xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 110e6f26)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
41 #define XFS_DIO_FLAG_APPEND	(1 << 1)
42 
43 /*
44  * structure owned by writepages passed to individual writepage calls
45  */
46 struct xfs_writepage_ctx {
47 	struct xfs_bmbt_irec    imap;
48 	bool			imap_valid;
49 	unsigned int		io_type;
50 	struct xfs_ioend	*ioend;
51 	sector_t		last_block;
52 };
53 
54 void
55 xfs_count_page_state(
56 	struct page		*page,
57 	int			*delalloc,
58 	int			*unwritten)
59 {
60 	struct buffer_head	*bh, *head;
61 
62 	*delalloc = *unwritten = 0;
63 
64 	bh = head = page_buffers(page);
65 	do {
66 		if (buffer_unwritten(bh))
67 			(*unwritten) = 1;
68 		else if (buffer_delay(bh))
69 			(*delalloc) = 1;
70 	} while ((bh = bh->b_this_page) != head);
71 }
72 
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 	struct inode		*inode)
76 {
77 	struct xfs_inode	*ip = XFS_I(inode);
78 	struct xfs_mount	*mp = ip->i_mount;
79 
80 	if (XFS_IS_REALTIME_INODE(ip))
81 		return mp->m_rtdev_targp->bt_bdev;
82 	else
83 		return mp->m_ddev_targp->bt_bdev;
84 }
85 
86 /*
87  * We're now finished for good with this ioend structure.
88  * Update the page state via the associated buffer_heads,
89  * release holds on the inode and bio, and finally free
90  * up memory.  Do not use the ioend after this.
91  */
92 STATIC void
93 xfs_destroy_ioend(
94 	xfs_ioend_t		*ioend)
95 {
96 	struct buffer_head	*bh, *next;
97 
98 	for (bh = ioend->io_buffer_head; bh; bh = next) {
99 		next = bh->b_private;
100 		bh->b_end_io(bh, !ioend->io_error);
101 	}
102 
103 	mempool_free(ioend, xfs_ioend_pool);
104 }
105 
106 /*
107  * Fast and loose check if this write could update the on-disk inode size.
108  */
109 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
110 {
111 	return ioend->io_offset + ioend->io_size >
112 		XFS_I(ioend->io_inode)->i_d.di_size;
113 }
114 
115 STATIC int
116 xfs_setfilesize_trans_alloc(
117 	struct xfs_ioend	*ioend)
118 {
119 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
120 	struct xfs_trans	*tp;
121 	int			error;
122 
123 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
124 
125 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
126 	if (error) {
127 		xfs_trans_cancel(tp);
128 		return error;
129 	}
130 
131 	ioend->io_append_trans = tp;
132 
133 	/*
134 	 * We may pass freeze protection with a transaction.  So tell lockdep
135 	 * we released it.
136 	 */
137 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
138 	/*
139 	 * We hand off the transaction to the completion thread now, so
140 	 * clear the flag here.
141 	 */
142 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
143 	return 0;
144 }
145 
146 /*
147  * Update on-disk file size now that data has been written to disk.
148  */
149 STATIC int
150 xfs_setfilesize(
151 	struct xfs_inode	*ip,
152 	struct xfs_trans	*tp,
153 	xfs_off_t		offset,
154 	size_t			size)
155 {
156 	xfs_fsize_t		isize;
157 
158 	xfs_ilock(ip, XFS_ILOCK_EXCL);
159 	isize = xfs_new_eof(ip, offset + size);
160 	if (!isize) {
161 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 		xfs_trans_cancel(tp);
163 		return 0;
164 	}
165 
166 	trace_xfs_setfilesize(ip, offset, size);
167 
168 	ip->i_d.di_size = isize;
169 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 
172 	return xfs_trans_commit(tp);
173 }
174 
175 STATIC int
176 xfs_setfilesize_ioend(
177 	struct xfs_ioend	*ioend)
178 {
179 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
180 	struct xfs_trans	*tp = ioend->io_append_trans;
181 
182 	/*
183 	 * The transaction may have been allocated in the I/O submission thread,
184 	 * thus we need to mark ourselves as being in a transaction manually.
185 	 * Similarly for freeze protection.
186 	 */
187 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
188 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
189 
190 	/* we abort the update if there was an IO error */
191 	if (ioend->io_error) {
192 		xfs_trans_cancel(tp);
193 		return ioend->io_error;
194 	}
195 
196 	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
197 }
198 
199 /*
200  * Schedule IO completion handling on the final put of an ioend.
201  *
202  * If there is no work to do we might as well call it a day and free the
203  * ioend right now.
204  */
205 STATIC void
206 xfs_finish_ioend(
207 	struct xfs_ioend	*ioend)
208 {
209 	if (atomic_dec_and_test(&ioend->io_remaining)) {
210 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
211 
212 		if (ioend->io_type == XFS_IO_UNWRITTEN)
213 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
214 		else if (ioend->io_append_trans)
215 			queue_work(mp->m_data_workqueue, &ioend->io_work);
216 		else
217 			xfs_destroy_ioend(ioend);
218 	}
219 }
220 
221 /*
222  * IO write completion.
223  */
224 STATIC void
225 xfs_end_io(
226 	struct work_struct *work)
227 {
228 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
229 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
230 	int		error = 0;
231 
232 	/*
233 	 * Set an error if the mount has shut down and proceed with end I/O
234 	 * processing so it can perform whatever cleanups are necessary.
235 	 */
236 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
237 		ioend->io_error = -EIO;
238 
239 	/*
240 	 * For unwritten extents we need to issue transactions to convert a
241 	 * range to normal written extens after the data I/O has finished.
242 	 * Detecting and handling completion IO errors is done individually
243 	 * for each case as different cleanup operations need to be performed
244 	 * on error.
245 	 */
246 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
247 		if (ioend->io_error)
248 			goto done;
249 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
250 						  ioend->io_size);
251 	} else if (ioend->io_append_trans) {
252 		error = xfs_setfilesize_ioend(ioend);
253 	} else {
254 		ASSERT(!xfs_ioend_is_append(ioend));
255 	}
256 
257 done:
258 	if (error)
259 		ioend->io_error = error;
260 	xfs_destroy_ioend(ioend);
261 }
262 
263 /*
264  * Allocate and initialise an IO completion structure.
265  * We need to track unwritten extent write completion here initially.
266  * We'll need to extend this for updating the ondisk inode size later
267  * (vs. incore size).
268  */
269 STATIC xfs_ioend_t *
270 xfs_alloc_ioend(
271 	struct inode		*inode,
272 	unsigned int		type)
273 {
274 	xfs_ioend_t		*ioend;
275 
276 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
277 
278 	/*
279 	 * Set the count to 1 initially, which will prevent an I/O
280 	 * completion callback from happening before we have started
281 	 * all the I/O from calling the completion routine too early.
282 	 */
283 	atomic_set(&ioend->io_remaining, 1);
284 	ioend->io_error = 0;
285 	INIT_LIST_HEAD(&ioend->io_list);
286 	ioend->io_type = type;
287 	ioend->io_inode = inode;
288 	ioend->io_buffer_head = NULL;
289 	ioend->io_buffer_tail = NULL;
290 	ioend->io_offset = 0;
291 	ioend->io_size = 0;
292 	ioend->io_append_trans = NULL;
293 
294 	INIT_WORK(&ioend->io_work, xfs_end_io);
295 	return ioend;
296 }
297 
298 STATIC int
299 xfs_map_blocks(
300 	struct inode		*inode,
301 	loff_t			offset,
302 	struct xfs_bmbt_irec	*imap,
303 	int			type)
304 {
305 	struct xfs_inode	*ip = XFS_I(inode);
306 	struct xfs_mount	*mp = ip->i_mount;
307 	ssize_t			count = 1 << inode->i_blkbits;
308 	xfs_fileoff_t		offset_fsb, end_fsb;
309 	int			error = 0;
310 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
311 	int			nimaps = 1;
312 
313 	if (XFS_FORCED_SHUTDOWN(mp))
314 		return -EIO;
315 
316 	if (type == XFS_IO_UNWRITTEN)
317 		bmapi_flags |= XFS_BMAPI_IGSTATE;
318 
319 	xfs_ilock(ip, XFS_ILOCK_SHARED);
320 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
321 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
322 	ASSERT(offset <= mp->m_super->s_maxbytes);
323 
324 	if (offset + count > mp->m_super->s_maxbytes)
325 		count = mp->m_super->s_maxbytes - offset;
326 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
327 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
328 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
329 				imap, &nimaps, bmapi_flags);
330 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
331 
332 	if (error)
333 		return error;
334 
335 	if (type == XFS_IO_DELALLOC &&
336 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
337 		error = xfs_iomap_write_allocate(ip, offset, imap);
338 		if (!error)
339 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
340 		return error;
341 	}
342 
343 #ifdef DEBUG
344 	if (type == XFS_IO_UNWRITTEN) {
345 		ASSERT(nimaps);
346 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
347 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
348 	}
349 #endif
350 	if (nimaps)
351 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
352 	return 0;
353 }
354 
355 STATIC bool
356 xfs_imap_valid(
357 	struct inode		*inode,
358 	struct xfs_bmbt_irec	*imap,
359 	xfs_off_t		offset)
360 {
361 	offset >>= inode->i_blkbits;
362 
363 	return offset >= imap->br_startoff &&
364 		offset < imap->br_startoff + imap->br_blockcount;
365 }
366 
367 /*
368  * BIO completion handler for buffered IO.
369  */
370 STATIC void
371 xfs_end_bio(
372 	struct bio		*bio)
373 {
374 	xfs_ioend_t		*ioend = bio->bi_private;
375 
376 	if (!ioend->io_error)
377 		ioend->io_error = bio->bi_error;
378 
379 	/* Toss bio and pass work off to an xfsdatad thread */
380 	bio->bi_private = NULL;
381 	bio->bi_end_io = NULL;
382 	bio_put(bio);
383 
384 	xfs_finish_ioend(ioend);
385 }
386 
387 STATIC void
388 xfs_submit_ioend_bio(
389 	struct writeback_control *wbc,
390 	xfs_ioend_t		*ioend,
391 	struct bio		*bio)
392 {
393 	atomic_inc(&ioend->io_remaining);
394 	bio->bi_private = ioend;
395 	bio->bi_end_io = xfs_end_bio;
396 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
397 }
398 
399 STATIC struct bio *
400 xfs_alloc_ioend_bio(
401 	struct buffer_head	*bh)
402 {
403 	struct bio		*bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
404 
405 	ASSERT(bio->bi_private == NULL);
406 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 	bio->bi_bdev = bh->b_bdev;
408 	return bio;
409 }
410 
411 STATIC void
412 xfs_start_buffer_writeback(
413 	struct buffer_head	*bh)
414 {
415 	ASSERT(buffer_mapped(bh));
416 	ASSERT(buffer_locked(bh));
417 	ASSERT(!buffer_delay(bh));
418 	ASSERT(!buffer_unwritten(bh));
419 
420 	mark_buffer_async_write(bh);
421 	set_buffer_uptodate(bh);
422 	clear_buffer_dirty(bh);
423 }
424 
425 STATIC void
426 xfs_start_page_writeback(
427 	struct page		*page,
428 	int			clear_dirty)
429 {
430 	ASSERT(PageLocked(page));
431 	ASSERT(!PageWriteback(page));
432 
433 	/*
434 	 * if the page was not fully cleaned, we need to ensure that the higher
435 	 * layers come back to it correctly. That means we need to keep the page
436 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
437 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
438 	 * write this page in this writeback sweep will be made.
439 	 */
440 	if (clear_dirty) {
441 		clear_page_dirty_for_io(page);
442 		set_page_writeback(page);
443 	} else
444 		set_page_writeback_keepwrite(page);
445 
446 	unlock_page(page);
447 }
448 
449 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
450 {
451 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
452 }
453 
454 /*
455  * Submit all of the bios for an ioend. We are only passed a single ioend at a
456  * time; the caller is responsible for chaining prior to submission.
457  *
458  * If @fail is non-zero, it means that we have a situation where some part of
459  * the submission process has failed after we have marked paged for writeback
460  * and unlocked them. In this situation, we need to fail the ioend chain rather
461  * than submit it to IO. This typically only happens on a filesystem shutdown.
462  */
463 STATIC int
464 xfs_submit_ioend(
465 	struct writeback_control *wbc,
466 	xfs_ioend_t		*ioend,
467 	int			status)
468 {
469 	struct buffer_head	*bh;
470 	struct bio		*bio;
471 	sector_t		lastblock = 0;
472 
473 	/* Reserve log space if we might write beyond the on-disk inode size. */
474 	if (!status &&
475 	     ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
476 		status = xfs_setfilesize_trans_alloc(ioend);
477 	/*
478 	 * If we are failing the IO now, just mark the ioend with an
479 	 * error and finish it. This will run IO completion immediately
480 	 * as there is only one reference to the ioend at this point in
481 	 * time.
482 	 */
483 	if (status) {
484 		ioend->io_error = status;
485 		xfs_finish_ioend(ioend);
486 		return status;
487 	}
488 
489 	bio = NULL;
490 	for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
491 
492 		if (!bio) {
493 retry:
494 			bio = xfs_alloc_ioend_bio(bh);
495 		} else if (bh->b_blocknr != lastblock + 1) {
496 			xfs_submit_ioend_bio(wbc, ioend, bio);
497 			goto retry;
498 		}
499 
500 		if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
501 			xfs_submit_ioend_bio(wbc, ioend, bio);
502 			goto retry;
503 		}
504 
505 		lastblock = bh->b_blocknr;
506 	}
507 	if (bio)
508 		xfs_submit_ioend_bio(wbc, ioend, bio);
509 	xfs_finish_ioend(ioend);
510 	return 0;
511 }
512 
513 /*
514  * Test to see if we've been building up a completion structure for
515  * earlier buffers -- if so, we try to append to this ioend if we
516  * can, otherwise we finish off any current ioend and start another.
517  * Return the ioend we finished off so that the caller can submit it
518  * once it has finished processing the dirty page.
519  */
520 STATIC void
521 xfs_add_to_ioend(
522 	struct inode		*inode,
523 	struct buffer_head	*bh,
524 	xfs_off_t		offset,
525 	struct xfs_writepage_ctx *wpc,
526 	struct list_head	*iolist)
527 {
528 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
529 	    bh->b_blocknr != wpc->last_block + 1 ||
530 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
531 		struct xfs_ioend	*new;
532 
533 		if (wpc->ioend)
534 			list_add(&wpc->ioend->io_list, iolist);
535 
536 		new = xfs_alloc_ioend(inode, wpc->io_type);
537 		new->io_offset = offset;
538 		new->io_buffer_head = bh;
539 		new->io_buffer_tail = bh;
540 		wpc->ioend = new;
541 	} else {
542 		wpc->ioend->io_buffer_tail->b_private = bh;
543 		wpc->ioend->io_buffer_tail = bh;
544 	}
545 
546 	bh->b_private = NULL;
547 	wpc->ioend->io_size += bh->b_size;
548 	wpc->last_block = bh->b_blocknr;
549 	xfs_start_buffer_writeback(bh);
550 }
551 
552 STATIC void
553 xfs_map_buffer(
554 	struct inode		*inode,
555 	struct buffer_head	*bh,
556 	struct xfs_bmbt_irec	*imap,
557 	xfs_off_t		offset)
558 {
559 	sector_t		bn;
560 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
561 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
562 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
563 
564 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
565 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
566 
567 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
568 	      ((offset - iomap_offset) >> inode->i_blkbits);
569 
570 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
571 
572 	bh->b_blocknr = bn;
573 	set_buffer_mapped(bh);
574 }
575 
576 STATIC void
577 xfs_map_at_offset(
578 	struct inode		*inode,
579 	struct buffer_head	*bh,
580 	struct xfs_bmbt_irec	*imap,
581 	xfs_off_t		offset)
582 {
583 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
584 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
585 
586 	xfs_map_buffer(inode, bh, imap, offset);
587 	set_buffer_mapped(bh);
588 	clear_buffer_delay(bh);
589 	clear_buffer_unwritten(bh);
590 }
591 
592 /*
593  * Test if a given page contains at least one buffer of a given @type.
594  * If @check_all_buffers is true, then we walk all the buffers in the page to
595  * try to find one of the type passed in. If it is not set, then the caller only
596  * needs to check the first buffer on the page for a match.
597  */
598 STATIC bool
599 xfs_check_page_type(
600 	struct page		*page,
601 	unsigned int		type,
602 	bool			check_all_buffers)
603 {
604 	struct buffer_head	*bh;
605 	struct buffer_head	*head;
606 
607 	if (PageWriteback(page))
608 		return false;
609 	if (!page->mapping)
610 		return false;
611 	if (!page_has_buffers(page))
612 		return false;
613 
614 	bh = head = page_buffers(page);
615 	do {
616 		if (buffer_unwritten(bh)) {
617 			if (type == XFS_IO_UNWRITTEN)
618 				return true;
619 		} else if (buffer_delay(bh)) {
620 			if (type == XFS_IO_DELALLOC)
621 				return true;
622 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
623 			if (type == XFS_IO_OVERWRITE)
624 				return true;
625 		}
626 
627 		/* If we are only checking the first buffer, we are done now. */
628 		if (!check_all_buffers)
629 			break;
630 	} while ((bh = bh->b_this_page) != head);
631 
632 	return false;
633 }
634 
635 STATIC void
636 xfs_vm_invalidatepage(
637 	struct page		*page,
638 	unsigned int		offset,
639 	unsigned int		length)
640 {
641 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
642 				 length);
643 	block_invalidatepage(page, offset, length);
644 }
645 
646 /*
647  * If the page has delalloc buffers on it, we need to punch them out before we
648  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
649  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
650  * is done on that same region - the delalloc extent is returned when none is
651  * supposed to be there.
652  *
653  * We prevent this by truncating away the delalloc regions on the page before
654  * invalidating it. Because they are delalloc, we can do this without needing a
655  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
656  * truncation without a transaction as there is no space left for block
657  * reservation (typically why we see a ENOSPC in writeback).
658  *
659  * This is not a performance critical path, so for now just do the punching a
660  * buffer head at a time.
661  */
662 STATIC void
663 xfs_aops_discard_page(
664 	struct page		*page)
665 {
666 	struct inode		*inode = page->mapping->host;
667 	struct xfs_inode	*ip = XFS_I(inode);
668 	struct buffer_head	*bh, *head;
669 	loff_t			offset = page_offset(page);
670 
671 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
672 		goto out_invalidate;
673 
674 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
675 		goto out_invalidate;
676 
677 	xfs_alert(ip->i_mount,
678 		"page discard on page %p, inode 0x%llx, offset %llu.",
679 			page, ip->i_ino, offset);
680 
681 	xfs_ilock(ip, XFS_ILOCK_EXCL);
682 	bh = head = page_buffers(page);
683 	do {
684 		int		error;
685 		xfs_fileoff_t	start_fsb;
686 
687 		if (!buffer_delay(bh))
688 			goto next_buffer;
689 
690 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
691 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
692 		if (error) {
693 			/* something screwed, just bail */
694 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
695 				xfs_alert(ip->i_mount,
696 			"page discard unable to remove delalloc mapping.");
697 			}
698 			break;
699 		}
700 next_buffer:
701 		offset += 1 << inode->i_blkbits;
702 
703 	} while ((bh = bh->b_this_page) != head);
704 
705 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
706 out_invalidate:
707 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
708 	return;
709 }
710 
711 /*
712  * We implement an immediate ioend submission policy here to avoid needing to
713  * chain multiple ioends and hence nest mempool allocations which can violate
714  * forward progress guarantees we need to provide. The current ioend we are
715  * adding buffers to is cached on the writepage context, and if the new buffer
716  * does not append to the cached ioend it will create a new ioend and cache that
717  * instead.
718  *
719  * If a new ioend is created and cached, the old ioend is returned and queued
720  * locally for submission once the entire page is processed or an error has been
721  * detected.  While ioends are submitted immediately after they are completed,
722  * batching optimisations are provided by higher level block plugging.
723  *
724  * At the end of a writeback pass, there will be a cached ioend remaining on the
725  * writepage context that the caller will need to submit.
726  */
727 static int
728 xfs_writepage_map(
729 	struct xfs_writepage_ctx *wpc,
730 	struct writeback_control *wbc,
731 	struct inode		*inode,
732 	struct page		*page,
733 	loff_t			offset,
734 	__uint64_t              end_offset)
735 {
736 	LIST_HEAD(submit_list);
737 	struct xfs_ioend	*ioend, *next;
738 	struct buffer_head	*bh, *head;
739 	ssize_t			len = 1 << inode->i_blkbits;
740 	int			error = 0;
741 	int			count = 0;
742 	int			uptodate = 1;
743 
744 	bh = head = page_buffers(page);
745 	offset = page_offset(page);
746 	do {
747 		if (offset >= end_offset)
748 			break;
749 		if (!buffer_uptodate(bh))
750 			uptodate = 0;
751 
752 		/*
753 		 * set_page_dirty dirties all buffers in a page, independent
754 		 * of their state.  The dirty state however is entirely
755 		 * meaningless for holes (!mapped && uptodate), so skip
756 		 * buffers covering holes here.
757 		 */
758 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
759 			wpc->imap_valid = false;
760 			continue;
761 		}
762 
763 		if (buffer_unwritten(bh)) {
764 			if (wpc->io_type != XFS_IO_UNWRITTEN) {
765 				wpc->io_type = XFS_IO_UNWRITTEN;
766 				wpc->imap_valid = false;
767 			}
768 		} else if (buffer_delay(bh)) {
769 			if (wpc->io_type != XFS_IO_DELALLOC) {
770 				wpc->io_type = XFS_IO_DELALLOC;
771 				wpc->imap_valid = false;
772 			}
773 		} else if (buffer_uptodate(bh)) {
774 			if (wpc->io_type != XFS_IO_OVERWRITE) {
775 				wpc->io_type = XFS_IO_OVERWRITE;
776 				wpc->imap_valid = false;
777 			}
778 		} else {
779 			if (PageUptodate(page))
780 				ASSERT(buffer_mapped(bh));
781 			/*
782 			 * This buffer is not uptodate and will not be
783 			 * written to disk.  Ensure that we will put any
784 			 * subsequent writeable buffers into a new
785 			 * ioend.
786 			 */
787 			wpc->imap_valid = false;
788 			continue;
789 		}
790 
791 		if (wpc->imap_valid)
792 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
793 							 offset);
794 		if (!wpc->imap_valid) {
795 			error = xfs_map_blocks(inode, offset, &wpc->imap,
796 					     wpc->io_type);
797 			if (error)
798 				goto out;
799 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
800 							 offset);
801 		}
802 		if (wpc->imap_valid) {
803 			lock_buffer(bh);
804 			if (wpc->io_type != XFS_IO_OVERWRITE)
805 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
806 			xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
807 			count++;
808 		}
809 
810 	} while (offset += len, ((bh = bh->b_this_page) != head));
811 
812 	if (uptodate && bh == head)
813 		SetPageUptodate(page);
814 
815 	ASSERT(wpc->ioend || list_empty(&submit_list));
816 
817 out:
818 	/*
819 	 * On error, we have to fail the ioend here because we have locked
820 	 * buffers in the ioend. If we don't do this, we'll deadlock
821 	 * invalidating the page as that tries to lock the buffers on the page.
822 	 * Also, because we may have set pages under writeback, we have to make
823 	 * sure we run IO completion to mark the error state of the IO
824 	 * appropriately, so we can't cancel the ioend directly here. That means
825 	 * we have to mark this page as under writeback if we included any
826 	 * buffers from it in the ioend chain so that completion treats it
827 	 * correctly.
828 	 *
829 	 * If we didn't include the page in the ioend, the on error we can
830 	 * simply discard and unlock it as there are no other users of the page
831 	 * or it's buffers right now. The caller will still need to trigger
832 	 * submission of outstanding ioends on the writepage context so they are
833 	 * treated correctly on error.
834 	 */
835 	if (count) {
836 		xfs_start_page_writeback(page, !error);
837 
838 		/*
839 		 * Preserve the original error if there was one, otherwise catch
840 		 * submission errors here and propagate into subsequent ioend
841 		 * submissions.
842 		 */
843 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
844 			int error2;
845 
846 			list_del_init(&ioend->io_list);
847 			error2 = xfs_submit_ioend(wbc, ioend, error);
848 			if (error2 && !error)
849 				error = error2;
850 		}
851 	} else if (error) {
852 		xfs_aops_discard_page(page);
853 		ClearPageUptodate(page);
854 		unlock_page(page);
855 	} else {
856 		/*
857 		 * We can end up here with no error and nothing to write if we
858 		 * race with a partial page truncate on a sub-page block sized
859 		 * filesystem. In that case we need to mark the page clean.
860 		 */
861 		xfs_start_page_writeback(page, 1);
862 		end_page_writeback(page);
863 	}
864 
865 	mapping_set_error(page->mapping, error);
866 	return error;
867 }
868 
869 /*
870  * Write out a dirty page.
871  *
872  * For delalloc space on the page we need to allocate space and flush it.
873  * For unwritten space on the page we need to start the conversion to
874  * regular allocated space.
875  * For any other dirty buffer heads on the page we should flush them.
876  */
877 STATIC int
878 xfs_do_writepage(
879 	struct page		*page,
880 	struct writeback_control *wbc,
881 	void			*data)
882 {
883 	struct xfs_writepage_ctx *wpc = data;
884 	struct inode		*inode = page->mapping->host;
885 	loff_t			offset;
886 	__uint64_t              end_offset;
887 	pgoff_t                 end_index;
888 
889 	trace_xfs_writepage(inode, page, 0, 0);
890 
891 	ASSERT(page_has_buffers(page));
892 
893 	/*
894 	 * Refuse to write the page out if we are called from reclaim context.
895 	 *
896 	 * This avoids stack overflows when called from deeply used stacks in
897 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
898 	 * allow reclaim from kswapd as the stack usage there is relatively low.
899 	 *
900 	 * This should never happen except in the case of a VM regression so
901 	 * warn about it.
902 	 */
903 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
904 			PF_MEMALLOC))
905 		goto redirty;
906 
907 	/*
908 	 * Given that we do not allow direct reclaim to call us, we should
909 	 * never be called while in a filesystem transaction.
910 	 */
911 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
912 		goto redirty;
913 
914 	/*
915 	 * Is this page beyond the end of the file?
916 	 *
917 	 * The page index is less than the end_index, adjust the end_offset
918 	 * to the highest offset that this page should represent.
919 	 * -----------------------------------------------------
920 	 * |			file mapping	       | <EOF> |
921 	 * -----------------------------------------------------
922 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
923 	 * ^--------------------------------^----------|--------
924 	 * |     desired writeback range    |      see else    |
925 	 * ---------------------------------^------------------|
926 	 */
927 	offset = i_size_read(inode);
928 	end_index = offset >> PAGE_SHIFT;
929 	if (page->index < end_index)
930 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
931 	else {
932 		/*
933 		 * Check whether the page to write out is beyond or straddles
934 		 * i_size or not.
935 		 * -------------------------------------------------------
936 		 * |		file mapping		        | <EOF>  |
937 		 * -------------------------------------------------------
938 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
939 		 * ^--------------------------------^-----------|---------
940 		 * |				    |      Straddles     |
941 		 * ---------------------------------^-----------|--------|
942 		 */
943 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
944 
945 		/*
946 		 * Skip the page if it is fully outside i_size, e.g. due to a
947 		 * truncate operation that is in progress. We must redirty the
948 		 * page so that reclaim stops reclaiming it. Otherwise
949 		 * xfs_vm_releasepage() is called on it and gets confused.
950 		 *
951 		 * Note that the end_index is unsigned long, it would overflow
952 		 * if the given offset is greater than 16TB on 32-bit system
953 		 * and if we do check the page is fully outside i_size or not
954 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
955 		 * will be evaluated to 0.  Hence this page will be redirtied
956 		 * and be written out repeatedly which would result in an
957 		 * infinite loop, the user program that perform this operation
958 		 * will hang.  Instead, we can verify this situation by checking
959 		 * if the page to write is totally beyond the i_size or if it's
960 		 * offset is just equal to the EOF.
961 		 */
962 		if (page->index > end_index ||
963 		    (page->index == end_index && offset_into_page == 0))
964 			goto redirty;
965 
966 		/*
967 		 * The page straddles i_size.  It must be zeroed out on each
968 		 * and every writepage invocation because it may be mmapped.
969 		 * "A file is mapped in multiples of the page size.  For a file
970 		 * that is not a multiple of the page size, the remaining
971 		 * memory is zeroed when mapped, and writes to that region are
972 		 * not written out to the file."
973 		 */
974 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
975 
976 		/* Adjust the end_offset to the end of file */
977 		end_offset = offset;
978 	}
979 
980 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
981 
982 redirty:
983 	redirty_page_for_writepage(wbc, page);
984 	unlock_page(page);
985 	return 0;
986 }
987 
988 STATIC int
989 xfs_vm_writepage(
990 	struct page		*page,
991 	struct writeback_control *wbc)
992 {
993 	struct xfs_writepage_ctx wpc = {
994 		.io_type = XFS_IO_INVALID,
995 	};
996 	int			ret;
997 
998 	ret = xfs_do_writepage(page, wbc, &wpc);
999 	if (wpc.ioend)
1000 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1001 	return ret;
1002 }
1003 
1004 STATIC int
1005 xfs_vm_writepages(
1006 	struct address_space	*mapping,
1007 	struct writeback_control *wbc)
1008 {
1009 	struct xfs_writepage_ctx wpc = {
1010 		.io_type = XFS_IO_INVALID,
1011 	};
1012 	int			ret;
1013 
1014 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1015 	if (dax_mapping(mapping))
1016 		return dax_writeback_mapping_range(mapping,
1017 				xfs_find_bdev_for_inode(mapping->host), wbc);
1018 
1019 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1020 	if (wpc.ioend)
1021 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1022 	return ret;
1023 }
1024 
1025 /*
1026  * Called to move a page into cleanable state - and from there
1027  * to be released. The page should already be clean. We always
1028  * have buffer heads in this call.
1029  *
1030  * Returns 1 if the page is ok to release, 0 otherwise.
1031  */
1032 STATIC int
1033 xfs_vm_releasepage(
1034 	struct page		*page,
1035 	gfp_t			gfp_mask)
1036 {
1037 	int			delalloc, unwritten;
1038 
1039 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1040 
1041 	xfs_count_page_state(page, &delalloc, &unwritten);
1042 
1043 	if (WARN_ON_ONCE(delalloc))
1044 		return 0;
1045 	if (WARN_ON_ONCE(unwritten))
1046 		return 0;
1047 
1048 	return try_to_free_buffers(page);
1049 }
1050 
1051 /*
1052  * When we map a DIO buffer, we may need to pass flags to
1053  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1054  *
1055  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1056  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1057  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1058  * extending the file size. We won't know for sure until IO completion is run
1059  * and the actual max write offset is communicated to the IO completion
1060  * routine.
1061  */
1062 static void
1063 xfs_map_direct(
1064 	struct inode		*inode,
1065 	struct buffer_head	*bh_result,
1066 	struct xfs_bmbt_irec	*imap,
1067 	xfs_off_t		offset)
1068 {
1069 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1070 	xfs_off_t		size = bh_result->b_size;
1071 
1072 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1073 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1074 
1075 	if (ISUNWRITTEN(imap)) {
1076 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1077 		set_buffer_defer_completion(bh_result);
1078 	} else if (offset + size > i_size_read(inode) || offset + size < 0) {
1079 		*flags |= XFS_DIO_FLAG_APPEND;
1080 		set_buffer_defer_completion(bh_result);
1081 	}
1082 }
1083 
1084 /*
1085  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1086  * is, so that we can avoid repeated get_blocks calls.
1087  *
1088  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1089  * for blocks beyond EOF must be marked new so that sub block regions can be
1090  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1091  * was just allocated or is unwritten, otherwise the callers would overwrite
1092  * existing data with zeros. Hence we have to split the mapping into a range up
1093  * to and including EOF, and a second mapping for beyond EOF.
1094  */
1095 static void
1096 xfs_map_trim_size(
1097 	struct inode		*inode,
1098 	sector_t		iblock,
1099 	struct buffer_head	*bh_result,
1100 	struct xfs_bmbt_irec	*imap,
1101 	xfs_off_t		offset,
1102 	ssize_t			size)
1103 {
1104 	xfs_off_t		mapping_size;
1105 
1106 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1107 	mapping_size <<= inode->i_blkbits;
1108 
1109 	ASSERT(mapping_size > 0);
1110 	if (mapping_size > size)
1111 		mapping_size = size;
1112 	if (offset < i_size_read(inode) &&
1113 	    offset + mapping_size >= i_size_read(inode)) {
1114 		/* limit mapping to block that spans EOF */
1115 		mapping_size = roundup_64(i_size_read(inode) - offset,
1116 					  1 << inode->i_blkbits);
1117 	}
1118 	if (mapping_size > LONG_MAX)
1119 		mapping_size = LONG_MAX;
1120 
1121 	bh_result->b_size = mapping_size;
1122 }
1123 
1124 STATIC int
1125 __xfs_get_blocks(
1126 	struct inode		*inode,
1127 	sector_t		iblock,
1128 	struct buffer_head	*bh_result,
1129 	int			create,
1130 	bool			direct,
1131 	bool			dax_fault)
1132 {
1133 	struct xfs_inode	*ip = XFS_I(inode);
1134 	struct xfs_mount	*mp = ip->i_mount;
1135 	xfs_fileoff_t		offset_fsb, end_fsb;
1136 	int			error = 0;
1137 	int			lockmode = 0;
1138 	struct xfs_bmbt_irec	imap;
1139 	int			nimaps = 1;
1140 	xfs_off_t		offset;
1141 	ssize_t			size;
1142 	int			new = 0;
1143 
1144 	if (XFS_FORCED_SHUTDOWN(mp))
1145 		return -EIO;
1146 
1147 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1148 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1149 	size = bh_result->b_size;
1150 
1151 	if (!create && direct && offset >= i_size_read(inode))
1152 		return 0;
1153 
1154 	/*
1155 	 * Direct I/O is usually done on preallocated files, so try getting
1156 	 * a block mapping without an exclusive lock first.  For buffered
1157 	 * writes we already have the exclusive iolock anyway, so avoiding
1158 	 * a lock roundtrip here by taking the ilock exclusive from the
1159 	 * beginning is a useful micro optimization.
1160 	 */
1161 	if (create && !direct) {
1162 		lockmode = XFS_ILOCK_EXCL;
1163 		xfs_ilock(ip, lockmode);
1164 	} else {
1165 		lockmode = xfs_ilock_data_map_shared(ip);
1166 	}
1167 
1168 	ASSERT(offset <= mp->m_super->s_maxbytes);
1169 	if (offset + size > mp->m_super->s_maxbytes)
1170 		size = mp->m_super->s_maxbytes - offset;
1171 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173 
1174 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1175 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1176 	if (error)
1177 		goto out_unlock;
1178 
1179 	/* for DAX, we convert unwritten extents directly */
1180 	if (create &&
1181 	    (!nimaps ||
1182 	     (imap.br_startblock == HOLESTARTBLOCK ||
1183 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1184 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1185 		if (direct || xfs_get_extsz_hint(ip)) {
1186 			/*
1187 			 * xfs_iomap_write_direct() expects the shared lock. It
1188 			 * is unlocked on return.
1189 			 */
1190 			if (lockmode == XFS_ILOCK_EXCL)
1191 				xfs_ilock_demote(ip, lockmode);
1192 
1193 			error = xfs_iomap_write_direct(ip, offset, size,
1194 						       &imap, nimaps);
1195 			if (error)
1196 				return error;
1197 			new = 1;
1198 
1199 		} else {
1200 			/*
1201 			 * Delalloc reservations do not require a transaction,
1202 			 * we can go on without dropping the lock here. If we
1203 			 * are allocating a new delalloc block, make sure that
1204 			 * we set the new flag so that we mark the buffer new so
1205 			 * that we know that it is newly allocated if the write
1206 			 * fails.
1207 			 */
1208 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1209 				new = 1;
1210 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1211 			if (error)
1212 				goto out_unlock;
1213 
1214 			xfs_iunlock(ip, lockmode);
1215 		}
1216 		trace_xfs_get_blocks_alloc(ip, offset, size,
1217 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1218 						   : XFS_IO_DELALLOC, &imap);
1219 	} else if (nimaps) {
1220 		trace_xfs_get_blocks_found(ip, offset, size,
1221 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1222 						   : XFS_IO_OVERWRITE, &imap);
1223 		xfs_iunlock(ip, lockmode);
1224 	} else {
1225 		trace_xfs_get_blocks_notfound(ip, offset, size);
1226 		goto out_unlock;
1227 	}
1228 
1229 	if (IS_DAX(inode) && create) {
1230 		ASSERT(!ISUNWRITTEN(&imap));
1231 		/* zeroing is not needed at a higher layer */
1232 		new = 0;
1233 	}
1234 
1235 	/* trim mapping down to size requested */
1236 	if (direct || size > (1 << inode->i_blkbits))
1237 		xfs_map_trim_size(inode, iblock, bh_result,
1238 				  &imap, offset, size);
1239 
1240 	/*
1241 	 * For unwritten extents do not report a disk address in the buffered
1242 	 * read case (treat as if we're reading into a hole).
1243 	 */
1244 	if (imap.br_startblock != HOLESTARTBLOCK &&
1245 	    imap.br_startblock != DELAYSTARTBLOCK &&
1246 	    (create || !ISUNWRITTEN(&imap))) {
1247 		xfs_map_buffer(inode, bh_result, &imap, offset);
1248 		if (ISUNWRITTEN(&imap))
1249 			set_buffer_unwritten(bh_result);
1250 		/* direct IO needs special help */
1251 		if (create && direct) {
1252 			if (dax_fault)
1253 				ASSERT(!ISUNWRITTEN(&imap));
1254 			else
1255 				xfs_map_direct(inode, bh_result, &imap, offset);
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * If this is a realtime file, data may be on a different device.
1261 	 * to that pointed to from the buffer_head b_bdev currently.
1262 	 */
1263 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1264 
1265 	/*
1266 	 * If we previously allocated a block out beyond eof and we are now
1267 	 * coming back to use it then we will need to flag it as new even if it
1268 	 * has a disk address.
1269 	 *
1270 	 * With sub-block writes into unwritten extents we also need to mark
1271 	 * the buffer as new so that the unwritten parts of the buffer gets
1272 	 * correctly zeroed.
1273 	 */
1274 	if (create &&
1275 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1276 	     (offset >= i_size_read(inode)) ||
1277 	     (new || ISUNWRITTEN(&imap))))
1278 		set_buffer_new(bh_result);
1279 
1280 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1281 		BUG_ON(direct);
1282 		if (create) {
1283 			set_buffer_uptodate(bh_result);
1284 			set_buffer_mapped(bh_result);
1285 			set_buffer_delay(bh_result);
1286 		}
1287 	}
1288 
1289 	return 0;
1290 
1291 out_unlock:
1292 	xfs_iunlock(ip, lockmode);
1293 	return error;
1294 }
1295 
1296 int
1297 xfs_get_blocks(
1298 	struct inode		*inode,
1299 	sector_t		iblock,
1300 	struct buffer_head	*bh_result,
1301 	int			create)
1302 {
1303 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1304 }
1305 
1306 int
1307 xfs_get_blocks_direct(
1308 	struct inode		*inode,
1309 	sector_t		iblock,
1310 	struct buffer_head	*bh_result,
1311 	int			create)
1312 {
1313 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1314 }
1315 
1316 int
1317 xfs_get_blocks_dax_fault(
1318 	struct inode		*inode,
1319 	sector_t		iblock,
1320 	struct buffer_head	*bh_result,
1321 	int			create)
1322 {
1323 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1324 }
1325 
1326 /*
1327  * Complete a direct I/O write request.
1328  *
1329  * xfs_map_direct passes us some flags in the private data to tell us what to
1330  * do.  If no flags are set, then the write IO is an overwrite wholly within
1331  * the existing allocated file size and so there is nothing for us to do.
1332  *
1333  * Note that in this case the completion can be called in interrupt context,
1334  * whereas if we have flags set we will always be called in task context
1335  * (i.e. from a workqueue).
1336  */
1337 STATIC int
1338 xfs_end_io_direct_write(
1339 	struct kiocb		*iocb,
1340 	loff_t			offset,
1341 	ssize_t			size,
1342 	void			*private)
1343 {
1344 	struct inode		*inode = file_inode(iocb->ki_filp);
1345 	struct xfs_inode	*ip = XFS_I(inode);
1346 	struct xfs_mount	*mp = ip->i_mount;
1347 	uintptr_t		flags = (uintptr_t)private;
1348 	int			error = 0;
1349 
1350 	trace_xfs_end_io_direct_write(ip, offset, size);
1351 
1352 	if (XFS_FORCED_SHUTDOWN(mp))
1353 		return -EIO;
1354 
1355 	if (size <= 0)
1356 		return size;
1357 
1358 	/*
1359 	 * The flags tell us whether we are doing unwritten extent conversions
1360 	 * or an append transaction that updates the on-disk file size. These
1361 	 * cases are the only cases where we should *potentially* be needing
1362 	 * to update the VFS inode size.
1363 	 */
1364 	if (flags == 0) {
1365 		ASSERT(offset + size <= i_size_read(inode));
1366 		return 0;
1367 	}
1368 
1369 	/*
1370 	 * We need to update the in-core inode size here so that we don't end up
1371 	 * with the on-disk inode size being outside the in-core inode size. We
1372 	 * have no other method of updating EOF for AIO, so always do it here
1373 	 * if necessary.
1374 	 *
1375 	 * We need to lock the test/set EOF update as we can be racing with
1376 	 * other IO completions here to update the EOF. Failing to serialise
1377 	 * here can result in EOF moving backwards and Bad Things Happen when
1378 	 * that occurs.
1379 	 */
1380 	spin_lock(&ip->i_flags_lock);
1381 	if (offset + size > i_size_read(inode))
1382 		i_size_write(inode, offset + size);
1383 	spin_unlock(&ip->i_flags_lock);
1384 
1385 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1386 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1387 
1388 		error = xfs_iomap_write_unwritten(ip, offset, size);
1389 	} else if (flags & XFS_DIO_FLAG_APPEND) {
1390 		struct xfs_trans *tp;
1391 
1392 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1393 
1394 		tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
1395 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
1396 		if (error) {
1397 			xfs_trans_cancel(tp);
1398 			return error;
1399 		}
1400 		error = xfs_setfilesize(ip, tp, offset, size);
1401 	}
1402 
1403 	return error;
1404 }
1405 
1406 STATIC ssize_t
1407 xfs_vm_direct_IO(
1408 	struct kiocb		*iocb,
1409 	struct iov_iter		*iter,
1410 	loff_t			offset)
1411 {
1412 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1413 	dio_iodone_t		*endio = NULL;
1414 	int			flags = 0;
1415 	struct block_device	*bdev;
1416 
1417 	if (iov_iter_rw(iter) == WRITE) {
1418 		endio = xfs_end_io_direct_write;
1419 		flags = DIO_ASYNC_EXTEND;
1420 	}
1421 
1422 	if (IS_DAX(inode)) {
1423 		return dax_do_io(iocb, inode, iter, offset,
1424 				 xfs_get_blocks_direct, endio, 0);
1425 	}
1426 
1427 	bdev = xfs_find_bdev_for_inode(inode);
1428 	return  __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1429 			xfs_get_blocks_direct, endio, NULL, flags);
1430 }
1431 
1432 /*
1433  * Punch out the delalloc blocks we have already allocated.
1434  *
1435  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1436  * as the page is still locked at this point.
1437  */
1438 STATIC void
1439 xfs_vm_kill_delalloc_range(
1440 	struct inode		*inode,
1441 	loff_t			start,
1442 	loff_t			end)
1443 {
1444 	struct xfs_inode	*ip = XFS_I(inode);
1445 	xfs_fileoff_t		start_fsb;
1446 	xfs_fileoff_t		end_fsb;
1447 	int			error;
1448 
1449 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1450 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1451 	if (end_fsb <= start_fsb)
1452 		return;
1453 
1454 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1455 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1456 						end_fsb - start_fsb);
1457 	if (error) {
1458 		/* something screwed, just bail */
1459 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1460 			xfs_alert(ip->i_mount,
1461 		"xfs_vm_write_failed: unable to clean up ino %lld",
1462 					ip->i_ino);
1463 		}
1464 	}
1465 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466 }
1467 
1468 STATIC void
1469 xfs_vm_write_failed(
1470 	struct inode		*inode,
1471 	struct page		*page,
1472 	loff_t			pos,
1473 	unsigned		len)
1474 {
1475 	loff_t			block_offset;
1476 	loff_t			block_start;
1477 	loff_t			block_end;
1478 	loff_t			from = pos & (PAGE_SIZE - 1);
1479 	loff_t			to = from + len;
1480 	struct buffer_head	*bh, *head;
1481 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
1482 
1483 	/*
1484 	 * The request pos offset might be 32 or 64 bit, this is all fine
1485 	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1486 	 * platform, the high 32-bit will be masked off if we evaluate the
1487 	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1488 	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1489 	 * which could cause the following ASSERT failed in most cases.
1490 	 * In order to avoid this, we can evaluate the block_offset of the
1491 	 * start of the page by using shifts rather than masks the mismatch
1492 	 * problem.
1493 	 */
1494 	block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1495 
1496 	ASSERT(block_offset + from == pos);
1497 
1498 	head = page_buffers(page);
1499 	block_start = 0;
1500 	for (bh = head; bh != head || !block_start;
1501 	     bh = bh->b_this_page, block_start = block_end,
1502 				   block_offset += bh->b_size) {
1503 		block_end = block_start + bh->b_size;
1504 
1505 		/* skip buffers before the write */
1506 		if (block_end <= from)
1507 			continue;
1508 
1509 		/* if the buffer is after the write, we're done */
1510 		if (block_start >= to)
1511 			break;
1512 
1513 		/*
1514 		 * Process delalloc and unwritten buffers beyond EOF. We can
1515 		 * encounter unwritten buffers in the event that a file has
1516 		 * post-EOF unwritten extents and an extending write happens to
1517 		 * fail (e.g., an unaligned write that also involves a delalloc
1518 		 * to the same page).
1519 		 */
1520 		if (!buffer_delay(bh) && !buffer_unwritten(bh))
1521 			continue;
1522 
1523 		if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1524 		    block_offset < i_size_read(inode))
1525 			continue;
1526 
1527 		if (buffer_delay(bh))
1528 			xfs_vm_kill_delalloc_range(inode, block_offset,
1529 						   block_offset + bh->b_size);
1530 
1531 		/*
1532 		 * This buffer does not contain data anymore. make sure anyone
1533 		 * who finds it knows that for certain.
1534 		 */
1535 		clear_buffer_delay(bh);
1536 		clear_buffer_uptodate(bh);
1537 		clear_buffer_mapped(bh);
1538 		clear_buffer_new(bh);
1539 		clear_buffer_dirty(bh);
1540 		clear_buffer_unwritten(bh);
1541 	}
1542 
1543 }
1544 
1545 /*
1546  * This used to call block_write_begin(), but it unlocks and releases the page
1547  * on error, and we need that page to be able to punch stale delalloc blocks out
1548  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1549  * the appropriate point.
1550  */
1551 STATIC int
1552 xfs_vm_write_begin(
1553 	struct file		*file,
1554 	struct address_space	*mapping,
1555 	loff_t			pos,
1556 	unsigned		len,
1557 	unsigned		flags,
1558 	struct page		**pagep,
1559 	void			**fsdata)
1560 {
1561 	pgoff_t			index = pos >> PAGE_SHIFT;
1562 	struct page		*page;
1563 	int			status;
1564 	struct xfs_mount	*mp = XFS_I(mapping->host)->i_mount;
1565 
1566 	ASSERT(len <= PAGE_SIZE);
1567 
1568 	page = grab_cache_page_write_begin(mapping, index, flags);
1569 	if (!page)
1570 		return -ENOMEM;
1571 
1572 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1573 	if (xfs_mp_fail_writes(mp))
1574 		status = -EIO;
1575 	if (unlikely(status)) {
1576 		struct inode	*inode = mapping->host;
1577 		size_t		isize = i_size_read(inode);
1578 
1579 		xfs_vm_write_failed(inode, page, pos, len);
1580 		unlock_page(page);
1581 
1582 		/*
1583 		 * If the write is beyond EOF, we only want to kill blocks
1584 		 * allocated in this write, not blocks that were previously
1585 		 * written successfully.
1586 		 */
1587 		if (xfs_mp_fail_writes(mp))
1588 			isize = 0;
1589 		if (pos + len > isize) {
1590 			ssize_t start = max_t(ssize_t, pos, isize);
1591 
1592 			truncate_pagecache_range(inode, start, pos + len);
1593 		}
1594 
1595 		put_page(page);
1596 		page = NULL;
1597 	}
1598 
1599 	*pagep = page;
1600 	return status;
1601 }
1602 
1603 /*
1604  * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1605  * this specific write because they will never be written. Previous writes
1606  * beyond EOF where block allocation succeeded do not need to be trashed, so
1607  * only new blocks from this write should be trashed. For blocks within
1608  * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1609  * written with all the other valid data.
1610  */
1611 STATIC int
1612 xfs_vm_write_end(
1613 	struct file		*file,
1614 	struct address_space	*mapping,
1615 	loff_t			pos,
1616 	unsigned		len,
1617 	unsigned		copied,
1618 	struct page		*page,
1619 	void			*fsdata)
1620 {
1621 	int			ret;
1622 
1623 	ASSERT(len <= PAGE_SIZE);
1624 
1625 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1626 	if (unlikely(ret < len)) {
1627 		struct inode	*inode = mapping->host;
1628 		size_t		isize = i_size_read(inode);
1629 		loff_t		to = pos + len;
1630 
1631 		if (to > isize) {
1632 			/* only kill blocks in this write beyond EOF */
1633 			if (pos > isize)
1634 				isize = pos;
1635 			xfs_vm_kill_delalloc_range(inode, isize, to);
1636 			truncate_pagecache_range(inode, isize, to);
1637 		}
1638 	}
1639 	return ret;
1640 }
1641 
1642 STATIC sector_t
1643 xfs_vm_bmap(
1644 	struct address_space	*mapping,
1645 	sector_t		block)
1646 {
1647 	struct inode		*inode = (struct inode *)mapping->host;
1648 	struct xfs_inode	*ip = XFS_I(inode);
1649 
1650 	trace_xfs_vm_bmap(XFS_I(inode));
1651 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1652 	filemap_write_and_wait(mapping);
1653 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1654 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1655 }
1656 
1657 STATIC int
1658 xfs_vm_readpage(
1659 	struct file		*unused,
1660 	struct page		*page)
1661 {
1662 	trace_xfs_vm_readpage(page->mapping->host, 1);
1663 	return mpage_readpage(page, xfs_get_blocks);
1664 }
1665 
1666 STATIC int
1667 xfs_vm_readpages(
1668 	struct file		*unused,
1669 	struct address_space	*mapping,
1670 	struct list_head	*pages,
1671 	unsigned		nr_pages)
1672 {
1673 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1674 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1675 }
1676 
1677 /*
1678  * This is basically a copy of __set_page_dirty_buffers() with one
1679  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1680  * dirty, we'll never be able to clean them because we don't write buffers
1681  * beyond EOF, and that means we can't invalidate pages that span EOF
1682  * that have been marked dirty. Further, the dirty state can leak into
1683  * the file interior if the file is extended, resulting in all sorts of
1684  * bad things happening as the state does not match the underlying data.
1685  *
1686  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1687  * this only exist because of bufferheads and how the generic code manages them.
1688  */
1689 STATIC int
1690 xfs_vm_set_page_dirty(
1691 	struct page		*page)
1692 {
1693 	struct address_space	*mapping = page->mapping;
1694 	struct inode		*inode = mapping->host;
1695 	loff_t			end_offset;
1696 	loff_t			offset;
1697 	int			newly_dirty;
1698 
1699 	if (unlikely(!mapping))
1700 		return !TestSetPageDirty(page);
1701 
1702 	end_offset = i_size_read(inode);
1703 	offset = page_offset(page);
1704 
1705 	spin_lock(&mapping->private_lock);
1706 	if (page_has_buffers(page)) {
1707 		struct buffer_head *head = page_buffers(page);
1708 		struct buffer_head *bh = head;
1709 
1710 		do {
1711 			if (offset < end_offset)
1712 				set_buffer_dirty(bh);
1713 			bh = bh->b_this_page;
1714 			offset += 1 << inode->i_blkbits;
1715 		} while (bh != head);
1716 	}
1717 	/*
1718 	 * Lock out page->mem_cgroup migration to keep PageDirty
1719 	 * synchronized with per-memcg dirty page counters.
1720 	 */
1721 	lock_page_memcg(page);
1722 	newly_dirty = !TestSetPageDirty(page);
1723 	spin_unlock(&mapping->private_lock);
1724 
1725 	if (newly_dirty) {
1726 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1727 		unsigned long flags;
1728 
1729 		spin_lock_irqsave(&mapping->tree_lock, flags);
1730 		if (page->mapping) {	/* Race with truncate? */
1731 			WARN_ON_ONCE(!PageUptodate(page));
1732 			account_page_dirtied(page, mapping);
1733 			radix_tree_tag_set(&mapping->page_tree,
1734 					page_index(page), PAGECACHE_TAG_DIRTY);
1735 		}
1736 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1737 	}
1738 	unlock_page_memcg(page);
1739 	if (newly_dirty)
1740 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1741 	return newly_dirty;
1742 }
1743 
1744 const struct address_space_operations xfs_address_space_operations = {
1745 	.readpage		= xfs_vm_readpage,
1746 	.readpages		= xfs_vm_readpages,
1747 	.writepage		= xfs_vm_writepage,
1748 	.writepages		= xfs_vm_writepages,
1749 	.set_page_dirty		= xfs_vm_set_page_dirty,
1750 	.releasepage		= xfs_vm_releasepage,
1751 	.invalidatepage		= xfs_vm_invalidatepage,
1752 	.write_begin		= xfs_vm_write_begin,
1753 	.write_end		= xfs_vm_write_end,
1754 	.bmap			= xfs_vm_bmap,
1755 	.direct_IO		= xfs_vm_direct_IO,
1756 	.migratepage		= buffer_migrate_page,
1757 	.is_partially_uptodate  = block_is_partially_uptodate,
1758 	.error_remove_page	= generic_error_remove_page,
1759 };
1760