xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 15d90a6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25 
26 /*
27  * structure owned by writepages passed to individual writepage calls
28  */
29 struct xfs_writepage_ctx {
30 	struct xfs_bmbt_irec    imap;
31 	unsigned int		io_type;
32 	unsigned int		cow_seq;
33 	struct xfs_ioend	*ioend;
34 };
35 
36 struct block_device *
37 xfs_find_bdev_for_inode(
38 	struct inode		*inode)
39 {
40 	struct xfs_inode	*ip = XFS_I(inode);
41 	struct xfs_mount	*mp = ip->i_mount;
42 
43 	if (XFS_IS_REALTIME_INODE(ip))
44 		return mp->m_rtdev_targp->bt_bdev;
45 	else
46 		return mp->m_ddev_targp->bt_bdev;
47 }
48 
49 struct dax_device *
50 xfs_find_daxdev_for_inode(
51 	struct inode		*inode)
52 {
53 	struct xfs_inode	*ip = XFS_I(inode);
54 	struct xfs_mount	*mp = ip->i_mount;
55 
56 	if (XFS_IS_REALTIME_INODE(ip))
57 		return mp->m_rtdev_targp->bt_daxdev;
58 	else
59 		return mp->m_ddev_targp->bt_daxdev;
60 }
61 
62 static void
63 xfs_finish_page_writeback(
64 	struct inode		*inode,
65 	struct bio_vec		*bvec,
66 	int			error)
67 {
68 	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);
69 
70 	if (error) {
71 		SetPageError(bvec->bv_page);
72 		mapping_set_error(inode->i_mapping, -EIO);
73 	}
74 
75 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
76 	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
77 
78 	if (!iop || atomic_dec_and_test(&iop->write_count))
79 		end_page_writeback(bvec->bv_page);
80 }
81 
82 /*
83  * We're now finished for good with this ioend structure.  Update the page
84  * state, release holds on bios, and finally free up memory.  Do not use the
85  * ioend after this.
86  */
87 STATIC void
88 xfs_destroy_ioend(
89 	struct xfs_ioend	*ioend,
90 	int			error)
91 {
92 	struct inode		*inode = ioend->io_inode;
93 	struct bio		*bio = &ioend->io_inline_bio;
94 	struct bio		*last = ioend->io_bio, *next;
95 	u64			start = bio->bi_iter.bi_sector;
96 	bool			quiet = bio_flagged(bio, BIO_QUIET);
97 
98 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
99 		struct bio_vec	*bvec;
100 		int		i;
101 
102 		/*
103 		 * For the last bio, bi_private points to the ioend, so we
104 		 * need to explicitly end the iteration here.
105 		 */
106 		if (bio == last)
107 			next = NULL;
108 		else
109 			next = bio->bi_private;
110 
111 		/* walk each page on bio, ending page IO on them */
112 		bio_for_each_segment_all(bvec, bio, i)
113 			xfs_finish_page_writeback(inode, bvec, error);
114 		bio_put(bio);
115 	}
116 
117 	if (unlikely(error && !quiet)) {
118 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
119 			"writeback error on sector %llu", start);
120 	}
121 }
122 
123 /*
124  * Fast and loose check if this write could update the on-disk inode size.
125  */
126 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
127 {
128 	return ioend->io_offset + ioend->io_size >
129 		XFS_I(ioend->io_inode)->i_d.di_size;
130 }
131 
132 STATIC int
133 xfs_setfilesize_trans_alloc(
134 	struct xfs_ioend	*ioend)
135 {
136 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
137 	struct xfs_trans	*tp;
138 	int			error;
139 
140 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
141 				XFS_TRANS_NOFS, &tp);
142 	if (error)
143 		return error;
144 
145 	ioend->io_append_trans = tp;
146 
147 	/*
148 	 * We may pass freeze protection with a transaction.  So tell lockdep
149 	 * we released it.
150 	 */
151 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
152 	/*
153 	 * We hand off the transaction to the completion thread now, so
154 	 * clear the flag here.
155 	 */
156 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
157 	return 0;
158 }
159 
160 /*
161  * Update on-disk file size now that data has been written to disk.
162  */
163 STATIC int
164 __xfs_setfilesize(
165 	struct xfs_inode	*ip,
166 	struct xfs_trans	*tp,
167 	xfs_off_t		offset,
168 	size_t			size)
169 {
170 	xfs_fsize_t		isize;
171 
172 	xfs_ilock(ip, XFS_ILOCK_EXCL);
173 	isize = xfs_new_eof(ip, offset + size);
174 	if (!isize) {
175 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
176 		xfs_trans_cancel(tp);
177 		return 0;
178 	}
179 
180 	trace_xfs_setfilesize(ip, offset, size);
181 
182 	ip->i_d.di_size = isize;
183 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
184 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
185 
186 	return xfs_trans_commit(tp);
187 }
188 
189 int
190 xfs_setfilesize(
191 	struct xfs_inode	*ip,
192 	xfs_off_t		offset,
193 	size_t			size)
194 {
195 	struct xfs_mount	*mp = ip->i_mount;
196 	struct xfs_trans	*tp;
197 	int			error;
198 
199 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
200 	if (error)
201 		return error;
202 
203 	return __xfs_setfilesize(ip, tp, offset, size);
204 }
205 
206 STATIC int
207 xfs_setfilesize_ioend(
208 	struct xfs_ioend	*ioend,
209 	int			error)
210 {
211 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
212 	struct xfs_trans	*tp = ioend->io_append_trans;
213 
214 	/*
215 	 * The transaction may have been allocated in the I/O submission thread,
216 	 * thus we need to mark ourselves as being in a transaction manually.
217 	 * Similarly for freeze protection.
218 	 */
219 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
220 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
221 
222 	/* we abort the update if there was an IO error */
223 	if (error) {
224 		xfs_trans_cancel(tp);
225 		return error;
226 	}
227 
228 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
229 }
230 
231 /*
232  * IO write completion.
233  */
234 STATIC void
235 xfs_end_io(
236 	struct work_struct *work)
237 {
238 	struct xfs_ioend	*ioend =
239 		container_of(work, struct xfs_ioend, io_work);
240 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
241 	xfs_off_t		offset = ioend->io_offset;
242 	size_t			size = ioend->io_size;
243 	int			error;
244 
245 	/*
246 	 * Just clean up the in-memory strutures if the fs has been shut down.
247 	 */
248 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249 		error = -EIO;
250 		goto done;
251 	}
252 
253 	/*
254 	 * Clean up any COW blocks on an I/O error.
255 	 */
256 	error = blk_status_to_errno(ioend->io_bio->bi_status);
257 	if (unlikely(error)) {
258 		switch (ioend->io_type) {
259 		case XFS_IO_COW:
260 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
261 			break;
262 		}
263 
264 		goto done;
265 	}
266 
267 	/*
268 	 * Success:  commit the COW or unwritten blocks if needed.
269 	 */
270 	switch (ioend->io_type) {
271 	case XFS_IO_COW:
272 		error = xfs_reflink_end_cow(ip, offset, size);
273 		break;
274 	case XFS_IO_UNWRITTEN:
275 		/* writeback should never update isize */
276 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
277 		break;
278 	default:
279 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
280 		break;
281 	}
282 
283 done:
284 	if (ioend->io_append_trans)
285 		error = xfs_setfilesize_ioend(ioend, error);
286 	xfs_destroy_ioend(ioend, error);
287 }
288 
289 STATIC void
290 xfs_end_bio(
291 	struct bio		*bio)
292 {
293 	struct xfs_ioend	*ioend = bio->bi_private;
294 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
295 
296 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
297 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
298 	else if (ioend->io_append_trans)
299 		queue_work(mp->m_data_workqueue, &ioend->io_work);
300 	else
301 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
302 }
303 
304 STATIC int
305 xfs_map_blocks(
306 	struct xfs_writepage_ctx *wpc,
307 	struct inode		*inode,
308 	loff_t			offset)
309 {
310 	struct xfs_inode	*ip = XFS_I(inode);
311 	struct xfs_mount	*mp = ip->i_mount;
312 	ssize_t			count = i_blocksize(inode);
313 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
314 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
315 	struct xfs_bmbt_irec	imap;
316 	int			whichfork = XFS_DATA_FORK;
317 	struct xfs_iext_cursor	icur;
318 	bool			imap_valid;
319 	int			error = 0;
320 
321 	/*
322 	 * We have to make sure the cached mapping is within EOF to protect
323 	 * against eofblocks trimming on file release leaving us with a stale
324 	 * mapping. Otherwise, a page for a subsequent file extending buffered
325 	 * write could get picked up by this writeback cycle and written to the
326 	 * wrong blocks.
327 	 *
328 	 * Note that what we really want here is a generic mapping invalidation
329 	 * mechanism to protect us from arbitrary extent modifying contexts, not
330 	 * just eofblocks.
331 	 */
332 	xfs_trim_extent_eof(&wpc->imap, ip);
333 
334 	/*
335 	 * COW fork blocks can overlap data fork blocks even if the blocks
336 	 * aren't shared.  COW I/O always takes precedent, so we must always
337 	 * check for overlap on reflink inodes unless the mapping is already a
338 	 * COW one, or the COW fork hasn't changed from the last time we looked
339 	 * at it.
340 	 *
341 	 * It's safe to check the COW fork if_seq here without the ILOCK because
342 	 * we've indirectly protected against concurrent updates: writeback has
343 	 * the page locked, which prevents concurrent invalidations by reflink
344 	 * and directio and prevents concurrent buffered writes to the same
345 	 * page.  Changes to if_seq always happen under i_lock, which protects
346 	 * against concurrent updates and provides a memory barrier on the way
347 	 * out that ensures that we always see the current value.
348 	 */
349 	imap_valid = offset_fsb >= wpc->imap.br_startoff &&
350 		     offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
351 	if (imap_valid &&
352 	    (!xfs_inode_has_cow_data(ip) ||
353 	     wpc->io_type == XFS_IO_COW ||
354 	     wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
355 		return 0;
356 
357 	if (XFS_FORCED_SHUTDOWN(mp))
358 		return -EIO;
359 
360 	/*
361 	 * If we don't have a valid map, now it's time to get a new one for this
362 	 * offset.  This will convert delayed allocations (including COW ones)
363 	 * into real extents.  If we return without a valid map, it means we
364 	 * landed in a hole and we skip the block.
365 	 */
366 	xfs_ilock(ip, XFS_ILOCK_SHARED);
367 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
368 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
369 	ASSERT(offset <= mp->m_super->s_maxbytes);
370 
371 	if (offset > mp->m_super->s_maxbytes - count)
372 		count = mp->m_super->s_maxbytes - offset;
373 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
374 
375 	/*
376 	 * Check if this is offset is covered by a COW extents, and if yes use
377 	 * it directly instead of looking up anything in the data fork.
378 	 */
379 	if (xfs_inode_has_cow_data(ip) &&
380 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
381 		cow_fsb = imap.br_startoff;
382 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
383 		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
384 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
385 		/*
386 		 * Truncate can race with writeback since writeback doesn't
387 		 * take the iolock and truncate decreases the file size before
388 		 * it starts truncating the pages between new_size and old_size.
389 		 * Therefore, we can end up in the situation where writeback
390 		 * gets a CoW fork mapping but the truncate makes the mapping
391 		 * invalid and we end up in here trying to get a new mapping.
392 		 * bail out here so that we simply never get a valid mapping
393 		 * and so we drop the write altogether.  The page truncation
394 		 * will kill the contents anyway.
395 		 */
396 		if (offset > i_size_read(inode)) {
397 			wpc->io_type = XFS_IO_HOLE;
398 			return 0;
399 		}
400 		whichfork = XFS_COW_FORK;
401 		wpc->io_type = XFS_IO_COW;
402 		goto allocate_blocks;
403 	}
404 
405 	/*
406 	 * Map valid and no COW extent in the way?  We're done.
407 	 */
408 	if (imap_valid) {
409 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
410 		return 0;
411 	}
412 
413 	/*
414 	 * If we don't have a valid map, now it's time to get a new one for this
415 	 * offset.  This will convert delayed allocations (including COW ones)
416 	 * into real extents.
417 	 */
418 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
419 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
420 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
421 
422 	if (imap.br_startoff > offset_fsb) {
423 		/* landed in a hole or beyond EOF */
424 		imap.br_blockcount = imap.br_startoff - offset_fsb;
425 		imap.br_startoff = offset_fsb;
426 		imap.br_startblock = HOLESTARTBLOCK;
427 		wpc->io_type = XFS_IO_HOLE;
428 	} else {
429 		/*
430 		 * Truncate to the next COW extent if there is one.  This is the
431 		 * only opportunity to do this because we can skip COW fork
432 		 * lookups for the subsequent blocks in the mapping; however,
433 		 * the requirement to treat the COW range separately remains.
434 		 */
435 		if (cow_fsb != NULLFILEOFF &&
436 		    cow_fsb < imap.br_startoff + imap.br_blockcount)
437 			imap.br_blockcount = cow_fsb - imap.br_startoff;
438 
439 		if (isnullstartblock(imap.br_startblock)) {
440 			/* got a delalloc extent */
441 			wpc->io_type = XFS_IO_DELALLOC;
442 			goto allocate_blocks;
443 		}
444 
445 		if (imap.br_state == XFS_EXT_UNWRITTEN)
446 			wpc->io_type = XFS_IO_UNWRITTEN;
447 		else
448 			wpc->io_type = XFS_IO_OVERWRITE;
449 	}
450 
451 	wpc->imap = imap;
452 	xfs_trim_extent_eof(&wpc->imap, ip);
453 	trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
454 	return 0;
455 allocate_blocks:
456 	error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
457 			&wpc->cow_seq);
458 	if (error)
459 		return error;
460 	ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
461 	       imap.br_startoff + imap.br_blockcount <= cow_fsb);
462 	wpc->imap = imap;
463 	xfs_trim_extent_eof(&wpc->imap, ip);
464 	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
465 	return 0;
466 }
467 
468 /*
469  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
470  * it, and we submit that bio. The ioend may be used for multiple bio
471  * submissions, so we only want to allocate an append transaction for the ioend
472  * once. In the case of multiple bio submission, each bio will take an IO
473  * reference to the ioend to ensure that the ioend completion is only done once
474  * all bios have been submitted and the ioend is really done.
475  *
476  * If @fail is non-zero, it means that we have a situation where some part of
477  * the submission process has failed after we have marked paged for writeback
478  * and unlocked them. In this situation, we need to fail the bio and ioend
479  * rather than submit it to IO. This typically only happens on a filesystem
480  * shutdown.
481  */
482 STATIC int
483 xfs_submit_ioend(
484 	struct writeback_control *wbc,
485 	struct xfs_ioend	*ioend,
486 	int			status)
487 {
488 	/* Convert CoW extents to regular */
489 	if (!status && ioend->io_type == XFS_IO_COW) {
490 		/*
491 		 * Yuk. This can do memory allocation, but is not a
492 		 * transactional operation so everything is done in GFP_KERNEL
493 		 * context. That can deadlock, because we hold pages in
494 		 * writeback state and GFP_KERNEL allocations can block on them.
495 		 * Hence we must operate in nofs conditions here.
496 		 */
497 		unsigned nofs_flag;
498 
499 		nofs_flag = memalloc_nofs_save();
500 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
501 				ioend->io_offset, ioend->io_size);
502 		memalloc_nofs_restore(nofs_flag);
503 	}
504 
505 	/* Reserve log space if we might write beyond the on-disk inode size. */
506 	if (!status &&
507 	    ioend->io_type != XFS_IO_UNWRITTEN &&
508 	    xfs_ioend_is_append(ioend) &&
509 	    !ioend->io_append_trans)
510 		status = xfs_setfilesize_trans_alloc(ioend);
511 
512 	ioend->io_bio->bi_private = ioend;
513 	ioend->io_bio->bi_end_io = xfs_end_bio;
514 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
515 
516 	/*
517 	 * If we are failing the IO now, just mark the ioend with an
518 	 * error and finish it. This will run IO completion immediately
519 	 * as there is only one reference to the ioend at this point in
520 	 * time.
521 	 */
522 	if (status) {
523 		ioend->io_bio->bi_status = errno_to_blk_status(status);
524 		bio_endio(ioend->io_bio);
525 		return status;
526 	}
527 
528 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
529 	submit_bio(ioend->io_bio);
530 	return 0;
531 }
532 
533 static struct xfs_ioend *
534 xfs_alloc_ioend(
535 	struct inode		*inode,
536 	unsigned int		type,
537 	xfs_off_t		offset,
538 	struct block_device	*bdev,
539 	sector_t		sector)
540 {
541 	struct xfs_ioend	*ioend;
542 	struct bio		*bio;
543 
544 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
545 	bio_set_dev(bio, bdev);
546 	bio->bi_iter.bi_sector = sector;
547 
548 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
549 	INIT_LIST_HEAD(&ioend->io_list);
550 	ioend->io_type = type;
551 	ioend->io_inode = inode;
552 	ioend->io_size = 0;
553 	ioend->io_offset = offset;
554 	INIT_WORK(&ioend->io_work, xfs_end_io);
555 	ioend->io_append_trans = NULL;
556 	ioend->io_bio = bio;
557 	return ioend;
558 }
559 
560 /*
561  * Allocate a new bio, and chain the old bio to the new one.
562  *
563  * Note that we have to do perform the chaining in this unintuitive order
564  * so that the bi_private linkage is set up in the right direction for the
565  * traversal in xfs_destroy_ioend().
566  */
567 static void
568 xfs_chain_bio(
569 	struct xfs_ioend	*ioend,
570 	struct writeback_control *wbc,
571 	struct block_device	*bdev,
572 	sector_t		sector)
573 {
574 	struct bio *new;
575 
576 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
577 	bio_set_dev(new, bdev);
578 	new->bi_iter.bi_sector = sector;
579 	bio_chain(ioend->io_bio, new);
580 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
581 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
582 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
583 	submit_bio(ioend->io_bio);
584 	ioend->io_bio = new;
585 }
586 
587 /*
588  * Test to see if we have an existing ioend structure that we could append to
589  * first, otherwise finish off the current ioend and start another.
590  */
591 STATIC void
592 xfs_add_to_ioend(
593 	struct inode		*inode,
594 	xfs_off_t		offset,
595 	struct page		*page,
596 	struct iomap_page	*iop,
597 	struct xfs_writepage_ctx *wpc,
598 	struct writeback_control *wbc,
599 	struct list_head	*iolist)
600 {
601 	struct xfs_inode	*ip = XFS_I(inode);
602 	struct xfs_mount	*mp = ip->i_mount;
603 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
604 	unsigned		len = i_blocksize(inode);
605 	unsigned		poff = offset & (PAGE_SIZE - 1);
606 	sector_t		sector;
607 
608 	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
609 		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
610 
611 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
612 	    sector != bio_end_sector(wpc->ioend->io_bio) ||
613 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
614 		if (wpc->ioend)
615 			list_add(&wpc->ioend->io_list, iolist);
616 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
617 				bdev, sector);
618 	}
619 
620 	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
621 		if (iop)
622 			atomic_inc(&iop->write_count);
623 		if (bio_full(wpc->ioend->io_bio))
624 			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
625 		__bio_add_page(wpc->ioend->io_bio, page, len, poff);
626 	}
627 
628 	wpc->ioend->io_size += len;
629 }
630 
631 STATIC void
632 xfs_vm_invalidatepage(
633 	struct page		*page,
634 	unsigned int		offset,
635 	unsigned int		length)
636 {
637 	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
638 	iomap_invalidatepage(page, offset, length);
639 }
640 
641 /*
642  * If the page has delalloc blocks on it, we need to punch them out before we
643  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
644  * inode that can trip up a later direct I/O read operation on the same region.
645  *
646  * We prevent this by truncating away the delalloc regions on the page.  Because
647  * they are delalloc, we can do this without needing a transaction. Indeed - if
648  * we get ENOSPC errors, we have to be able to do this truncation without a
649  * transaction as there is no space left for block reservation (typically why we
650  * see a ENOSPC in writeback).
651  */
652 STATIC void
653 xfs_aops_discard_page(
654 	struct page		*page)
655 {
656 	struct inode		*inode = page->mapping->host;
657 	struct xfs_inode	*ip = XFS_I(inode);
658 	struct xfs_mount	*mp = ip->i_mount;
659 	loff_t			offset = page_offset(page);
660 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
661 	int			error;
662 
663 	if (XFS_FORCED_SHUTDOWN(mp))
664 		goto out_invalidate;
665 
666 	xfs_alert(mp,
667 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
668 			page, ip->i_ino, offset);
669 
670 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
671 			PAGE_SIZE / i_blocksize(inode));
672 	if (error && !XFS_FORCED_SHUTDOWN(mp))
673 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
674 out_invalidate:
675 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
676 }
677 
678 /*
679  * We implement an immediate ioend submission policy here to avoid needing to
680  * chain multiple ioends and hence nest mempool allocations which can violate
681  * forward progress guarantees we need to provide. The current ioend we are
682  * adding blocks to is cached on the writepage context, and if the new block
683  * does not append to the cached ioend it will create a new ioend and cache that
684  * instead.
685  *
686  * If a new ioend is created and cached, the old ioend is returned and queued
687  * locally for submission once the entire page is processed or an error has been
688  * detected.  While ioends are submitted immediately after they are completed,
689  * batching optimisations are provided by higher level block plugging.
690  *
691  * At the end of a writeback pass, there will be a cached ioend remaining on the
692  * writepage context that the caller will need to submit.
693  */
694 static int
695 xfs_writepage_map(
696 	struct xfs_writepage_ctx *wpc,
697 	struct writeback_control *wbc,
698 	struct inode		*inode,
699 	struct page		*page,
700 	uint64_t		end_offset)
701 {
702 	LIST_HEAD(submit_list);
703 	struct iomap_page	*iop = to_iomap_page(page);
704 	unsigned		len = i_blocksize(inode);
705 	struct xfs_ioend	*ioend, *next;
706 	uint64_t		file_offset;	/* file offset of page */
707 	int			error = 0, count = 0, i;
708 
709 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
710 	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
711 
712 	/*
713 	 * Walk through the page to find areas to write back. If we run off the
714 	 * end of the current map or find the current map invalid, grab a new
715 	 * one.
716 	 */
717 	for (i = 0, file_offset = page_offset(page);
718 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
719 	     i++, file_offset += len) {
720 		if (iop && !test_bit(i, iop->uptodate))
721 			continue;
722 
723 		error = xfs_map_blocks(wpc, inode, file_offset);
724 		if (error)
725 			break;
726 		if (wpc->io_type == XFS_IO_HOLE)
727 			continue;
728 		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
729 				 &submit_list);
730 		count++;
731 	}
732 
733 	ASSERT(wpc->ioend || list_empty(&submit_list));
734 	ASSERT(PageLocked(page));
735 	ASSERT(!PageWriteback(page));
736 
737 	/*
738 	 * On error, we have to fail the ioend here because we may have set
739 	 * pages under writeback, we have to make sure we run IO completion to
740 	 * mark the error state of the IO appropriately, so we can't cancel the
741 	 * ioend directly here.  That means we have to mark this page as under
742 	 * writeback if we included any blocks from it in the ioend chain so
743 	 * that completion treats it correctly.
744 	 *
745 	 * If we didn't include the page in the ioend, the on error we can
746 	 * simply discard and unlock it as there are no other users of the page
747 	 * now.  The caller will still need to trigger submission of outstanding
748 	 * ioends on the writepage context so they are treated correctly on
749 	 * error.
750 	 */
751 	if (unlikely(error)) {
752 		if (!count) {
753 			xfs_aops_discard_page(page);
754 			ClearPageUptodate(page);
755 			unlock_page(page);
756 			goto done;
757 		}
758 
759 		/*
760 		 * If the page was not fully cleaned, we need to ensure that the
761 		 * higher layers come back to it correctly.  That means we need
762 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
763 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
764 		 * so another attempt to write this page in this writeback sweep
765 		 * will be made.
766 		 */
767 		set_page_writeback_keepwrite(page);
768 	} else {
769 		clear_page_dirty_for_io(page);
770 		set_page_writeback(page);
771 	}
772 
773 	unlock_page(page);
774 
775 	/*
776 	 * Preserve the original error if there was one, otherwise catch
777 	 * submission errors here and propagate into subsequent ioend
778 	 * submissions.
779 	 */
780 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
781 		int error2;
782 
783 		list_del_init(&ioend->io_list);
784 		error2 = xfs_submit_ioend(wbc, ioend, error);
785 		if (error2 && !error)
786 			error = error2;
787 	}
788 
789 	/*
790 	 * We can end up here with no error and nothing to write only if we race
791 	 * with a partial page truncate on a sub-page block sized filesystem.
792 	 */
793 	if (!count)
794 		end_page_writeback(page);
795 done:
796 	mapping_set_error(page->mapping, error);
797 	return error;
798 }
799 
800 /*
801  * Write out a dirty page.
802  *
803  * For delalloc space on the page we need to allocate space and flush it.
804  * For unwritten space on the page we need to start the conversion to
805  * regular allocated space.
806  */
807 STATIC int
808 xfs_do_writepage(
809 	struct page		*page,
810 	struct writeback_control *wbc,
811 	void			*data)
812 {
813 	struct xfs_writepage_ctx *wpc = data;
814 	struct inode		*inode = page->mapping->host;
815 	loff_t			offset;
816 	uint64_t              end_offset;
817 	pgoff_t                 end_index;
818 
819 	trace_xfs_writepage(inode, page, 0, 0);
820 
821 	/*
822 	 * Refuse to write the page out if we are called from reclaim context.
823 	 *
824 	 * This avoids stack overflows when called from deeply used stacks in
825 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
826 	 * allow reclaim from kswapd as the stack usage there is relatively low.
827 	 *
828 	 * This should never happen except in the case of a VM regression so
829 	 * warn about it.
830 	 */
831 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
832 			PF_MEMALLOC))
833 		goto redirty;
834 
835 	/*
836 	 * Given that we do not allow direct reclaim to call us, we should
837 	 * never be called while in a filesystem transaction.
838 	 */
839 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
840 		goto redirty;
841 
842 	/*
843 	 * Is this page beyond the end of the file?
844 	 *
845 	 * The page index is less than the end_index, adjust the end_offset
846 	 * to the highest offset that this page should represent.
847 	 * -----------------------------------------------------
848 	 * |			file mapping	       | <EOF> |
849 	 * -----------------------------------------------------
850 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
851 	 * ^--------------------------------^----------|--------
852 	 * |     desired writeback range    |      see else    |
853 	 * ---------------------------------^------------------|
854 	 */
855 	offset = i_size_read(inode);
856 	end_index = offset >> PAGE_SHIFT;
857 	if (page->index < end_index)
858 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
859 	else {
860 		/*
861 		 * Check whether the page to write out is beyond or straddles
862 		 * i_size or not.
863 		 * -------------------------------------------------------
864 		 * |		file mapping		        | <EOF>  |
865 		 * -------------------------------------------------------
866 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
867 		 * ^--------------------------------^-----------|---------
868 		 * |				    |      Straddles     |
869 		 * ---------------------------------^-----------|--------|
870 		 */
871 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
872 
873 		/*
874 		 * Skip the page if it is fully outside i_size, e.g. due to a
875 		 * truncate operation that is in progress. We must redirty the
876 		 * page so that reclaim stops reclaiming it. Otherwise
877 		 * xfs_vm_releasepage() is called on it and gets confused.
878 		 *
879 		 * Note that the end_index is unsigned long, it would overflow
880 		 * if the given offset is greater than 16TB on 32-bit system
881 		 * and if we do check the page is fully outside i_size or not
882 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
883 		 * will be evaluated to 0.  Hence this page will be redirtied
884 		 * and be written out repeatedly which would result in an
885 		 * infinite loop, the user program that perform this operation
886 		 * will hang.  Instead, we can verify this situation by checking
887 		 * if the page to write is totally beyond the i_size or if it's
888 		 * offset is just equal to the EOF.
889 		 */
890 		if (page->index > end_index ||
891 		    (page->index == end_index && offset_into_page == 0))
892 			goto redirty;
893 
894 		/*
895 		 * The page straddles i_size.  It must be zeroed out on each
896 		 * and every writepage invocation because it may be mmapped.
897 		 * "A file is mapped in multiples of the page size.  For a file
898 		 * that is not a multiple of the page size, the remaining
899 		 * memory is zeroed when mapped, and writes to that region are
900 		 * not written out to the file."
901 		 */
902 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
903 
904 		/* Adjust the end_offset to the end of file */
905 		end_offset = offset;
906 	}
907 
908 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
909 
910 redirty:
911 	redirty_page_for_writepage(wbc, page);
912 	unlock_page(page);
913 	return 0;
914 }
915 
916 STATIC int
917 xfs_vm_writepage(
918 	struct page		*page,
919 	struct writeback_control *wbc)
920 {
921 	struct xfs_writepage_ctx wpc = {
922 		.io_type = XFS_IO_HOLE,
923 	};
924 	int			ret;
925 
926 	ret = xfs_do_writepage(page, wbc, &wpc);
927 	if (wpc.ioend)
928 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
929 	return ret;
930 }
931 
932 STATIC int
933 xfs_vm_writepages(
934 	struct address_space	*mapping,
935 	struct writeback_control *wbc)
936 {
937 	struct xfs_writepage_ctx wpc = {
938 		.io_type = XFS_IO_HOLE,
939 	};
940 	int			ret;
941 
942 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
943 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
944 	if (wpc.ioend)
945 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
946 	return ret;
947 }
948 
949 STATIC int
950 xfs_dax_writepages(
951 	struct address_space	*mapping,
952 	struct writeback_control *wbc)
953 {
954 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
955 	return dax_writeback_mapping_range(mapping,
956 			xfs_find_bdev_for_inode(mapping->host), wbc);
957 }
958 
959 STATIC int
960 xfs_vm_releasepage(
961 	struct page		*page,
962 	gfp_t			gfp_mask)
963 {
964 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
965 	return iomap_releasepage(page, gfp_mask);
966 }
967 
968 STATIC sector_t
969 xfs_vm_bmap(
970 	struct address_space	*mapping,
971 	sector_t		block)
972 {
973 	struct xfs_inode	*ip = XFS_I(mapping->host);
974 
975 	trace_xfs_vm_bmap(ip);
976 
977 	/*
978 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
979 	 * bypasses the file system for actual I/O.  We really can't allow
980 	 * that on reflinks inodes, so we have to skip out here.  And yes,
981 	 * 0 is the magic code for a bmap error.
982 	 *
983 	 * Since we don't pass back blockdev info, we can't return bmap
984 	 * information for rt files either.
985 	 */
986 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
987 		return 0;
988 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
989 }
990 
991 STATIC int
992 xfs_vm_readpage(
993 	struct file		*unused,
994 	struct page		*page)
995 {
996 	trace_xfs_vm_readpage(page->mapping->host, 1);
997 	return iomap_readpage(page, &xfs_iomap_ops);
998 }
999 
1000 STATIC int
1001 xfs_vm_readpages(
1002 	struct file		*unused,
1003 	struct address_space	*mapping,
1004 	struct list_head	*pages,
1005 	unsigned		nr_pages)
1006 {
1007 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1008 	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1009 }
1010 
1011 static int
1012 xfs_iomap_swapfile_activate(
1013 	struct swap_info_struct		*sis,
1014 	struct file			*swap_file,
1015 	sector_t			*span)
1016 {
1017 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1018 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1019 }
1020 
1021 const struct address_space_operations xfs_address_space_operations = {
1022 	.readpage		= xfs_vm_readpage,
1023 	.readpages		= xfs_vm_readpages,
1024 	.writepage		= xfs_vm_writepage,
1025 	.writepages		= xfs_vm_writepages,
1026 	.set_page_dirty		= iomap_set_page_dirty,
1027 	.releasepage		= xfs_vm_releasepage,
1028 	.invalidatepage		= xfs_vm_invalidatepage,
1029 	.bmap			= xfs_vm_bmap,
1030 	.direct_IO		= noop_direct_IO,
1031 	.migratepage		= iomap_migrate_page,
1032 	.is_partially_uptodate  = iomap_is_partially_uptodate,
1033 	.error_remove_page	= generic_error_remove_page,
1034 	.swap_activate		= xfs_iomap_swapfile_activate,
1035 };
1036 
1037 const struct address_space_operations xfs_dax_aops = {
1038 	.writepages		= xfs_dax_writepages,
1039 	.direct_IO		= noop_direct_IO,
1040 	.set_page_dirty		= noop_set_page_dirty,
1041 	.invalidatepage		= noop_invalidatepage,
1042 	.swap_activate		= xfs_iomap_swapfile_activate,
1043 };
1044