap( 1474 struct address_space *mapping, 1475 sector_t block) 1476 { 1477 struct inode *inode = (struct inode *)mapping->host; 1478 struct xfs_inode *ip = XFS_I(inode); 1479 1480 trace_xfs_vm_bmap(XFS_I(inode)); 1481 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1482 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); 1483 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1484 return generic_block_bmap(mapping, block, xfs_get_blocks); 1485 } 1486 1487 STATIC int 1488 xfs_vm_readpage( 1489 struct file *unused, 1490 struct page *page) 1491 { 1492 return mpage_readpage(page, xfs_get_blocks); 1493 } 1494 1495 STATIC int 1496 xfs_vm_readpages( 1497 struct file *unused, 1498 struct address_space *mapping, 1499 struct list_head *pages, 1500 unsigned nr_pages) 1501 { 1502 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1503 } 1504 1505 const struct address_space_operations xfs_address_space_operations = { 1506 .readpage = xfs_vm_readpage, 1507 .readpages = xfs_vm_readpages, 1508 .writepage = xfs_vm_writepage, 1509 .writepages = xfs_vm_writepages, 1510 .releasepage = xfs_vm_releasepage, 1511 .invalidatepage = xfs_vm_invalidatepage, 1512 .write_begin = xfs_vm_write_begin, 1513 .write_end = xfs_vm_write_end, 1514 .bmap = xfs_vm_bmap, 1515 .direct_IO = xfs_vm_direct_IO, 1516 .migratepage = buffer_migrate_page, 1517 .is_partially_uptodate = block_is_partially_uptodate, 1518 .error_remove_page = generic_error_remove_page, 1519 }; 1520