1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_iomap.h" 16 #include "xfs_trace.h" 17 #include "xfs_bmap.h" 18 #include "xfs_bmap_util.h" 19 #include "xfs_reflink.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 23 struct xfs_writepage_ctx { 24 struct iomap_writepage_ctx ctx; 25 unsigned int data_seq; 26 unsigned int cow_seq; 27 }; 28 29 static inline struct xfs_writepage_ctx * 30 XFS_WPC(struct iomap_writepage_ctx *ctx) 31 { 32 return container_of(ctx, struct xfs_writepage_ctx, ctx); 33 } 34 35 /* 36 * Fast and loose check if this write could update the on-disk inode size. 37 */ 38 static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 39 { 40 return ioend->io_offset + ioend->io_size > 41 XFS_I(ioend->io_inode)->i_disk_size; 42 } 43 44 /* 45 * Update on-disk file size now that data has been written to disk. 46 */ 47 int 48 xfs_setfilesize( 49 struct xfs_inode *ip, 50 xfs_off_t offset, 51 size_t size) 52 { 53 struct xfs_mount *mp = ip->i_mount; 54 struct xfs_trans *tp; 55 xfs_fsize_t isize; 56 int error; 57 58 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 59 if (error) 60 return error; 61 62 xfs_ilock(ip, XFS_ILOCK_EXCL); 63 isize = xfs_new_eof(ip, offset + size); 64 if (!isize) { 65 xfs_iunlock(ip, XFS_ILOCK_EXCL); 66 xfs_trans_cancel(tp); 67 return 0; 68 } 69 70 trace_xfs_setfilesize(ip, offset, size); 71 72 ip->i_disk_size = isize; 73 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 74 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 75 76 return xfs_trans_commit(tp); 77 } 78 79 /* 80 * IO write completion. 81 */ 82 STATIC void 83 xfs_end_ioend( 84 struct iomap_ioend *ioend) 85 { 86 struct xfs_inode *ip = XFS_I(ioend->io_inode); 87 struct xfs_mount *mp = ip->i_mount; 88 xfs_off_t offset = ioend->io_offset; 89 size_t size = ioend->io_size; 90 unsigned int nofs_flag; 91 int error; 92 93 /* 94 * We can allocate memory here while doing writeback on behalf of 95 * memory reclaim. To avoid memory allocation deadlocks set the 96 * task-wide nofs context for the following operations. 97 */ 98 nofs_flag = memalloc_nofs_save(); 99 100 /* 101 * Just clean up the in-memory structures if the fs has been shut down. 102 */ 103 if (xfs_is_shutdown(mp)) { 104 error = -EIO; 105 goto done; 106 } 107 108 /* 109 * Clean up all COW blocks and underlying data fork delalloc blocks on 110 * I/O error. The delalloc punch is required because this ioend was 111 * mapped to blocks in the COW fork and the associated pages are no 112 * longer dirty. If we don't remove delalloc blocks here, they become 113 * stale and can corrupt free space accounting on unmount. 114 */ 115 error = blk_status_to_errno(ioend->io_bio->bi_status); 116 if (unlikely(error)) { 117 if (ioend->io_flags & IOMAP_F_SHARED) { 118 xfs_reflink_cancel_cow_range(ip, offset, size, true); 119 xfs_bmap_punch_delalloc_range(ip, offset, 120 offset + size); 121 } 122 goto done; 123 } 124 125 /* 126 * Success: commit the COW or unwritten blocks if needed. 127 */ 128 if (ioend->io_flags & IOMAP_F_SHARED) 129 error = xfs_reflink_end_cow(ip, offset, size); 130 else if (ioend->io_type == IOMAP_UNWRITTEN) 131 error = xfs_iomap_write_unwritten(ip, offset, size, false); 132 133 if (!error && xfs_ioend_is_append(ioend)) 134 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 135 done: 136 iomap_finish_ioends(ioend, error); 137 memalloc_nofs_restore(nofs_flag); 138 } 139 140 /* 141 * Finish all pending IO completions that require transactional modifications. 142 * 143 * We try to merge physical and logically contiguous ioends before completion to 144 * minimise the number of transactions we need to perform during IO completion. 145 * Both unwritten extent conversion and COW remapping need to iterate and modify 146 * one physical extent at a time, so we gain nothing by merging physically 147 * discontiguous extents here. 148 * 149 * The ioend chain length that we can be processing here is largely unbound in 150 * length and we may have to perform significant amounts of work on each ioend 151 * to complete it. Hence we have to be careful about holding the CPU for too 152 * long in this loop. 153 */ 154 void 155 xfs_end_io( 156 struct work_struct *work) 157 { 158 struct xfs_inode *ip = 159 container_of(work, struct xfs_inode, i_ioend_work); 160 struct iomap_ioend *ioend; 161 struct list_head tmp; 162 unsigned long flags; 163 164 spin_lock_irqsave(&ip->i_ioend_lock, flags); 165 list_replace_init(&ip->i_ioend_list, &tmp); 166 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 167 168 iomap_sort_ioends(&tmp); 169 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 170 io_list))) { 171 list_del_init(&ioend->io_list); 172 iomap_ioend_try_merge(ioend, &tmp); 173 xfs_end_ioend(ioend); 174 cond_resched(); 175 } 176 } 177 178 STATIC void 179 xfs_end_bio( 180 struct bio *bio) 181 { 182 struct iomap_ioend *ioend = bio->bi_private; 183 struct xfs_inode *ip = XFS_I(ioend->io_inode); 184 unsigned long flags; 185 186 spin_lock_irqsave(&ip->i_ioend_lock, flags); 187 if (list_empty(&ip->i_ioend_list)) 188 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 189 &ip->i_ioend_work)); 190 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 191 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 192 } 193 194 /* 195 * Fast revalidation of the cached writeback mapping. Return true if the current 196 * mapping is valid, false otherwise. 197 */ 198 static bool 199 xfs_imap_valid( 200 struct iomap_writepage_ctx *wpc, 201 struct xfs_inode *ip, 202 loff_t offset) 203 { 204 if (offset < wpc->iomap.offset || 205 offset >= wpc->iomap.offset + wpc->iomap.length) 206 return false; 207 /* 208 * If this is a COW mapping, it is sufficient to check that the mapping 209 * covers the offset. Be careful to check this first because the caller 210 * can revalidate a COW mapping without updating the data seqno. 211 */ 212 if (wpc->iomap.flags & IOMAP_F_SHARED) 213 return true; 214 215 /* 216 * This is not a COW mapping. Check the sequence number of the data fork 217 * because concurrent changes could have invalidated the extent. Check 218 * the COW fork because concurrent changes since the last time we 219 * checked (and found nothing at this offset) could have added 220 * overlapping blocks. 221 */ 222 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) { 223 trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap, 224 XFS_WPC(wpc)->data_seq, XFS_DATA_FORK); 225 return false; 226 } 227 if (xfs_inode_has_cow_data(ip) && 228 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) { 229 trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap, 230 XFS_WPC(wpc)->cow_seq, XFS_COW_FORK); 231 return false; 232 } 233 return true; 234 } 235 236 /* 237 * Pass in a dellalloc extent and convert it to real extents, return the real 238 * extent that maps offset_fsb in wpc->iomap. 239 * 240 * The current page is held locked so nothing could have removed the block 241 * backing offset_fsb, although it could have moved from the COW to the data 242 * fork by another thread. 243 */ 244 static int 245 xfs_convert_blocks( 246 struct iomap_writepage_ctx *wpc, 247 struct xfs_inode *ip, 248 int whichfork, 249 loff_t offset) 250 { 251 int error; 252 unsigned *seq; 253 254 if (whichfork == XFS_COW_FORK) 255 seq = &XFS_WPC(wpc)->cow_seq; 256 else 257 seq = &XFS_WPC(wpc)->data_seq; 258 259 /* 260 * Attempt to allocate whatever delalloc extent currently backs offset 261 * and put the result into wpc->iomap. Allocate in a loop because it 262 * may take several attempts to allocate real blocks for a contiguous 263 * delalloc extent if free space is sufficiently fragmented. 264 */ 265 do { 266 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 267 &wpc->iomap, seq); 268 if (error) 269 return error; 270 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 271 272 return 0; 273 } 274 275 static int 276 xfs_map_blocks( 277 struct iomap_writepage_ctx *wpc, 278 struct inode *inode, 279 loff_t offset) 280 { 281 struct xfs_inode *ip = XFS_I(inode); 282 struct xfs_mount *mp = ip->i_mount; 283 ssize_t count = i_blocksize(inode); 284 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 285 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 286 xfs_fileoff_t cow_fsb; 287 int whichfork; 288 struct xfs_bmbt_irec imap; 289 struct xfs_iext_cursor icur; 290 int retries = 0; 291 int error = 0; 292 293 if (xfs_is_shutdown(mp)) 294 return -EIO; 295 296 XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS); 297 298 /* 299 * COW fork blocks can overlap data fork blocks even if the blocks 300 * aren't shared. COW I/O always takes precedent, so we must always 301 * check for overlap on reflink inodes unless the mapping is already a 302 * COW one, or the COW fork hasn't changed from the last time we looked 303 * at it. 304 * 305 * It's safe to check the COW fork if_seq here without the ILOCK because 306 * we've indirectly protected against concurrent updates: writeback has 307 * the page locked, which prevents concurrent invalidations by reflink 308 * and directio and prevents concurrent buffered writes to the same 309 * page. Changes to if_seq always happen under i_lock, which protects 310 * against concurrent updates and provides a memory barrier on the way 311 * out that ensures that we always see the current value. 312 */ 313 if (xfs_imap_valid(wpc, ip, offset)) 314 return 0; 315 316 /* 317 * If we don't have a valid map, now it's time to get a new one for this 318 * offset. This will convert delayed allocations (including COW ones) 319 * into real extents. If we return without a valid map, it means we 320 * landed in a hole and we skip the block. 321 */ 322 retry: 323 cow_fsb = NULLFILEOFF; 324 whichfork = XFS_DATA_FORK; 325 xfs_ilock(ip, XFS_ILOCK_SHARED); 326 ASSERT(!xfs_need_iread_extents(&ip->i_df)); 327 328 /* 329 * Check if this is offset is covered by a COW extents, and if yes use 330 * it directly instead of looking up anything in the data fork. 331 */ 332 if (xfs_inode_has_cow_data(ip) && 333 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 334 cow_fsb = imap.br_startoff; 335 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 336 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 337 xfs_iunlock(ip, XFS_ILOCK_SHARED); 338 339 whichfork = XFS_COW_FORK; 340 goto allocate_blocks; 341 } 342 343 /* 344 * No COW extent overlap. Revalidate now that we may have updated 345 * ->cow_seq. If the data mapping is still valid, we're done. 346 */ 347 if (xfs_imap_valid(wpc, ip, offset)) { 348 xfs_iunlock(ip, XFS_ILOCK_SHARED); 349 return 0; 350 } 351 352 /* 353 * If we don't have a valid map, now it's time to get a new one for this 354 * offset. This will convert delayed allocations (including COW ones) 355 * into real extents. 356 */ 357 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 358 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 359 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 360 xfs_iunlock(ip, XFS_ILOCK_SHARED); 361 362 /* landed in a hole or beyond EOF? */ 363 if (imap.br_startoff > offset_fsb) { 364 imap.br_blockcount = imap.br_startoff - offset_fsb; 365 imap.br_startoff = offset_fsb; 366 imap.br_startblock = HOLESTARTBLOCK; 367 imap.br_state = XFS_EXT_NORM; 368 } 369 370 /* 371 * Truncate to the next COW extent if there is one. This is the only 372 * opportunity to do this because we can skip COW fork lookups for the 373 * subsequent blocks in the mapping; however, the requirement to treat 374 * the COW range separately remains. 375 */ 376 if (cow_fsb != NULLFILEOFF && 377 cow_fsb < imap.br_startoff + imap.br_blockcount) 378 imap.br_blockcount = cow_fsb - imap.br_startoff; 379 380 /* got a delalloc extent? */ 381 if (imap.br_startblock != HOLESTARTBLOCK && 382 isnullstartblock(imap.br_startblock)) 383 goto allocate_blocks; 384 385 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq); 386 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 387 return 0; 388 allocate_blocks: 389 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 390 if (error) { 391 /* 392 * If we failed to find the extent in the COW fork we might have 393 * raced with a COW to data fork conversion or truncate. 394 * Restart the lookup to catch the extent in the data fork for 395 * the former case, but prevent additional retries to avoid 396 * looping forever for the latter case. 397 */ 398 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 399 goto retry; 400 ASSERT(error != -EAGAIN); 401 return error; 402 } 403 404 /* 405 * Due to merging the return real extent might be larger than the 406 * original delalloc one. Trim the return extent to the next COW 407 * boundary again to force a re-lookup. 408 */ 409 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 410 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 411 412 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 413 wpc->iomap.length = cow_offset - wpc->iomap.offset; 414 } 415 416 ASSERT(wpc->iomap.offset <= offset); 417 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 418 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 419 return 0; 420 } 421 422 static int 423 xfs_prepare_ioend( 424 struct iomap_ioend *ioend, 425 int status) 426 { 427 unsigned int nofs_flag; 428 429 /* 430 * We can allocate memory here while doing writeback on behalf of 431 * memory reclaim. To avoid memory allocation deadlocks set the 432 * task-wide nofs context for the following operations. 433 */ 434 nofs_flag = memalloc_nofs_save(); 435 436 /* Convert CoW extents to regular */ 437 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 438 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 439 ioend->io_offset, ioend->io_size); 440 } 441 442 memalloc_nofs_restore(nofs_flag); 443 444 /* send ioends that might require a transaction to the completion wq */ 445 if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN || 446 (ioend->io_flags & IOMAP_F_SHARED)) 447 ioend->io_bio->bi_end_io = xfs_end_bio; 448 return status; 449 } 450 451 /* 452 * If the folio has delalloc blocks on it, the caller is asking us to punch them 453 * out. If we don't, we can leave a stale delalloc mapping covered by a clean 454 * page that needs to be dirtied again before the delalloc mapping can be 455 * converted. This stale delalloc mapping can trip up a later direct I/O read 456 * operation on the same region. 457 * 458 * We prevent this by truncating away the delalloc regions on the folio. Because 459 * they are delalloc, we can do this without needing a transaction. Indeed - if 460 * we get ENOSPC errors, we have to be able to do this truncation without a 461 * transaction as there is no space left for block reservation (typically why 462 * we see a ENOSPC in writeback). 463 */ 464 static void 465 xfs_discard_folio( 466 struct folio *folio, 467 loff_t pos) 468 { 469 struct xfs_inode *ip = XFS_I(folio->mapping->host); 470 struct xfs_mount *mp = ip->i_mount; 471 int error; 472 473 if (xfs_is_shutdown(mp)) 474 return; 475 476 xfs_alert_ratelimited(mp, 477 "page discard on page "PTR_FMT", inode 0x%llx, pos %llu.", 478 folio, ip->i_ino, pos); 479 480 /* 481 * The end of the punch range is always the offset of the the first 482 * byte of the next folio. Hence the end offset is only dependent on the 483 * folio itself and not the start offset that is passed in. 484 */ 485 error = xfs_bmap_punch_delalloc_range(ip, pos, 486 folio_pos(folio) + folio_size(folio)); 487 488 if (error && !xfs_is_shutdown(mp)) 489 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 490 } 491 492 static const struct iomap_writeback_ops xfs_writeback_ops = { 493 .map_blocks = xfs_map_blocks, 494 .prepare_ioend = xfs_prepare_ioend, 495 .discard_folio = xfs_discard_folio, 496 }; 497 498 STATIC int 499 xfs_vm_writepages( 500 struct address_space *mapping, 501 struct writeback_control *wbc) 502 { 503 struct xfs_writepage_ctx wpc = { }; 504 505 /* 506 * Writing back data in a transaction context can result in recursive 507 * transactions. This is bad, so issue a warning and get out of here. 508 */ 509 if (WARN_ON_ONCE(current->journal_info)) 510 return 0; 511 512 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 513 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 514 } 515 516 STATIC int 517 xfs_dax_writepages( 518 struct address_space *mapping, 519 struct writeback_control *wbc) 520 { 521 struct xfs_inode *ip = XFS_I(mapping->host); 522 523 xfs_iflags_clear(ip, XFS_ITRUNCATED); 524 return dax_writeback_mapping_range(mapping, 525 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 526 } 527 528 STATIC sector_t 529 xfs_vm_bmap( 530 struct address_space *mapping, 531 sector_t block) 532 { 533 struct xfs_inode *ip = XFS_I(mapping->host); 534 535 trace_xfs_vm_bmap(ip); 536 537 /* 538 * The swap code (ab-)uses ->bmap to get a block mapping and then 539 * bypasses the file system for actual I/O. We really can't allow 540 * that on reflinks inodes, so we have to skip out here. And yes, 541 * 0 is the magic code for a bmap error. 542 * 543 * Since we don't pass back blockdev info, we can't return bmap 544 * information for rt files either. 545 */ 546 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 547 return 0; 548 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 549 } 550 551 STATIC int 552 xfs_vm_read_folio( 553 struct file *unused, 554 struct folio *folio) 555 { 556 return iomap_read_folio(folio, &xfs_read_iomap_ops); 557 } 558 559 STATIC void 560 xfs_vm_readahead( 561 struct readahead_control *rac) 562 { 563 iomap_readahead(rac, &xfs_read_iomap_ops); 564 } 565 566 static int 567 xfs_iomap_swapfile_activate( 568 struct swap_info_struct *sis, 569 struct file *swap_file, 570 sector_t *span) 571 { 572 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 573 return iomap_swapfile_activate(sis, swap_file, span, 574 &xfs_read_iomap_ops); 575 } 576 577 const struct address_space_operations xfs_address_space_operations = { 578 .read_folio = xfs_vm_read_folio, 579 .readahead = xfs_vm_readahead, 580 .writepages = xfs_vm_writepages, 581 .dirty_folio = filemap_dirty_folio, 582 .release_folio = iomap_release_folio, 583 .invalidate_folio = iomap_invalidate_folio, 584 .bmap = xfs_vm_bmap, 585 .direct_IO = noop_direct_IO, 586 .migrate_folio = filemap_migrate_folio, 587 .is_partially_uptodate = iomap_is_partially_uptodate, 588 .error_remove_page = generic_error_remove_page, 589 .swap_activate = xfs_iomap_swapfile_activate, 590 }; 591 592 const struct address_space_operations xfs_dax_aops = { 593 .writepages = xfs_dax_writepages, 594 .direct_IO = noop_direct_IO, 595 .dirty_folio = noop_dirty_folio, 596 .swap_activate = xfs_iomap_swapfile_activate, 597 }; 598