xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 0d456bad)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	if (ioend->io_iocb) {
89 		if (ioend->io_isasync) {
90 			aio_complete(ioend->io_iocb, ioend->io_error ?
91 					ioend->io_error : ioend->io_result, 0);
92 		}
93 		inode_dio_done(ioend->io_inode);
94 	}
95 
96 	mempool_free(ioend, xfs_ioend_pool);
97 }
98 
99 /*
100  * Fast and loose check if this write could update the on-disk inode size.
101  */
102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103 {
104 	return ioend->io_offset + ioend->io_size >
105 		XFS_I(ioend->io_inode)->i_d.di_size;
106 }
107 
108 STATIC int
109 xfs_setfilesize_trans_alloc(
110 	struct xfs_ioend	*ioend)
111 {
112 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
113 	struct xfs_trans	*tp;
114 	int			error;
115 
116 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117 
118 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 	if (error) {
120 		xfs_trans_cancel(tp, 0);
121 		return error;
122 	}
123 
124 	ioend->io_append_trans = tp;
125 
126 	/*
127 	 * We may pass freeze protection with a transaction.  So tell lockdep
128 	 * we released it.
129 	 */
130 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
131 		      1, _THIS_IP_);
132 	/*
133 	 * We hand off the transaction to the completion thread now, so
134 	 * clear the flag here.
135 	 */
136 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
137 	return 0;
138 }
139 
140 /*
141  * Update on-disk file size now that data has been written to disk.
142  */
143 STATIC int
144 xfs_setfilesize(
145 	struct xfs_ioend	*ioend)
146 {
147 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148 	struct xfs_trans	*tp = ioend->io_append_trans;
149 	xfs_fsize_t		isize;
150 
151 	/*
152 	 * The transaction may have been allocated in the I/O submission thread,
153 	 * thus we need to mark ourselves as beeing in a transaction manually.
154 	 * Similarly for freeze protection.
155 	 */
156 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
157 	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
158 			   0, 1, _THIS_IP_);
159 
160 	xfs_ilock(ip, XFS_ILOCK_EXCL);
161 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
162 	if (!isize) {
163 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
164 		xfs_trans_cancel(tp, 0);
165 		return 0;
166 	}
167 
168 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
169 
170 	ip->i_d.di_size = isize;
171 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
172 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
173 
174 	return xfs_trans_commit(tp, 0);
175 }
176 
177 /*
178  * Schedule IO completion handling on the final put of an ioend.
179  *
180  * If there is no work to do we might as well call it a day and free the
181  * ioend right now.
182  */
183 STATIC void
184 xfs_finish_ioend(
185 	struct xfs_ioend	*ioend)
186 {
187 	if (atomic_dec_and_test(&ioend->io_remaining)) {
188 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
189 
190 		if (ioend->io_type == XFS_IO_UNWRITTEN)
191 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
192 		else if (ioend->io_append_trans ||
193 			 (ioend->io_isdirect && xfs_ioend_is_append(ioend)))
194 			queue_work(mp->m_data_workqueue, &ioend->io_work);
195 		else
196 			xfs_destroy_ioend(ioend);
197 	}
198 }
199 
200 /*
201  * IO write completion.
202  */
203 STATIC void
204 xfs_end_io(
205 	struct work_struct *work)
206 {
207 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
208 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
209 	int		error = 0;
210 
211 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
212 		ioend->io_error = -EIO;
213 		goto done;
214 	}
215 	if (ioend->io_error)
216 		goto done;
217 
218 	/*
219 	 * For unwritten extents we need to issue transactions to convert a
220 	 * range to normal written extens after the data I/O has finished.
221 	 */
222 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
223 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
224 						  ioend->io_size);
225 	} else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) {
226 		/*
227 		 * For direct I/O we do not know if we need to allocate blocks
228 		 * or not so we can't preallocate an append transaction as that
229 		 * results in nested reservations and log space deadlocks. Hence
230 		 * allocate the transaction here. While this is sub-optimal and
231 		 * can block IO completion for some time, we're stuck with doing
232 		 * it this way until we can pass the ioend to the direct IO
233 		 * allocation callbacks and avoid nesting that way.
234 		 */
235 		error = xfs_setfilesize_trans_alloc(ioend);
236 		if (error)
237 			goto done;
238 		error = xfs_setfilesize(ioend);
239 	} else if (ioend->io_append_trans) {
240 		error = xfs_setfilesize(ioend);
241 	} else {
242 		ASSERT(!xfs_ioend_is_append(ioend));
243 	}
244 
245 done:
246 	if (error)
247 		ioend->io_error = -error;
248 	xfs_destroy_ioend(ioend);
249 }
250 
251 /*
252  * Call IO completion handling in caller context on the final put of an ioend.
253  */
254 STATIC void
255 xfs_finish_ioend_sync(
256 	struct xfs_ioend	*ioend)
257 {
258 	if (atomic_dec_and_test(&ioend->io_remaining))
259 		xfs_end_io(&ioend->io_work);
260 }
261 
262 /*
263  * Allocate and initialise an IO completion structure.
264  * We need to track unwritten extent write completion here initially.
265  * We'll need to extend this for updating the ondisk inode size later
266  * (vs. incore size).
267  */
268 STATIC xfs_ioend_t *
269 xfs_alloc_ioend(
270 	struct inode		*inode,
271 	unsigned int		type)
272 {
273 	xfs_ioend_t		*ioend;
274 
275 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
276 
277 	/*
278 	 * Set the count to 1 initially, which will prevent an I/O
279 	 * completion callback from happening before we have started
280 	 * all the I/O from calling the completion routine too early.
281 	 */
282 	atomic_set(&ioend->io_remaining, 1);
283 	ioend->io_isasync = 0;
284 	ioend->io_isdirect = 0;
285 	ioend->io_error = 0;
286 	ioend->io_list = NULL;
287 	ioend->io_type = type;
288 	ioend->io_inode = inode;
289 	ioend->io_buffer_head = NULL;
290 	ioend->io_buffer_tail = NULL;
291 	ioend->io_offset = 0;
292 	ioend->io_size = 0;
293 	ioend->io_iocb = NULL;
294 	ioend->io_result = 0;
295 	ioend->io_append_trans = NULL;
296 
297 	INIT_WORK(&ioend->io_work, xfs_end_io);
298 	return ioend;
299 }
300 
301 STATIC int
302 xfs_map_blocks(
303 	struct inode		*inode,
304 	loff_t			offset,
305 	struct xfs_bmbt_irec	*imap,
306 	int			type,
307 	int			nonblocking)
308 {
309 	struct xfs_inode	*ip = XFS_I(inode);
310 	struct xfs_mount	*mp = ip->i_mount;
311 	ssize_t			count = 1 << inode->i_blkbits;
312 	xfs_fileoff_t		offset_fsb, end_fsb;
313 	int			error = 0;
314 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
315 	int			nimaps = 1;
316 
317 	if (XFS_FORCED_SHUTDOWN(mp))
318 		return -XFS_ERROR(EIO);
319 
320 	if (type == XFS_IO_UNWRITTEN)
321 		bmapi_flags |= XFS_BMAPI_IGSTATE;
322 
323 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
324 		if (nonblocking)
325 			return -XFS_ERROR(EAGAIN);
326 		xfs_ilock(ip, XFS_ILOCK_SHARED);
327 	}
328 
329 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
330 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
331 	ASSERT(offset <= mp->m_super->s_maxbytes);
332 
333 	if (offset + count > mp->m_super->s_maxbytes)
334 		count = mp->m_super->s_maxbytes - offset;
335 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
336 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
337 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
338 				imap, &nimaps, bmapi_flags);
339 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
340 
341 	if (error)
342 		return -XFS_ERROR(error);
343 
344 	if (type == XFS_IO_DELALLOC &&
345 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
346 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
347 		if (!error)
348 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
349 		return -XFS_ERROR(error);
350 	}
351 
352 #ifdef DEBUG
353 	if (type == XFS_IO_UNWRITTEN) {
354 		ASSERT(nimaps);
355 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
356 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
357 	}
358 #endif
359 	if (nimaps)
360 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
361 	return 0;
362 }
363 
364 STATIC int
365 xfs_imap_valid(
366 	struct inode		*inode,
367 	struct xfs_bmbt_irec	*imap,
368 	xfs_off_t		offset)
369 {
370 	offset >>= inode->i_blkbits;
371 
372 	return offset >= imap->br_startoff &&
373 		offset < imap->br_startoff + imap->br_blockcount;
374 }
375 
376 /*
377  * BIO completion handler for buffered IO.
378  */
379 STATIC void
380 xfs_end_bio(
381 	struct bio		*bio,
382 	int			error)
383 {
384 	xfs_ioend_t		*ioend = bio->bi_private;
385 
386 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
387 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
388 
389 	/* Toss bio and pass work off to an xfsdatad thread */
390 	bio->bi_private = NULL;
391 	bio->bi_end_io = NULL;
392 	bio_put(bio);
393 
394 	xfs_finish_ioend(ioend);
395 }
396 
397 STATIC void
398 xfs_submit_ioend_bio(
399 	struct writeback_control *wbc,
400 	xfs_ioend_t		*ioend,
401 	struct bio		*bio)
402 {
403 	atomic_inc(&ioend->io_remaining);
404 	bio->bi_private = ioend;
405 	bio->bi_end_io = xfs_end_bio;
406 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
407 }
408 
409 STATIC struct bio *
410 xfs_alloc_ioend_bio(
411 	struct buffer_head	*bh)
412 {
413 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
414 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
415 
416 	ASSERT(bio->bi_private == NULL);
417 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
418 	bio->bi_bdev = bh->b_bdev;
419 	return bio;
420 }
421 
422 STATIC void
423 xfs_start_buffer_writeback(
424 	struct buffer_head	*bh)
425 {
426 	ASSERT(buffer_mapped(bh));
427 	ASSERT(buffer_locked(bh));
428 	ASSERT(!buffer_delay(bh));
429 	ASSERT(!buffer_unwritten(bh));
430 
431 	mark_buffer_async_write(bh);
432 	set_buffer_uptodate(bh);
433 	clear_buffer_dirty(bh);
434 }
435 
436 STATIC void
437 xfs_start_page_writeback(
438 	struct page		*page,
439 	int			clear_dirty,
440 	int			buffers)
441 {
442 	ASSERT(PageLocked(page));
443 	ASSERT(!PageWriteback(page));
444 	if (clear_dirty)
445 		clear_page_dirty_for_io(page);
446 	set_page_writeback(page);
447 	unlock_page(page);
448 	/* If no buffers on the page are to be written, finish it here */
449 	if (!buffers)
450 		end_page_writeback(page);
451 }
452 
453 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
454 {
455 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
456 }
457 
458 /*
459  * Submit all of the bios for all of the ioends we have saved up, covering the
460  * initial writepage page and also any probed pages.
461  *
462  * Because we may have multiple ioends spanning a page, we need to start
463  * writeback on all the buffers before we submit them for I/O. If we mark the
464  * buffers as we got, then we can end up with a page that only has buffers
465  * marked async write and I/O complete on can occur before we mark the other
466  * buffers async write.
467  *
468  * The end result of this is that we trip a bug in end_page_writeback() because
469  * we call it twice for the one page as the code in end_buffer_async_write()
470  * assumes that all buffers on the page are started at the same time.
471  *
472  * The fix is two passes across the ioend list - one to start writeback on the
473  * buffer_heads, and then submit them for I/O on the second pass.
474  *
475  * If @fail is non-zero, it means that we have a situation where some part of
476  * the submission process has failed after we have marked paged for writeback
477  * and unlocked them. In this situation, we need to fail the ioend chain rather
478  * than submit it to IO. This typically only happens on a filesystem shutdown.
479  */
480 STATIC void
481 xfs_submit_ioend(
482 	struct writeback_control *wbc,
483 	xfs_ioend_t		*ioend,
484 	int			fail)
485 {
486 	xfs_ioend_t		*head = ioend;
487 	xfs_ioend_t		*next;
488 	struct buffer_head	*bh;
489 	struct bio		*bio;
490 	sector_t		lastblock = 0;
491 
492 	/* Pass 1 - start writeback */
493 	do {
494 		next = ioend->io_list;
495 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
496 			xfs_start_buffer_writeback(bh);
497 	} while ((ioend = next) != NULL);
498 
499 	/* Pass 2 - submit I/O */
500 	ioend = head;
501 	do {
502 		next = ioend->io_list;
503 		bio = NULL;
504 
505 		/*
506 		 * If we are failing the IO now, just mark the ioend with an
507 		 * error and finish it. This will run IO completion immediately
508 		 * as there is only one reference to the ioend at this point in
509 		 * time.
510 		 */
511 		if (fail) {
512 			ioend->io_error = -fail;
513 			xfs_finish_ioend(ioend);
514 			continue;
515 		}
516 
517 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
518 
519 			if (!bio) {
520  retry:
521 				bio = xfs_alloc_ioend_bio(bh);
522 			} else if (bh->b_blocknr != lastblock + 1) {
523 				xfs_submit_ioend_bio(wbc, ioend, bio);
524 				goto retry;
525 			}
526 
527 			if (bio_add_buffer(bio, bh) != bh->b_size) {
528 				xfs_submit_ioend_bio(wbc, ioend, bio);
529 				goto retry;
530 			}
531 
532 			lastblock = bh->b_blocknr;
533 		}
534 		if (bio)
535 			xfs_submit_ioend_bio(wbc, ioend, bio);
536 		xfs_finish_ioend(ioend);
537 	} while ((ioend = next) != NULL);
538 }
539 
540 /*
541  * Cancel submission of all buffer_heads so far in this endio.
542  * Toss the endio too.  Only ever called for the initial page
543  * in a writepage request, so only ever one page.
544  */
545 STATIC void
546 xfs_cancel_ioend(
547 	xfs_ioend_t		*ioend)
548 {
549 	xfs_ioend_t		*next;
550 	struct buffer_head	*bh, *next_bh;
551 
552 	do {
553 		next = ioend->io_list;
554 		bh = ioend->io_buffer_head;
555 		do {
556 			next_bh = bh->b_private;
557 			clear_buffer_async_write(bh);
558 			unlock_buffer(bh);
559 		} while ((bh = next_bh) != NULL);
560 
561 		mempool_free(ioend, xfs_ioend_pool);
562 	} while ((ioend = next) != NULL);
563 }
564 
565 /*
566  * Test to see if we've been building up a completion structure for
567  * earlier buffers -- if so, we try to append to this ioend if we
568  * can, otherwise we finish off any current ioend and start another.
569  * Return true if we've finished the given ioend.
570  */
571 STATIC void
572 xfs_add_to_ioend(
573 	struct inode		*inode,
574 	struct buffer_head	*bh,
575 	xfs_off_t		offset,
576 	unsigned int		type,
577 	xfs_ioend_t		**result,
578 	int			need_ioend)
579 {
580 	xfs_ioend_t		*ioend = *result;
581 
582 	if (!ioend || need_ioend || type != ioend->io_type) {
583 		xfs_ioend_t	*previous = *result;
584 
585 		ioend = xfs_alloc_ioend(inode, type);
586 		ioend->io_offset = offset;
587 		ioend->io_buffer_head = bh;
588 		ioend->io_buffer_tail = bh;
589 		if (previous)
590 			previous->io_list = ioend;
591 		*result = ioend;
592 	} else {
593 		ioend->io_buffer_tail->b_private = bh;
594 		ioend->io_buffer_tail = bh;
595 	}
596 
597 	bh->b_private = NULL;
598 	ioend->io_size += bh->b_size;
599 }
600 
601 STATIC void
602 xfs_map_buffer(
603 	struct inode		*inode,
604 	struct buffer_head	*bh,
605 	struct xfs_bmbt_irec	*imap,
606 	xfs_off_t		offset)
607 {
608 	sector_t		bn;
609 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
610 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
611 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
612 
613 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
614 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
615 
616 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
617 	      ((offset - iomap_offset) >> inode->i_blkbits);
618 
619 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
620 
621 	bh->b_blocknr = bn;
622 	set_buffer_mapped(bh);
623 }
624 
625 STATIC void
626 xfs_map_at_offset(
627 	struct inode		*inode,
628 	struct buffer_head	*bh,
629 	struct xfs_bmbt_irec	*imap,
630 	xfs_off_t		offset)
631 {
632 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
633 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
634 
635 	xfs_map_buffer(inode, bh, imap, offset);
636 	set_buffer_mapped(bh);
637 	clear_buffer_delay(bh);
638 	clear_buffer_unwritten(bh);
639 }
640 
641 /*
642  * Test if a given page is suitable for writing as part of an unwritten
643  * or delayed allocate extent.
644  */
645 STATIC int
646 xfs_check_page_type(
647 	struct page		*page,
648 	unsigned int		type)
649 {
650 	if (PageWriteback(page))
651 		return 0;
652 
653 	if (page->mapping && page_has_buffers(page)) {
654 		struct buffer_head	*bh, *head;
655 		int			acceptable = 0;
656 
657 		bh = head = page_buffers(page);
658 		do {
659 			if (buffer_unwritten(bh))
660 				acceptable += (type == XFS_IO_UNWRITTEN);
661 			else if (buffer_delay(bh))
662 				acceptable += (type == XFS_IO_DELALLOC);
663 			else if (buffer_dirty(bh) && buffer_mapped(bh))
664 				acceptable += (type == XFS_IO_OVERWRITE);
665 			else
666 				break;
667 		} while ((bh = bh->b_this_page) != head);
668 
669 		if (acceptable)
670 			return 1;
671 	}
672 
673 	return 0;
674 }
675 
676 /*
677  * Allocate & map buffers for page given the extent map. Write it out.
678  * except for the original page of a writepage, this is called on
679  * delalloc/unwritten pages only, for the original page it is possible
680  * that the page has no mapping at all.
681  */
682 STATIC int
683 xfs_convert_page(
684 	struct inode		*inode,
685 	struct page		*page,
686 	loff_t			tindex,
687 	struct xfs_bmbt_irec	*imap,
688 	xfs_ioend_t		**ioendp,
689 	struct writeback_control *wbc)
690 {
691 	struct buffer_head	*bh, *head;
692 	xfs_off_t		end_offset;
693 	unsigned long		p_offset;
694 	unsigned int		type;
695 	int			len, page_dirty;
696 	int			count = 0, done = 0, uptodate = 1;
697  	xfs_off_t		offset = page_offset(page);
698 
699 	if (page->index != tindex)
700 		goto fail;
701 	if (!trylock_page(page))
702 		goto fail;
703 	if (PageWriteback(page))
704 		goto fail_unlock_page;
705 	if (page->mapping != inode->i_mapping)
706 		goto fail_unlock_page;
707 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
708 		goto fail_unlock_page;
709 
710 	/*
711 	 * page_dirty is initially a count of buffers on the page before
712 	 * EOF and is decremented as we move each into a cleanable state.
713 	 *
714 	 * Derivation:
715 	 *
716 	 * End offset is the highest offset that this page should represent.
717 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
718 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
719 	 * hence give us the correct page_dirty count. On any other page,
720 	 * it will be zero and in that case we need page_dirty to be the
721 	 * count of buffers on the page.
722 	 */
723 	end_offset = min_t(unsigned long long,
724 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
725 			i_size_read(inode));
726 
727 	len = 1 << inode->i_blkbits;
728 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
729 					PAGE_CACHE_SIZE);
730 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
731 	page_dirty = p_offset / len;
732 
733 	bh = head = page_buffers(page);
734 	do {
735 		if (offset >= end_offset)
736 			break;
737 		if (!buffer_uptodate(bh))
738 			uptodate = 0;
739 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
740 			done = 1;
741 			continue;
742 		}
743 
744 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
745 		    buffer_mapped(bh)) {
746 			if (buffer_unwritten(bh))
747 				type = XFS_IO_UNWRITTEN;
748 			else if (buffer_delay(bh))
749 				type = XFS_IO_DELALLOC;
750 			else
751 				type = XFS_IO_OVERWRITE;
752 
753 			if (!xfs_imap_valid(inode, imap, offset)) {
754 				done = 1;
755 				continue;
756 			}
757 
758 			lock_buffer(bh);
759 			if (type != XFS_IO_OVERWRITE)
760 				xfs_map_at_offset(inode, bh, imap, offset);
761 			xfs_add_to_ioend(inode, bh, offset, type,
762 					 ioendp, done);
763 
764 			page_dirty--;
765 			count++;
766 		} else {
767 			done = 1;
768 		}
769 	} while (offset += len, (bh = bh->b_this_page) != head);
770 
771 	if (uptodate && bh == head)
772 		SetPageUptodate(page);
773 
774 	if (count) {
775 		if (--wbc->nr_to_write <= 0 &&
776 		    wbc->sync_mode == WB_SYNC_NONE)
777 			done = 1;
778 	}
779 	xfs_start_page_writeback(page, !page_dirty, count);
780 
781 	return done;
782  fail_unlock_page:
783 	unlock_page(page);
784  fail:
785 	return 1;
786 }
787 
788 /*
789  * Convert & write out a cluster of pages in the same extent as defined
790  * by mp and following the start page.
791  */
792 STATIC void
793 xfs_cluster_write(
794 	struct inode		*inode,
795 	pgoff_t			tindex,
796 	struct xfs_bmbt_irec	*imap,
797 	xfs_ioend_t		**ioendp,
798 	struct writeback_control *wbc,
799 	pgoff_t			tlast)
800 {
801 	struct pagevec		pvec;
802 	int			done = 0, i;
803 
804 	pagevec_init(&pvec, 0);
805 	while (!done && tindex <= tlast) {
806 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
807 
808 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
809 			break;
810 
811 		for (i = 0; i < pagevec_count(&pvec); i++) {
812 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
813 					imap, ioendp, wbc);
814 			if (done)
815 				break;
816 		}
817 
818 		pagevec_release(&pvec);
819 		cond_resched();
820 	}
821 }
822 
823 STATIC void
824 xfs_vm_invalidatepage(
825 	struct page		*page,
826 	unsigned long		offset)
827 {
828 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
829 	block_invalidatepage(page, offset);
830 }
831 
832 /*
833  * If the page has delalloc buffers on it, we need to punch them out before we
834  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
835  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
836  * is done on that same region - the delalloc extent is returned when none is
837  * supposed to be there.
838  *
839  * We prevent this by truncating away the delalloc regions on the page before
840  * invalidating it. Because they are delalloc, we can do this without needing a
841  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
842  * truncation without a transaction as there is no space left for block
843  * reservation (typically why we see a ENOSPC in writeback).
844  *
845  * This is not a performance critical path, so for now just do the punching a
846  * buffer head at a time.
847  */
848 STATIC void
849 xfs_aops_discard_page(
850 	struct page		*page)
851 {
852 	struct inode		*inode = page->mapping->host;
853 	struct xfs_inode	*ip = XFS_I(inode);
854 	struct buffer_head	*bh, *head;
855 	loff_t			offset = page_offset(page);
856 
857 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
858 		goto out_invalidate;
859 
860 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
861 		goto out_invalidate;
862 
863 	xfs_alert(ip->i_mount,
864 		"page discard on page %p, inode 0x%llx, offset %llu.",
865 			page, ip->i_ino, offset);
866 
867 	xfs_ilock(ip, XFS_ILOCK_EXCL);
868 	bh = head = page_buffers(page);
869 	do {
870 		int		error;
871 		xfs_fileoff_t	start_fsb;
872 
873 		if (!buffer_delay(bh))
874 			goto next_buffer;
875 
876 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
877 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
878 		if (error) {
879 			/* something screwed, just bail */
880 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
881 				xfs_alert(ip->i_mount,
882 			"page discard unable to remove delalloc mapping.");
883 			}
884 			break;
885 		}
886 next_buffer:
887 		offset += 1 << inode->i_blkbits;
888 
889 	} while ((bh = bh->b_this_page) != head);
890 
891 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
892 out_invalidate:
893 	xfs_vm_invalidatepage(page, 0);
894 	return;
895 }
896 
897 /*
898  * Write out a dirty page.
899  *
900  * For delalloc space on the page we need to allocate space and flush it.
901  * For unwritten space on the page we need to start the conversion to
902  * regular allocated space.
903  * For any other dirty buffer heads on the page we should flush them.
904  */
905 STATIC int
906 xfs_vm_writepage(
907 	struct page		*page,
908 	struct writeback_control *wbc)
909 {
910 	struct inode		*inode = page->mapping->host;
911 	struct buffer_head	*bh, *head;
912 	struct xfs_bmbt_irec	imap;
913 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
914 	loff_t			offset;
915 	unsigned int		type;
916 	__uint64_t              end_offset;
917 	pgoff_t                 end_index, last_index;
918 	ssize_t			len;
919 	int			err, imap_valid = 0, uptodate = 1;
920 	int			count = 0;
921 	int			nonblocking = 0;
922 
923 	trace_xfs_writepage(inode, page, 0);
924 
925 	ASSERT(page_has_buffers(page));
926 
927 	/*
928 	 * Refuse to write the page out if we are called from reclaim context.
929 	 *
930 	 * This avoids stack overflows when called from deeply used stacks in
931 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
932 	 * allow reclaim from kswapd as the stack usage there is relatively low.
933 	 *
934 	 * This should never happen except in the case of a VM regression so
935 	 * warn about it.
936 	 */
937 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
938 			PF_MEMALLOC))
939 		goto redirty;
940 
941 	/*
942 	 * Given that we do not allow direct reclaim to call us, we should
943 	 * never be called while in a filesystem transaction.
944 	 */
945 	if (WARN_ON(current->flags & PF_FSTRANS))
946 		goto redirty;
947 
948 	/* Is this page beyond the end of the file? */
949 	offset = i_size_read(inode);
950 	end_index = offset >> PAGE_CACHE_SHIFT;
951 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
952 	if (page->index >= end_index) {
953 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
954 
955 		/*
956 		 * Just skip the page if it is fully outside i_size, e.g. due
957 		 * to a truncate operation that is in progress.
958 		 */
959 		if (page->index >= end_index + 1 || offset_into_page == 0) {
960 			unlock_page(page);
961 			return 0;
962 		}
963 
964 		/*
965 		 * The page straddles i_size.  It must be zeroed out on each
966 		 * and every writepage invocation because it may be mmapped.
967 		 * "A file is mapped in multiples of the page size.  For a file
968 		 * that is not a multiple of the  page size, the remaining
969 		 * memory is zeroed when mapped, and writes to that region are
970 		 * not written out to the file."
971 		 */
972 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
973 	}
974 
975 	end_offset = min_t(unsigned long long,
976 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
977 			offset);
978 	len = 1 << inode->i_blkbits;
979 
980 	bh = head = page_buffers(page);
981 	offset = page_offset(page);
982 	type = XFS_IO_OVERWRITE;
983 
984 	if (wbc->sync_mode == WB_SYNC_NONE)
985 		nonblocking = 1;
986 
987 	do {
988 		int new_ioend = 0;
989 
990 		if (offset >= end_offset)
991 			break;
992 		if (!buffer_uptodate(bh))
993 			uptodate = 0;
994 
995 		/*
996 		 * set_page_dirty dirties all buffers in a page, independent
997 		 * of their state.  The dirty state however is entirely
998 		 * meaningless for holes (!mapped && uptodate), so skip
999 		 * buffers covering holes here.
1000 		 */
1001 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1002 			imap_valid = 0;
1003 			continue;
1004 		}
1005 
1006 		if (buffer_unwritten(bh)) {
1007 			if (type != XFS_IO_UNWRITTEN) {
1008 				type = XFS_IO_UNWRITTEN;
1009 				imap_valid = 0;
1010 			}
1011 		} else if (buffer_delay(bh)) {
1012 			if (type != XFS_IO_DELALLOC) {
1013 				type = XFS_IO_DELALLOC;
1014 				imap_valid = 0;
1015 			}
1016 		} else if (buffer_uptodate(bh)) {
1017 			if (type != XFS_IO_OVERWRITE) {
1018 				type = XFS_IO_OVERWRITE;
1019 				imap_valid = 0;
1020 			}
1021 		} else {
1022 			if (PageUptodate(page))
1023 				ASSERT(buffer_mapped(bh));
1024 			/*
1025 			 * This buffer is not uptodate and will not be
1026 			 * written to disk.  Ensure that we will put any
1027 			 * subsequent writeable buffers into a new
1028 			 * ioend.
1029 			 */
1030 			imap_valid = 0;
1031 			continue;
1032 		}
1033 
1034 		if (imap_valid)
1035 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1036 		if (!imap_valid) {
1037 			/*
1038 			 * If we didn't have a valid mapping then we need to
1039 			 * put the new mapping into a separate ioend structure.
1040 			 * This ensures non-contiguous extents always have
1041 			 * separate ioends, which is particularly important
1042 			 * for unwritten extent conversion at I/O completion
1043 			 * time.
1044 			 */
1045 			new_ioend = 1;
1046 			err = xfs_map_blocks(inode, offset, &imap, type,
1047 					     nonblocking);
1048 			if (err)
1049 				goto error;
1050 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1051 		}
1052 		if (imap_valid) {
1053 			lock_buffer(bh);
1054 			if (type != XFS_IO_OVERWRITE)
1055 				xfs_map_at_offset(inode, bh, &imap, offset);
1056 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1057 					 new_ioend);
1058 			count++;
1059 		}
1060 
1061 		if (!iohead)
1062 			iohead = ioend;
1063 
1064 	} while (offset += len, ((bh = bh->b_this_page) != head));
1065 
1066 	if (uptodate && bh == head)
1067 		SetPageUptodate(page);
1068 
1069 	xfs_start_page_writeback(page, 1, count);
1070 
1071 	/* if there is no IO to be submitted for this page, we are done */
1072 	if (!ioend)
1073 		return 0;
1074 
1075 	ASSERT(iohead);
1076 
1077 	/*
1078 	 * Any errors from this point onwards need tobe reported through the IO
1079 	 * completion path as we have marked the initial page as under writeback
1080 	 * and unlocked it.
1081 	 */
1082 	if (imap_valid) {
1083 		xfs_off_t		end_index;
1084 
1085 		end_index = imap.br_startoff + imap.br_blockcount;
1086 
1087 		/* to bytes */
1088 		end_index <<= inode->i_blkbits;
1089 
1090 		/* to pages */
1091 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1092 
1093 		/* check against file size */
1094 		if (end_index > last_index)
1095 			end_index = last_index;
1096 
1097 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1098 				  wbc, end_index);
1099 	}
1100 
1101 
1102 	/*
1103 	 * Reserve log space if we might write beyond the on-disk inode size.
1104 	 */
1105 	err = 0;
1106 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1107 		err = xfs_setfilesize_trans_alloc(ioend);
1108 
1109 	xfs_submit_ioend(wbc, iohead, err);
1110 
1111 	return 0;
1112 
1113 error:
1114 	if (iohead)
1115 		xfs_cancel_ioend(iohead);
1116 
1117 	if (err == -EAGAIN)
1118 		goto redirty;
1119 
1120 	xfs_aops_discard_page(page);
1121 	ClearPageUptodate(page);
1122 	unlock_page(page);
1123 	return err;
1124 
1125 redirty:
1126 	redirty_page_for_writepage(wbc, page);
1127 	unlock_page(page);
1128 	return 0;
1129 }
1130 
1131 STATIC int
1132 xfs_vm_writepages(
1133 	struct address_space	*mapping,
1134 	struct writeback_control *wbc)
1135 {
1136 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1137 	return generic_writepages(mapping, wbc);
1138 }
1139 
1140 /*
1141  * Called to move a page into cleanable state - and from there
1142  * to be released. The page should already be clean. We always
1143  * have buffer heads in this call.
1144  *
1145  * Returns 1 if the page is ok to release, 0 otherwise.
1146  */
1147 STATIC int
1148 xfs_vm_releasepage(
1149 	struct page		*page,
1150 	gfp_t			gfp_mask)
1151 {
1152 	int			delalloc, unwritten;
1153 
1154 	trace_xfs_releasepage(page->mapping->host, page, 0);
1155 
1156 	xfs_count_page_state(page, &delalloc, &unwritten);
1157 
1158 	if (WARN_ON(delalloc))
1159 		return 0;
1160 	if (WARN_ON(unwritten))
1161 		return 0;
1162 
1163 	return try_to_free_buffers(page);
1164 }
1165 
1166 STATIC int
1167 __xfs_get_blocks(
1168 	struct inode		*inode,
1169 	sector_t		iblock,
1170 	struct buffer_head	*bh_result,
1171 	int			create,
1172 	int			direct)
1173 {
1174 	struct xfs_inode	*ip = XFS_I(inode);
1175 	struct xfs_mount	*mp = ip->i_mount;
1176 	xfs_fileoff_t		offset_fsb, end_fsb;
1177 	int			error = 0;
1178 	int			lockmode = 0;
1179 	struct xfs_bmbt_irec	imap;
1180 	int			nimaps = 1;
1181 	xfs_off_t		offset;
1182 	ssize_t			size;
1183 	int			new = 0;
1184 
1185 	if (XFS_FORCED_SHUTDOWN(mp))
1186 		return -XFS_ERROR(EIO);
1187 
1188 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1189 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1190 	size = bh_result->b_size;
1191 
1192 	if (!create && direct && offset >= i_size_read(inode))
1193 		return 0;
1194 
1195 	/*
1196 	 * Direct I/O is usually done on preallocated files, so try getting
1197 	 * a block mapping without an exclusive lock first.  For buffered
1198 	 * writes we already have the exclusive iolock anyway, so avoiding
1199 	 * a lock roundtrip here by taking the ilock exclusive from the
1200 	 * beginning is a useful micro optimization.
1201 	 */
1202 	if (create && !direct) {
1203 		lockmode = XFS_ILOCK_EXCL;
1204 		xfs_ilock(ip, lockmode);
1205 	} else {
1206 		lockmode = xfs_ilock_map_shared(ip);
1207 	}
1208 
1209 	ASSERT(offset <= mp->m_super->s_maxbytes);
1210 	if (offset + size > mp->m_super->s_maxbytes)
1211 		size = mp->m_super->s_maxbytes - offset;
1212 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1213 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1214 
1215 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1216 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1217 	if (error)
1218 		goto out_unlock;
1219 
1220 	if (create &&
1221 	    (!nimaps ||
1222 	     (imap.br_startblock == HOLESTARTBLOCK ||
1223 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1224 		if (direct || xfs_get_extsz_hint(ip)) {
1225 			/*
1226 			 * Drop the ilock in preparation for starting the block
1227 			 * allocation transaction.  It will be retaken
1228 			 * exclusively inside xfs_iomap_write_direct for the
1229 			 * actual allocation.
1230 			 */
1231 			xfs_iunlock(ip, lockmode);
1232 			error = xfs_iomap_write_direct(ip, offset, size,
1233 						       &imap, nimaps);
1234 			if (error)
1235 				return -error;
1236 			new = 1;
1237 		} else {
1238 			/*
1239 			 * Delalloc reservations do not require a transaction,
1240 			 * we can go on without dropping the lock here. If we
1241 			 * are allocating a new delalloc block, make sure that
1242 			 * we set the new flag so that we mark the buffer new so
1243 			 * that we know that it is newly allocated if the write
1244 			 * fails.
1245 			 */
1246 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1247 				new = 1;
1248 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1249 			if (error)
1250 				goto out_unlock;
1251 
1252 			xfs_iunlock(ip, lockmode);
1253 		}
1254 
1255 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1256 	} else if (nimaps) {
1257 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1258 		xfs_iunlock(ip, lockmode);
1259 	} else {
1260 		trace_xfs_get_blocks_notfound(ip, offset, size);
1261 		goto out_unlock;
1262 	}
1263 
1264 	if (imap.br_startblock != HOLESTARTBLOCK &&
1265 	    imap.br_startblock != DELAYSTARTBLOCK) {
1266 		/*
1267 		 * For unwritten extents do not report a disk address on
1268 		 * the read case (treat as if we're reading into a hole).
1269 		 */
1270 		if (create || !ISUNWRITTEN(&imap))
1271 			xfs_map_buffer(inode, bh_result, &imap, offset);
1272 		if (create && ISUNWRITTEN(&imap)) {
1273 			if (direct)
1274 				bh_result->b_private = inode;
1275 			set_buffer_unwritten(bh_result);
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * If this is a realtime file, data may be on a different device.
1281 	 * to that pointed to from the buffer_head b_bdev currently.
1282 	 */
1283 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1284 
1285 	/*
1286 	 * If we previously allocated a block out beyond eof and we are now
1287 	 * coming back to use it then we will need to flag it as new even if it
1288 	 * has a disk address.
1289 	 *
1290 	 * With sub-block writes into unwritten extents we also need to mark
1291 	 * the buffer as new so that the unwritten parts of the buffer gets
1292 	 * correctly zeroed.
1293 	 */
1294 	if (create &&
1295 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1296 	     (offset >= i_size_read(inode)) ||
1297 	     (new || ISUNWRITTEN(&imap))))
1298 		set_buffer_new(bh_result);
1299 
1300 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1301 		BUG_ON(direct);
1302 		if (create) {
1303 			set_buffer_uptodate(bh_result);
1304 			set_buffer_mapped(bh_result);
1305 			set_buffer_delay(bh_result);
1306 		}
1307 	}
1308 
1309 	/*
1310 	 * If this is O_DIRECT or the mpage code calling tell them how large
1311 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1312 	 */
1313 	if (direct || size > (1 << inode->i_blkbits)) {
1314 		xfs_off_t		mapping_size;
1315 
1316 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1317 		mapping_size <<= inode->i_blkbits;
1318 
1319 		ASSERT(mapping_size > 0);
1320 		if (mapping_size > size)
1321 			mapping_size = size;
1322 		if (mapping_size > LONG_MAX)
1323 			mapping_size = LONG_MAX;
1324 
1325 		bh_result->b_size = mapping_size;
1326 	}
1327 
1328 	return 0;
1329 
1330 out_unlock:
1331 	xfs_iunlock(ip, lockmode);
1332 	return -error;
1333 }
1334 
1335 int
1336 xfs_get_blocks(
1337 	struct inode		*inode,
1338 	sector_t		iblock,
1339 	struct buffer_head	*bh_result,
1340 	int			create)
1341 {
1342 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1343 }
1344 
1345 STATIC int
1346 xfs_get_blocks_direct(
1347 	struct inode		*inode,
1348 	sector_t		iblock,
1349 	struct buffer_head	*bh_result,
1350 	int			create)
1351 {
1352 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1353 }
1354 
1355 /*
1356  * Complete a direct I/O write request.
1357  *
1358  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1359  * need to issue a transaction to convert the range from unwritten to written
1360  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1361  * to do this and we are done.  But in case this was a successful AIO
1362  * request this handler is called from interrupt context, from which we
1363  * can't start transactions.  In that case offload the I/O completion to
1364  * the workqueues we also use for buffered I/O completion.
1365  */
1366 STATIC void
1367 xfs_end_io_direct_write(
1368 	struct kiocb		*iocb,
1369 	loff_t			offset,
1370 	ssize_t			size,
1371 	void			*private,
1372 	int			ret,
1373 	bool			is_async)
1374 {
1375 	struct xfs_ioend	*ioend = iocb->private;
1376 
1377 	/*
1378 	 * While the generic direct I/O code updates the inode size, it does
1379 	 * so only after the end_io handler is called, which means our
1380 	 * end_io handler thinks the on-disk size is outside the in-core
1381 	 * size.  To prevent this just update it a little bit earlier here.
1382 	 */
1383 	if (offset + size > i_size_read(ioend->io_inode))
1384 		i_size_write(ioend->io_inode, offset + size);
1385 
1386 	/*
1387 	 * blockdev_direct_IO can return an error even after the I/O
1388 	 * completion handler was called.  Thus we need to protect
1389 	 * against double-freeing.
1390 	 */
1391 	iocb->private = NULL;
1392 
1393 	ioend->io_offset = offset;
1394 	ioend->io_size = size;
1395 	ioend->io_iocb = iocb;
1396 	ioend->io_result = ret;
1397 	if (private && size > 0)
1398 		ioend->io_type = XFS_IO_UNWRITTEN;
1399 
1400 	if (is_async) {
1401 		ioend->io_isasync = 1;
1402 		xfs_finish_ioend(ioend);
1403 	} else {
1404 		xfs_finish_ioend_sync(ioend);
1405 	}
1406 }
1407 
1408 STATIC ssize_t
1409 xfs_vm_direct_IO(
1410 	int			rw,
1411 	struct kiocb		*iocb,
1412 	const struct iovec	*iov,
1413 	loff_t			offset,
1414 	unsigned long		nr_segs)
1415 {
1416 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1417 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1418 	struct xfs_ioend	*ioend = NULL;
1419 	ssize_t			ret;
1420 
1421 	if (rw & WRITE) {
1422 		size_t size = iov_length(iov, nr_segs);
1423 
1424 		/*
1425 		 * We cannot preallocate a size update transaction here as we
1426 		 * don't know whether allocation is necessary or not. Hence we
1427 		 * can only tell IO completion that one is necessary if we are
1428 		 * not doing unwritten extent conversion.
1429 		 */
1430 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1431 		if (offset + size > XFS_I(inode)->i_d.di_size)
1432 			ioend->io_isdirect = 1;
1433 
1434 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1435 					    offset, nr_segs,
1436 					    xfs_get_blocks_direct,
1437 					    xfs_end_io_direct_write, NULL, 0);
1438 		if (ret != -EIOCBQUEUED && iocb->private)
1439 			goto out_destroy_ioend;
1440 	} else {
1441 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1442 					    offset, nr_segs,
1443 					    xfs_get_blocks_direct,
1444 					    NULL, NULL, 0);
1445 	}
1446 
1447 	return ret;
1448 
1449 out_destroy_ioend:
1450 	xfs_destroy_ioend(ioend);
1451 	return ret;
1452 }
1453 
1454 /*
1455  * Punch out the delalloc blocks we have already allocated.
1456  *
1457  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1458  * as the page is still locked at this point.
1459  */
1460 STATIC void
1461 xfs_vm_kill_delalloc_range(
1462 	struct inode		*inode,
1463 	loff_t			start,
1464 	loff_t			end)
1465 {
1466 	struct xfs_inode	*ip = XFS_I(inode);
1467 	xfs_fileoff_t		start_fsb;
1468 	xfs_fileoff_t		end_fsb;
1469 	int			error;
1470 
1471 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1472 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1473 	if (end_fsb <= start_fsb)
1474 		return;
1475 
1476 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1477 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1478 						end_fsb - start_fsb);
1479 	if (error) {
1480 		/* something screwed, just bail */
1481 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1482 			xfs_alert(ip->i_mount,
1483 		"xfs_vm_write_failed: unable to clean up ino %lld",
1484 					ip->i_ino);
1485 		}
1486 	}
1487 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1488 }
1489 
1490 STATIC void
1491 xfs_vm_write_failed(
1492 	struct inode		*inode,
1493 	struct page		*page,
1494 	loff_t			pos,
1495 	unsigned		len)
1496 {
1497 	loff_t			block_offset = pos & PAGE_MASK;
1498 	loff_t			block_start;
1499 	loff_t			block_end;
1500 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1501 	loff_t			to = from + len;
1502 	struct buffer_head	*bh, *head;
1503 
1504 	ASSERT(block_offset + from == pos);
1505 
1506 	head = page_buffers(page);
1507 	block_start = 0;
1508 	for (bh = head; bh != head || !block_start;
1509 	     bh = bh->b_this_page, block_start = block_end,
1510 				   block_offset += bh->b_size) {
1511 		block_end = block_start + bh->b_size;
1512 
1513 		/* skip buffers before the write */
1514 		if (block_end <= from)
1515 			continue;
1516 
1517 		/* if the buffer is after the write, we're done */
1518 		if (block_start >= to)
1519 			break;
1520 
1521 		if (!buffer_delay(bh))
1522 			continue;
1523 
1524 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1525 			continue;
1526 
1527 		xfs_vm_kill_delalloc_range(inode, block_offset,
1528 					   block_offset + bh->b_size);
1529 	}
1530 
1531 }
1532 
1533 /*
1534  * This used to call block_write_begin(), but it unlocks and releases the page
1535  * on error, and we need that page to be able to punch stale delalloc blocks out
1536  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1537  * the appropriate point.
1538  */
1539 STATIC int
1540 xfs_vm_write_begin(
1541 	struct file		*file,
1542 	struct address_space	*mapping,
1543 	loff_t			pos,
1544 	unsigned		len,
1545 	unsigned		flags,
1546 	struct page		**pagep,
1547 	void			**fsdata)
1548 {
1549 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1550 	struct page		*page;
1551 	int			status;
1552 
1553 	ASSERT(len <= PAGE_CACHE_SIZE);
1554 
1555 	page = grab_cache_page_write_begin(mapping, index,
1556 					   flags | AOP_FLAG_NOFS);
1557 	if (!page)
1558 		return -ENOMEM;
1559 
1560 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1561 	if (unlikely(status)) {
1562 		struct inode	*inode = mapping->host;
1563 
1564 		xfs_vm_write_failed(inode, page, pos, len);
1565 		unlock_page(page);
1566 
1567 		if (pos + len > i_size_read(inode))
1568 			truncate_pagecache(inode, pos + len, i_size_read(inode));
1569 
1570 		page_cache_release(page);
1571 		page = NULL;
1572 	}
1573 
1574 	*pagep = page;
1575 	return status;
1576 }
1577 
1578 /*
1579  * On failure, we only need to kill delalloc blocks beyond EOF because they
1580  * will never be written. For blocks within EOF, generic_write_end() zeros them
1581  * so they are safe to leave alone and be written with all the other valid data.
1582  */
1583 STATIC int
1584 xfs_vm_write_end(
1585 	struct file		*file,
1586 	struct address_space	*mapping,
1587 	loff_t			pos,
1588 	unsigned		len,
1589 	unsigned		copied,
1590 	struct page		*page,
1591 	void			*fsdata)
1592 {
1593 	int			ret;
1594 
1595 	ASSERT(len <= PAGE_CACHE_SIZE);
1596 
1597 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1598 	if (unlikely(ret < len)) {
1599 		struct inode	*inode = mapping->host;
1600 		size_t		isize = i_size_read(inode);
1601 		loff_t		to = pos + len;
1602 
1603 		if (to > isize) {
1604 			truncate_pagecache(inode, to, isize);
1605 			xfs_vm_kill_delalloc_range(inode, isize, to);
1606 		}
1607 	}
1608 	return ret;
1609 }
1610 
1611 STATIC sector_t
1612 xfs_vm_bmap(
1613 	struct address_space	*mapping,
1614 	sector_t		block)
1615 {
1616 	struct inode		*inode = (struct inode *)mapping->host;
1617 	struct xfs_inode	*ip = XFS_I(inode);
1618 
1619 	trace_xfs_vm_bmap(XFS_I(inode));
1620 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1621 	filemap_write_and_wait(mapping);
1622 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1623 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1624 }
1625 
1626 STATIC int
1627 xfs_vm_readpage(
1628 	struct file		*unused,
1629 	struct page		*page)
1630 {
1631 	return mpage_readpage(page, xfs_get_blocks);
1632 }
1633 
1634 STATIC int
1635 xfs_vm_readpages(
1636 	struct file		*unused,
1637 	struct address_space	*mapping,
1638 	struct list_head	*pages,
1639 	unsigned		nr_pages)
1640 {
1641 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1642 }
1643 
1644 const struct address_space_operations xfs_address_space_operations = {
1645 	.readpage		= xfs_vm_readpage,
1646 	.readpages		= xfs_vm_readpages,
1647 	.writepage		= xfs_vm_writepage,
1648 	.writepages		= xfs_vm_writepages,
1649 	.releasepage		= xfs_vm_releasepage,
1650 	.invalidatepage		= xfs_vm_invalidatepage,
1651 	.write_begin		= xfs_vm_write_begin,
1652 	.write_end		= xfs_vm_write_end,
1653 	.bmap			= xfs_vm_bmap,
1654 	.direct_IO		= xfs_vm_direct_IO,
1655 	.migratepage		= buffer_migrate_page,
1656 	.is_partially_uptodate  = block_is_partially_uptodate,
1657 	.error_remove_page	= generic_error_remove_page,
1658 };
1659