xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision 05bcf503)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_log.h"
20 #include "xfs_sb.h"
21 #include "xfs_ag.h"
22 #include "xfs_trans.h"
23 #include "xfs_mount.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_dinode.h"
26 #include "xfs_inode.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_alloc.h"
29 #include "xfs_error.h"
30 #include "xfs_iomap.h"
31 #include "xfs_vnodeops.h"
32 #include "xfs_trace.h"
33 #include "xfs_bmap.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
38 
39 void
40 xfs_count_page_state(
41 	struct page		*page,
42 	int			*delalloc,
43 	int			*unwritten)
44 {
45 	struct buffer_head	*bh, *head;
46 
47 	*delalloc = *unwritten = 0;
48 
49 	bh = head = page_buffers(page);
50 	do {
51 		if (buffer_unwritten(bh))
52 			(*unwritten) = 1;
53 		else if (buffer_delay(bh))
54 			(*delalloc) = 1;
55 	} while ((bh = bh->b_this_page) != head);
56 }
57 
58 STATIC struct block_device *
59 xfs_find_bdev_for_inode(
60 	struct inode		*inode)
61 {
62 	struct xfs_inode	*ip = XFS_I(inode);
63 	struct xfs_mount	*mp = ip->i_mount;
64 
65 	if (XFS_IS_REALTIME_INODE(ip))
66 		return mp->m_rtdev_targp->bt_bdev;
67 	else
68 		return mp->m_ddev_targp->bt_bdev;
69 }
70 
71 /*
72  * We're now finished for good with this ioend structure.
73  * Update the page state via the associated buffer_heads,
74  * release holds on the inode and bio, and finally free
75  * up memory.  Do not use the ioend after this.
76  */
77 STATIC void
78 xfs_destroy_ioend(
79 	xfs_ioend_t		*ioend)
80 {
81 	struct buffer_head	*bh, *next;
82 
83 	for (bh = ioend->io_buffer_head; bh; bh = next) {
84 		next = bh->b_private;
85 		bh->b_end_io(bh, !ioend->io_error);
86 	}
87 
88 	if (ioend->io_iocb) {
89 		if (ioend->io_isasync) {
90 			aio_complete(ioend->io_iocb, ioend->io_error ?
91 					ioend->io_error : ioend->io_result, 0);
92 		}
93 		inode_dio_done(ioend->io_inode);
94 	}
95 
96 	mempool_free(ioend, xfs_ioend_pool);
97 }
98 
99 /*
100  * Fast and loose check if this write could update the on-disk inode size.
101  */
102 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
103 {
104 	return ioend->io_offset + ioend->io_size >
105 		XFS_I(ioend->io_inode)->i_d.di_size;
106 }
107 
108 STATIC int
109 xfs_setfilesize_trans_alloc(
110 	struct xfs_ioend	*ioend)
111 {
112 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
113 	struct xfs_trans	*tp;
114 	int			error;
115 
116 	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
117 
118 	error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
119 	if (error) {
120 		xfs_trans_cancel(tp, 0);
121 		return error;
122 	}
123 
124 	ioend->io_append_trans = tp;
125 
126 	/*
127 	 * We will pass freeze protection with a transaction.  So tell lockdep
128 	 * we released it.
129 	 */
130 	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
131 		      1, _THIS_IP_);
132 	/*
133 	 * We hand off the transaction to the completion thread now, so
134 	 * clear the flag here.
135 	 */
136 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
137 	return 0;
138 }
139 
140 /*
141  * Update on-disk file size now that data has been written to disk.
142  */
143 STATIC int
144 xfs_setfilesize(
145 	struct xfs_ioend	*ioend)
146 {
147 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
148 	struct xfs_trans	*tp = ioend->io_append_trans;
149 	xfs_fsize_t		isize;
150 
151 	/*
152 	 * The transaction was allocated in the I/O submission thread,
153 	 * thus we need to mark ourselves as beeing in a transaction
154 	 * manually.
155 	 */
156 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
157 
158 	xfs_ilock(ip, XFS_ILOCK_EXCL);
159 	isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size);
160 	if (!isize) {
161 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
162 		xfs_trans_cancel(tp, 0);
163 		return 0;
164 	}
165 
166 	trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
167 
168 	ip->i_d.di_size = isize;
169 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
170 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
171 
172 	return xfs_trans_commit(tp, 0);
173 }
174 
175 /*
176  * Schedule IO completion handling on the final put of an ioend.
177  *
178  * If there is no work to do we might as well call it a day and free the
179  * ioend right now.
180  */
181 STATIC void
182 xfs_finish_ioend(
183 	struct xfs_ioend	*ioend)
184 {
185 	if (atomic_dec_and_test(&ioend->io_remaining)) {
186 		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
187 
188 		if (ioend->io_type == XFS_IO_UNWRITTEN)
189 			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
190 		else if (ioend->io_append_trans)
191 			queue_work(mp->m_data_workqueue, &ioend->io_work);
192 		else
193 			xfs_destroy_ioend(ioend);
194 	}
195 }
196 
197 /*
198  * IO write completion.
199  */
200 STATIC void
201 xfs_end_io(
202 	struct work_struct *work)
203 {
204 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
205 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
206 	int		error = 0;
207 
208 	if (ioend->io_append_trans) {
209 		/*
210 		 * We've got freeze protection passed with the transaction.
211 		 * Tell lockdep about it.
212 		 */
213 		rwsem_acquire_read(
214 			&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
215 			0, 1, _THIS_IP_);
216 	}
217 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
218 		ioend->io_error = -EIO;
219 		goto done;
220 	}
221 	if (ioend->io_error)
222 		goto done;
223 
224 	/*
225 	 * For unwritten extents we need to issue transactions to convert a
226 	 * range to normal written extens after the data I/O has finished.
227 	 */
228 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
229 		/*
230 		 * For buffered I/O we never preallocate a transaction when
231 		 * doing the unwritten extent conversion, but for direct I/O
232 		 * we do not know if we are converting an unwritten extent
233 		 * or not at the point where we preallocate the transaction.
234 		 */
235 		if (ioend->io_append_trans) {
236 			ASSERT(ioend->io_isdirect);
237 
238 			current_set_flags_nested(
239 				&ioend->io_append_trans->t_pflags, PF_FSTRANS);
240 			xfs_trans_cancel(ioend->io_append_trans, 0);
241 		}
242 
243 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
244 						 ioend->io_size);
245 		if (error) {
246 			ioend->io_error = -error;
247 			goto done;
248 		}
249 	} else if (ioend->io_append_trans) {
250 		error = xfs_setfilesize(ioend);
251 		if (error)
252 			ioend->io_error = -error;
253 	} else {
254 		ASSERT(!xfs_ioend_is_append(ioend));
255 	}
256 
257 done:
258 	xfs_destroy_ioend(ioend);
259 }
260 
261 /*
262  * Call IO completion handling in caller context on the final put of an ioend.
263  */
264 STATIC void
265 xfs_finish_ioend_sync(
266 	struct xfs_ioend	*ioend)
267 {
268 	if (atomic_dec_and_test(&ioend->io_remaining))
269 		xfs_end_io(&ioend->io_work);
270 }
271 
272 /*
273  * Allocate and initialise an IO completion structure.
274  * We need to track unwritten extent write completion here initially.
275  * We'll need to extend this for updating the ondisk inode size later
276  * (vs. incore size).
277  */
278 STATIC xfs_ioend_t *
279 xfs_alloc_ioend(
280 	struct inode		*inode,
281 	unsigned int		type)
282 {
283 	xfs_ioend_t		*ioend;
284 
285 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
286 
287 	/*
288 	 * Set the count to 1 initially, which will prevent an I/O
289 	 * completion callback from happening before we have started
290 	 * all the I/O from calling the completion routine too early.
291 	 */
292 	atomic_set(&ioend->io_remaining, 1);
293 	ioend->io_isasync = 0;
294 	ioend->io_isdirect = 0;
295 	ioend->io_error = 0;
296 	ioend->io_list = NULL;
297 	ioend->io_type = type;
298 	ioend->io_inode = inode;
299 	ioend->io_buffer_head = NULL;
300 	ioend->io_buffer_tail = NULL;
301 	ioend->io_offset = 0;
302 	ioend->io_size = 0;
303 	ioend->io_iocb = NULL;
304 	ioend->io_result = 0;
305 	ioend->io_append_trans = NULL;
306 
307 	INIT_WORK(&ioend->io_work, xfs_end_io);
308 	return ioend;
309 }
310 
311 STATIC int
312 xfs_map_blocks(
313 	struct inode		*inode,
314 	loff_t			offset,
315 	struct xfs_bmbt_irec	*imap,
316 	int			type,
317 	int			nonblocking)
318 {
319 	struct xfs_inode	*ip = XFS_I(inode);
320 	struct xfs_mount	*mp = ip->i_mount;
321 	ssize_t			count = 1 << inode->i_blkbits;
322 	xfs_fileoff_t		offset_fsb, end_fsb;
323 	int			error = 0;
324 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
325 	int			nimaps = 1;
326 
327 	if (XFS_FORCED_SHUTDOWN(mp))
328 		return -XFS_ERROR(EIO);
329 
330 	if (type == XFS_IO_UNWRITTEN)
331 		bmapi_flags |= XFS_BMAPI_IGSTATE;
332 
333 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
334 		if (nonblocking)
335 			return -XFS_ERROR(EAGAIN);
336 		xfs_ilock(ip, XFS_ILOCK_SHARED);
337 	}
338 
339 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
340 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
341 	ASSERT(offset <= mp->m_super->s_maxbytes);
342 
343 	if (offset + count > mp->m_super->s_maxbytes)
344 		count = mp->m_super->s_maxbytes - offset;
345 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
346 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
347 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
348 				imap, &nimaps, bmapi_flags);
349 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
350 
351 	if (error)
352 		return -XFS_ERROR(error);
353 
354 	if (type == XFS_IO_DELALLOC &&
355 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
356 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
357 		if (!error)
358 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
359 		return -XFS_ERROR(error);
360 	}
361 
362 #ifdef DEBUG
363 	if (type == XFS_IO_UNWRITTEN) {
364 		ASSERT(nimaps);
365 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
366 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
367 	}
368 #endif
369 	if (nimaps)
370 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
371 	return 0;
372 }
373 
374 STATIC int
375 xfs_imap_valid(
376 	struct inode		*inode,
377 	struct xfs_bmbt_irec	*imap,
378 	xfs_off_t		offset)
379 {
380 	offset >>= inode->i_blkbits;
381 
382 	return offset >= imap->br_startoff &&
383 		offset < imap->br_startoff + imap->br_blockcount;
384 }
385 
386 /*
387  * BIO completion handler for buffered IO.
388  */
389 STATIC void
390 xfs_end_bio(
391 	struct bio		*bio,
392 	int			error)
393 {
394 	xfs_ioend_t		*ioend = bio->bi_private;
395 
396 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
397 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
398 
399 	/* Toss bio and pass work off to an xfsdatad thread */
400 	bio->bi_private = NULL;
401 	bio->bi_end_io = NULL;
402 	bio_put(bio);
403 
404 	xfs_finish_ioend(ioend);
405 }
406 
407 STATIC void
408 xfs_submit_ioend_bio(
409 	struct writeback_control *wbc,
410 	xfs_ioend_t		*ioend,
411 	struct bio		*bio)
412 {
413 	atomic_inc(&ioend->io_remaining);
414 	bio->bi_private = ioend;
415 	bio->bi_end_io = xfs_end_bio;
416 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
417 }
418 
419 STATIC struct bio *
420 xfs_alloc_ioend_bio(
421 	struct buffer_head	*bh)
422 {
423 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
424 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
425 
426 	ASSERT(bio->bi_private == NULL);
427 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 	bio->bi_bdev = bh->b_bdev;
429 	return bio;
430 }
431 
432 STATIC void
433 xfs_start_buffer_writeback(
434 	struct buffer_head	*bh)
435 {
436 	ASSERT(buffer_mapped(bh));
437 	ASSERT(buffer_locked(bh));
438 	ASSERT(!buffer_delay(bh));
439 	ASSERT(!buffer_unwritten(bh));
440 
441 	mark_buffer_async_write(bh);
442 	set_buffer_uptodate(bh);
443 	clear_buffer_dirty(bh);
444 }
445 
446 STATIC void
447 xfs_start_page_writeback(
448 	struct page		*page,
449 	int			clear_dirty,
450 	int			buffers)
451 {
452 	ASSERT(PageLocked(page));
453 	ASSERT(!PageWriteback(page));
454 	if (clear_dirty)
455 		clear_page_dirty_for_io(page);
456 	set_page_writeback(page);
457 	unlock_page(page);
458 	/* If no buffers on the page are to be written, finish it here */
459 	if (!buffers)
460 		end_page_writeback(page);
461 }
462 
463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464 {
465 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466 }
467 
468 /*
469  * Submit all of the bios for all of the ioends we have saved up, covering the
470  * initial writepage page and also any probed pages.
471  *
472  * Because we may have multiple ioends spanning a page, we need to start
473  * writeback on all the buffers before we submit them for I/O. If we mark the
474  * buffers as we got, then we can end up with a page that only has buffers
475  * marked async write and I/O complete on can occur before we mark the other
476  * buffers async write.
477  *
478  * The end result of this is that we trip a bug in end_page_writeback() because
479  * we call it twice for the one page as the code in end_buffer_async_write()
480  * assumes that all buffers on the page are started at the same time.
481  *
482  * The fix is two passes across the ioend list - one to start writeback on the
483  * buffer_heads, and then submit them for I/O on the second pass.
484  *
485  * If @fail is non-zero, it means that we have a situation where some part of
486  * the submission process has failed after we have marked paged for writeback
487  * and unlocked them. In this situation, we need to fail the ioend chain rather
488  * than submit it to IO. This typically only happens on a filesystem shutdown.
489  */
490 STATIC void
491 xfs_submit_ioend(
492 	struct writeback_control *wbc,
493 	xfs_ioend_t		*ioend,
494 	int			fail)
495 {
496 	xfs_ioend_t		*head = ioend;
497 	xfs_ioend_t		*next;
498 	struct buffer_head	*bh;
499 	struct bio		*bio;
500 	sector_t		lastblock = 0;
501 
502 	/* Pass 1 - start writeback */
503 	do {
504 		next = ioend->io_list;
505 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
506 			xfs_start_buffer_writeback(bh);
507 	} while ((ioend = next) != NULL);
508 
509 	/* Pass 2 - submit I/O */
510 	ioend = head;
511 	do {
512 		next = ioend->io_list;
513 		bio = NULL;
514 
515 		/*
516 		 * If we are failing the IO now, just mark the ioend with an
517 		 * error and finish it. This will run IO completion immediately
518 		 * as there is only one reference to the ioend at this point in
519 		 * time.
520 		 */
521 		if (fail) {
522 			ioend->io_error = -fail;
523 			xfs_finish_ioend(ioend);
524 			continue;
525 		}
526 
527 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
528 
529 			if (!bio) {
530  retry:
531 				bio = xfs_alloc_ioend_bio(bh);
532 			} else if (bh->b_blocknr != lastblock + 1) {
533 				xfs_submit_ioend_bio(wbc, ioend, bio);
534 				goto retry;
535 			}
536 
537 			if (bio_add_buffer(bio, bh) != bh->b_size) {
538 				xfs_submit_ioend_bio(wbc, ioend, bio);
539 				goto retry;
540 			}
541 
542 			lastblock = bh->b_blocknr;
543 		}
544 		if (bio)
545 			xfs_submit_ioend_bio(wbc, ioend, bio);
546 		xfs_finish_ioend(ioend);
547 	} while ((ioend = next) != NULL);
548 }
549 
550 /*
551  * Cancel submission of all buffer_heads so far in this endio.
552  * Toss the endio too.  Only ever called for the initial page
553  * in a writepage request, so only ever one page.
554  */
555 STATIC void
556 xfs_cancel_ioend(
557 	xfs_ioend_t		*ioend)
558 {
559 	xfs_ioend_t		*next;
560 	struct buffer_head	*bh, *next_bh;
561 
562 	do {
563 		next = ioend->io_list;
564 		bh = ioend->io_buffer_head;
565 		do {
566 			next_bh = bh->b_private;
567 			clear_buffer_async_write(bh);
568 			unlock_buffer(bh);
569 		} while ((bh = next_bh) != NULL);
570 
571 		mempool_free(ioend, xfs_ioend_pool);
572 	} while ((ioend = next) != NULL);
573 }
574 
575 /*
576  * Test to see if we've been building up a completion structure for
577  * earlier buffers -- if so, we try to append to this ioend if we
578  * can, otherwise we finish off any current ioend and start another.
579  * Return true if we've finished the given ioend.
580  */
581 STATIC void
582 xfs_add_to_ioend(
583 	struct inode		*inode,
584 	struct buffer_head	*bh,
585 	xfs_off_t		offset,
586 	unsigned int		type,
587 	xfs_ioend_t		**result,
588 	int			need_ioend)
589 {
590 	xfs_ioend_t		*ioend = *result;
591 
592 	if (!ioend || need_ioend || type != ioend->io_type) {
593 		xfs_ioend_t	*previous = *result;
594 
595 		ioend = xfs_alloc_ioend(inode, type);
596 		ioend->io_offset = offset;
597 		ioend->io_buffer_head = bh;
598 		ioend->io_buffer_tail = bh;
599 		if (previous)
600 			previous->io_list = ioend;
601 		*result = ioend;
602 	} else {
603 		ioend->io_buffer_tail->b_private = bh;
604 		ioend->io_buffer_tail = bh;
605 	}
606 
607 	bh->b_private = NULL;
608 	ioend->io_size += bh->b_size;
609 }
610 
611 STATIC void
612 xfs_map_buffer(
613 	struct inode		*inode,
614 	struct buffer_head	*bh,
615 	struct xfs_bmbt_irec	*imap,
616 	xfs_off_t		offset)
617 {
618 	sector_t		bn;
619 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
620 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
621 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
622 
623 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
624 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
625 
626 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
627 	      ((offset - iomap_offset) >> inode->i_blkbits);
628 
629 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
630 
631 	bh->b_blocknr = bn;
632 	set_buffer_mapped(bh);
633 }
634 
635 STATIC void
636 xfs_map_at_offset(
637 	struct inode		*inode,
638 	struct buffer_head	*bh,
639 	struct xfs_bmbt_irec	*imap,
640 	xfs_off_t		offset)
641 {
642 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
643 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
644 
645 	xfs_map_buffer(inode, bh, imap, offset);
646 	set_buffer_mapped(bh);
647 	clear_buffer_delay(bh);
648 	clear_buffer_unwritten(bh);
649 }
650 
651 /*
652  * Test if a given page is suitable for writing as part of an unwritten
653  * or delayed allocate extent.
654  */
655 STATIC int
656 xfs_check_page_type(
657 	struct page		*page,
658 	unsigned int		type)
659 {
660 	if (PageWriteback(page))
661 		return 0;
662 
663 	if (page->mapping && page_has_buffers(page)) {
664 		struct buffer_head	*bh, *head;
665 		int			acceptable = 0;
666 
667 		bh = head = page_buffers(page);
668 		do {
669 			if (buffer_unwritten(bh))
670 				acceptable += (type == XFS_IO_UNWRITTEN);
671 			else if (buffer_delay(bh))
672 				acceptable += (type == XFS_IO_DELALLOC);
673 			else if (buffer_dirty(bh) && buffer_mapped(bh))
674 				acceptable += (type == XFS_IO_OVERWRITE);
675 			else
676 				break;
677 		} while ((bh = bh->b_this_page) != head);
678 
679 		if (acceptable)
680 			return 1;
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Allocate & map buffers for page given the extent map. Write it out.
688  * except for the original page of a writepage, this is called on
689  * delalloc/unwritten pages only, for the original page it is possible
690  * that the page has no mapping at all.
691  */
692 STATIC int
693 xfs_convert_page(
694 	struct inode		*inode,
695 	struct page		*page,
696 	loff_t			tindex,
697 	struct xfs_bmbt_irec	*imap,
698 	xfs_ioend_t		**ioendp,
699 	struct writeback_control *wbc)
700 {
701 	struct buffer_head	*bh, *head;
702 	xfs_off_t		end_offset;
703 	unsigned long		p_offset;
704 	unsigned int		type;
705 	int			len, page_dirty;
706 	int			count = 0, done = 0, uptodate = 1;
707  	xfs_off_t		offset = page_offset(page);
708 
709 	if (page->index != tindex)
710 		goto fail;
711 	if (!trylock_page(page))
712 		goto fail;
713 	if (PageWriteback(page))
714 		goto fail_unlock_page;
715 	if (page->mapping != inode->i_mapping)
716 		goto fail_unlock_page;
717 	if (!xfs_check_page_type(page, (*ioendp)->io_type))
718 		goto fail_unlock_page;
719 
720 	/*
721 	 * page_dirty is initially a count of buffers on the page before
722 	 * EOF and is decremented as we move each into a cleanable state.
723 	 *
724 	 * Derivation:
725 	 *
726 	 * End offset is the highest offset that this page should represent.
727 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
728 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
729 	 * hence give us the correct page_dirty count. On any other page,
730 	 * it will be zero and in that case we need page_dirty to be the
731 	 * count of buffers on the page.
732 	 */
733 	end_offset = min_t(unsigned long long,
734 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
735 			i_size_read(inode));
736 
737 	len = 1 << inode->i_blkbits;
738 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
739 					PAGE_CACHE_SIZE);
740 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
741 	page_dirty = p_offset / len;
742 
743 	bh = head = page_buffers(page);
744 	do {
745 		if (offset >= end_offset)
746 			break;
747 		if (!buffer_uptodate(bh))
748 			uptodate = 0;
749 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
750 			done = 1;
751 			continue;
752 		}
753 
754 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
755 		    buffer_mapped(bh)) {
756 			if (buffer_unwritten(bh))
757 				type = XFS_IO_UNWRITTEN;
758 			else if (buffer_delay(bh))
759 				type = XFS_IO_DELALLOC;
760 			else
761 				type = XFS_IO_OVERWRITE;
762 
763 			if (!xfs_imap_valid(inode, imap, offset)) {
764 				done = 1;
765 				continue;
766 			}
767 
768 			lock_buffer(bh);
769 			if (type != XFS_IO_OVERWRITE)
770 				xfs_map_at_offset(inode, bh, imap, offset);
771 			xfs_add_to_ioend(inode, bh, offset, type,
772 					 ioendp, done);
773 
774 			page_dirty--;
775 			count++;
776 		} else {
777 			done = 1;
778 		}
779 	} while (offset += len, (bh = bh->b_this_page) != head);
780 
781 	if (uptodate && bh == head)
782 		SetPageUptodate(page);
783 
784 	if (count) {
785 		if (--wbc->nr_to_write <= 0 &&
786 		    wbc->sync_mode == WB_SYNC_NONE)
787 			done = 1;
788 	}
789 	xfs_start_page_writeback(page, !page_dirty, count);
790 
791 	return done;
792  fail_unlock_page:
793 	unlock_page(page);
794  fail:
795 	return 1;
796 }
797 
798 /*
799  * Convert & write out a cluster of pages in the same extent as defined
800  * by mp and following the start page.
801  */
802 STATIC void
803 xfs_cluster_write(
804 	struct inode		*inode,
805 	pgoff_t			tindex,
806 	struct xfs_bmbt_irec	*imap,
807 	xfs_ioend_t		**ioendp,
808 	struct writeback_control *wbc,
809 	pgoff_t			tlast)
810 {
811 	struct pagevec		pvec;
812 	int			done = 0, i;
813 
814 	pagevec_init(&pvec, 0);
815 	while (!done && tindex <= tlast) {
816 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
817 
818 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
819 			break;
820 
821 		for (i = 0; i < pagevec_count(&pvec); i++) {
822 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
823 					imap, ioendp, wbc);
824 			if (done)
825 				break;
826 		}
827 
828 		pagevec_release(&pvec);
829 		cond_resched();
830 	}
831 }
832 
833 STATIC void
834 xfs_vm_invalidatepage(
835 	struct page		*page,
836 	unsigned long		offset)
837 {
838 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
839 	block_invalidatepage(page, offset);
840 }
841 
842 /*
843  * If the page has delalloc buffers on it, we need to punch them out before we
844  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
845  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
846  * is done on that same region - the delalloc extent is returned when none is
847  * supposed to be there.
848  *
849  * We prevent this by truncating away the delalloc regions on the page before
850  * invalidating it. Because they are delalloc, we can do this without needing a
851  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
852  * truncation without a transaction as there is no space left for block
853  * reservation (typically why we see a ENOSPC in writeback).
854  *
855  * This is not a performance critical path, so for now just do the punching a
856  * buffer head at a time.
857  */
858 STATIC void
859 xfs_aops_discard_page(
860 	struct page		*page)
861 {
862 	struct inode		*inode = page->mapping->host;
863 	struct xfs_inode	*ip = XFS_I(inode);
864 	struct buffer_head	*bh, *head;
865 	loff_t			offset = page_offset(page);
866 
867 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC))
868 		goto out_invalidate;
869 
870 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
871 		goto out_invalidate;
872 
873 	xfs_alert(ip->i_mount,
874 		"page discard on page %p, inode 0x%llx, offset %llu.",
875 			page, ip->i_ino, offset);
876 
877 	xfs_ilock(ip, XFS_ILOCK_EXCL);
878 	bh = head = page_buffers(page);
879 	do {
880 		int		error;
881 		xfs_fileoff_t	start_fsb;
882 
883 		if (!buffer_delay(bh))
884 			goto next_buffer;
885 
886 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
887 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
888 		if (error) {
889 			/* something screwed, just bail */
890 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
891 				xfs_alert(ip->i_mount,
892 			"page discard unable to remove delalloc mapping.");
893 			}
894 			break;
895 		}
896 next_buffer:
897 		offset += 1 << inode->i_blkbits;
898 
899 	} while ((bh = bh->b_this_page) != head);
900 
901 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
902 out_invalidate:
903 	xfs_vm_invalidatepage(page, 0);
904 	return;
905 }
906 
907 /*
908  * Write out a dirty page.
909  *
910  * For delalloc space on the page we need to allocate space and flush it.
911  * For unwritten space on the page we need to start the conversion to
912  * regular allocated space.
913  * For any other dirty buffer heads on the page we should flush them.
914  */
915 STATIC int
916 xfs_vm_writepage(
917 	struct page		*page,
918 	struct writeback_control *wbc)
919 {
920 	struct inode		*inode = page->mapping->host;
921 	struct buffer_head	*bh, *head;
922 	struct xfs_bmbt_irec	imap;
923 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
924 	loff_t			offset;
925 	unsigned int		type;
926 	__uint64_t              end_offset;
927 	pgoff_t                 end_index, last_index;
928 	ssize_t			len;
929 	int			err, imap_valid = 0, uptodate = 1;
930 	int			count = 0;
931 	int			nonblocking = 0;
932 
933 	trace_xfs_writepage(inode, page, 0);
934 
935 	ASSERT(page_has_buffers(page));
936 
937 	/*
938 	 * Refuse to write the page out if we are called from reclaim context.
939 	 *
940 	 * This avoids stack overflows when called from deeply used stacks in
941 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
942 	 * allow reclaim from kswapd as the stack usage there is relatively low.
943 	 *
944 	 * This should never happen except in the case of a VM regression so
945 	 * warn about it.
946 	 */
947 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
948 			PF_MEMALLOC))
949 		goto redirty;
950 
951 	/*
952 	 * Given that we do not allow direct reclaim to call us, we should
953 	 * never be called while in a filesystem transaction.
954 	 */
955 	if (WARN_ON(current->flags & PF_FSTRANS))
956 		goto redirty;
957 
958 	/* Is this page beyond the end of the file? */
959 	offset = i_size_read(inode);
960 	end_index = offset >> PAGE_CACHE_SHIFT;
961 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
962 	if (page->index >= end_index) {
963 		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
964 
965 		/*
966 		 * Just skip the page if it is fully outside i_size, e.g. due
967 		 * to a truncate operation that is in progress.
968 		 */
969 		if (page->index >= end_index + 1 || offset_into_page == 0) {
970 			unlock_page(page);
971 			return 0;
972 		}
973 
974 		/*
975 		 * The page straddles i_size.  It must be zeroed out on each
976 		 * and every writepage invocation because it may be mmapped.
977 		 * "A file is mapped in multiples of the page size.  For a file
978 		 * that is not a multiple of the  page size, the remaining
979 		 * memory is zeroed when mapped, and writes to that region are
980 		 * not written out to the file."
981 		 */
982 		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
983 	}
984 
985 	end_offset = min_t(unsigned long long,
986 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
987 			offset);
988 	len = 1 << inode->i_blkbits;
989 
990 	bh = head = page_buffers(page);
991 	offset = page_offset(page);
992 	type = XFS_IO_OVERWRITE;
993 
994 	if (wbc->sync_mode == WB_SYNC_NONE)
995 		nonblocking = 1;
996 
997 	do {
998 		int new_ioend = 0;
999 
1000 		if (offset >= end_offset)
1001 			break;
1002 		if (!buffer_uptodate(bh))
1003 			uptodate = 0;
1004 
1005 		/*
1006 		 * set_page_dirty dirties all buffers in a page, independent
1007 		 * of their state.  The dirty state however is entirely
1008 		 * meaningless for holes (!mapped && uptodate), so skip
1009 		 * buffers covering holes here.
1010 		 */
1011 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1012 			imap_valid = 0;
1013 			continue;
1014 		}
1015 
1016 		if (buffer_unwritten(bh)) {
1017 			if (type != XFS_IO_UNWRITTEN) {
1018 				type = XFS_IO_UNWRITTEN;
1019 				imap_valid = 0;
1020 			}
1021 		} else if (buffer_delay(bh)) {
1022 			if (type != XFS_IO_DELALLOC) {
1023 				type = XFS_IO_DELALLOC;
1024 				imap_valid = 0;
1025 			}
1026 		} else if (buffer_uptodate(bh)) {
1027 			if (type != XFS_IO_OVERWRITE) {
1028 				type = XFS_IO_OVERWRITE;
1029 				imap_valid = 0;
1030 			}
1031 		} else {
1032 			if (PageUptodate(page))
1033 				ASSERT(buffer_mapped(bh));
1034 			/*
1035 			 * This buffer is not uptodate and will not be
1036 			 * written to disk.  Ensure that we will put any
1037 			 * subsequent writeable buffers into a new
1038 			 * ioend.
1039 			 */
1040 			imap_valid = 0;
1041 			continue;
1042 		}
1043 
1044 		if (imap_valid)
1045 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1046 		if (!imap_valid) {
1047 			/*
1048 			 * If we didn't have a valid mapping then we need to
1049 			 * put the new mapping into a separate ioend structure.
1050 			 * This ensures non-contiguous extents always have
1051 			 * separate ioends, which is particularly important
1052 			 * for unwritten extent conversion at I/O completion
1053 			 * time.
1054 			 */
1055 			new_ioend = 1;
1056 			err = xfs_map_blocks(inode, offset, &imap, type,
1057 					     nonblocking);
1058 			if (err)
1059 				goto error;
1060 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1061 		}
1062 		if (imap_valid) {
1063 			lock_buffer(bh);
1064 			if (type != XFS_IO_OVERWRITE)
1065 				xfs_map_at_offset(inode, bh, &imap, offset);
1066 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1067 					 new_ioend);
1068 			count++;
1069 		}
1070 
1071 		if (!iohead)
1072 			iohead = ioend;
1073 
1074 	} while (offset += len, ((bh = bh->b_this_page) != head));
1075 
1076 	if (uptodate && bh == head)
1077 		SetPageUptodate(page);
1078 
1079 	xfs_start_page_writeback(page, 1, count);
1080 
1081 	/* if there is no IO to be submitted for this page, we are done */
1082 	if (!ioend)
1083 		return 0;
1084 
1085 	ASSERT(iohead);
1086 
1087 	/*
1088 	 * Any errors from this point onwards need tobe reported through the IO
1089 	 * completion path as we have marked the initial page as under writeback
1090 	 * and unlocked it.
1091 	 */
1092 	if (imap_valid) {
1093 		xfs_off_t		end_index;
1094 
1095 		end_index = imap.br_startoff + imap.br_blockcount;
1096 
1097 		/* to bytes */
1098 		end_index <<= inode->i_blkbits;
1099 
1100 		/* to pages */
1101 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1102 
1103 		/* check against file size */
1104 		if (end_index > last_index)
1105 			end_index = last_index;
1106 
1107 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1108 				  wbc, end_index);
1109 	}
1110 
1111 
1112 	/*
1113 	 * Reserve log space if we might write beyond the on-disk inode size.
1114 	 */
1115 	err = 0;
1116 	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1117 		err = xfs_setfilesize_trans_alloc(ioend);
1118 
1119 	xfs_submit_ioend(wbc, iohead, err);
1120 
1121 	return 0;
1122 
1123 error:
1124 	if (iohead)
1125 		xfs_cancel_ioend(iohead);
1126 
1127 	if (err == -EAGAIN)
1128 		goto redirty;
1129 
1130 	xfs_aops_discard_page(page);
1131 	ClearPageUptodate(page);
1132 	unlock_page(page);
1133 	return err;
1134 
1135 redirty:
1136 	redirty_page_for_writepage(wbc, page);
1137 	unlock_page(page);
1138 	return 0;
1139 }
1140 
1141 STATIC int
1142 xfs_vm_writepages(
1143 	struct address_space	*mapping,
1144 	struct writeback_control *wbc)
1145 {
1146 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1147 	return generic_writepages(mapping, wbc);
1148 }
1149 
1150 /*
1151  * Called to move a page into cleanable state - and from there
1152  * to be released. The page should already be clean. We always
1153  * have buffer heads in this call.
1154  *
1155  * Returns 1 if the page is ok to release, 0 otherwise.
1156  */
1157 STATIC int
1158 xfs_vm_releasepage(
1159 	struct page		*page,
1160 	gfp_t			gfp_mask)
1161 {
1162 	int			delalloc, unwritten;
1163 
1164 	trace_xfs_releasepage(page->mapping->host, page, 0);
1165 
1166 	xfs_count_page_state(page, &delalloc, &unwritten);
1167 
1168 	if (WARN_ON(delalloc))
1169 		return 0;
1170 	if (WARN_ON(unwritten))
1171 		return 0;
1172 
1173 	return try_to_free_buffers(page);
1174 }
1175 
1176 STATIC int
1177 __xfs_get_blocks(
1178 	struct inode		*inode,
1179 	sector_t		iblock,
1180 	struct buffer_head	*bh_result,
1181 	int			create,
1182 	int			direct)
1183 {
1184 	struct xfs_inode	*ip = XFS_I(inode);
1185 	struct xfs_mount	*mp = ip->i_mount;
1186 	xfs_fileoff_t		offset_fsb, end_fsb;
1187 	int			error = 0;
1188 	int			lockmode = 0;
1189 	struct xfs_bmbt_irec	imap;
1190 	int			nimaps = 1;
1191 	xfs_off_t		offset;
1192 	ssize_t			size;
1193 	int			new = 0;
1194 
1195 	if (XFS_FORCED_SHUTDOWN(mp))
1196 		return -XFS_ERROR(EIO);
1197 
1198 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1199 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1200 	size = bh_result->b_size;
1201 
1202 	if (!create && direct && offset >= i_size_read(inode))
1203 		return 0;
1204 
1205 	/*
1206 	 * Direct I/O is usually done on preallocated files, so try getting
1207 	 * a block mapping without an exclusive lock first.  For buffered
1208 	 * writes we already have the exclusive iolock anyway, so avoiding
1209 	 * a lock roundtrip here by taking the ilock exclusive from the
1210 	 * beginning is a useful micro optimization.
1211 	 */
1212 	if (create && !direct) {
1213 		lockmode = XFS_ILOCK_EXCL;
1214 		xfs_ilock(ip, lockmode);
1215 	} else {
1216 		lockmode = xfs_ilock_map_shared(ip);
1217 	}
1218 
1219 	ASSERT(offset <= mp->m_super->s_maxbytes);
1220 	if (offset + size > mp->m_super->s_maxbytes)
1221 		size = mp->m_super->s_maxbytes - offset;
1222 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1223 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1224 
1225 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1226 				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1227 	if (error)
1228 		goto out_unlock;
1229 
1230 	if (create &&
1231 	    (!nimaps ||
1232 	     (imap.br_startblock == HOLESTARTBLOCK ||
1233 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1234 		if (direct || xfs_get_extsz_hint(ip)) {
1235 			/*
1236 			 * Drop the ilock in preparation for starting the block
1237 			 * allocation transaction.  It will be retaken
1238 			 * exclusively inside xfs_iomap_write_direct for the
1239 			 * actual allocation.
1240 			 */
1241 			xfs_iunlock(ip, lockmode);
1242 			error = xfs_iomap_write_direct(ip, offset, size,
1243 						       &imap, nimaps);
1244 			if (error)
1245 				return -error;
1246 			new = 1;
1247 		} else {
1248 			/*
1249 			 * Delalloc reservations do not require a transaction,
1250 			 * we can go on without dropping the lock here. If we
1251 			 * are allocating a new delalloc block, make sure that
1252 			 * we set the new flag so that we mark the buffer new so
1253 			 * that we know that it is newly allocated if the write
1254 			 * fails.
1255 			 */
1256 			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1257 				new = 1;
1258 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1259 			if (error)
1260 				goto out_unlock;
1261 
1262 			xfs_iunlock(ip, lockmode);
1263 		}
1264 
1265 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1266 	} else if (nimaps) {
1267 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1268 		xfs_iunlock(ip, lockmode);
1269 	} else {
1270 		trace_xfs_get_blocks_notfound(ip, offset, size);
1271 		goto out_unlock;
1272 	}
1273 
1274 	if (imap.br_startblock != HOLESTARTBLOCK &&
1275 	    imap.br_startblock != DELAYSTARTBLOCK) {
1276 		/*
1277 		 * For unwritten extents do not report a disk address on
1278 		 * the read case (treat as if we're reading into a hole).
1279 		 */
1280 		if (create || !ISUNWRITTEN(&imap))
1281 			xfs_map_buffer(inode, bh_result, &imap, offset);
1282 		if (create && ISUNWRITTEN(&imap)) {
1283 			if (direct)
1284 				bh_result->b_private = inode;
1285 			set_buffer_unwritten(bh_result);
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * If this is a realtime file, data may be on a different device.
1291 	 * to that pointed to from the buffer_head b_bdev currently.
1292 	 */
1293 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1294 
1295 	/*
1296 	 * If we previously allocated a block out beyond eof and we are now
1297 	 * coming back to use it then we will need to flag it as new even if it
1298 	 * has a disk address.
1299 	 *
1300 	 * With sub-block writes into unwritten extents we also need to mark
1301 	 * the buffer as new so that the unwritten parts of the buffer gets
1302 	 * correctly zeroed.
1303 	 */
1304 	if (create &&
1305 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1306 	     (offset >= i_size_read(inode)) ||
1307 	     (new || ISUNWRITTEN(&imap))))
1308 		set_buffer_new(bh_result);
1309 
1310 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1311 		BUG_ON(direct);
1312 		if (create) {
1313 			set_buffer_uptodate(bh_result);
1314 			set_buffer_mapped(bh_result);
1315 			set_buffer_delay(bh_result);
1316 		}
1317 	}
1318 
1319 	/*
1320 	 * If this is O_DIRECT or the mpage code calling tell them how large
1321 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1322 	 */
1323 	if (direct || size > (1 << inode->i_blkbits)) {
1324 		xfs_off_t		mapping_size;
1325 
1326 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1327 		mapping_size <<= inode->i_blkbits;
1328 
1329 		ASSERT(mapping_size > 0);
1330 		if (mapping_size > size)
1331 			mapping_size = size;
1332 		if (mapping_size > LONG_MAX)
1333 			mapping_size = LONG_MAX;
1334 
1335 		bh_result->b_size = mapping_size;
1336 	}
1337 
1338 	return 0;
1339 
1340 out_unlock:
1341 	xfs_iunlock(ip, lockmode);
1342 	return -error;
1343 }
1344 
1345 int
1346 xfs_get_blocks(
1347 	struct inode		*inode,
1348 	sector_t		iblock,
1349 	struct buffer_head	*bh_result,
1350 	int			create)
1351 {
1352 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1353 }
1354 
1355 STATIC int
1356 xfs_get_blocks_direct(
1357 	struct inode		*inode,
1358 	sector_t		iblock,
1359 	struct buffer_head	*bh_result,
1360 	int			create)
1361 {
1362 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1363 }
1364 
1365 /*
1366  * Complete a direct I/O write request.
1367  *
1368  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1369  * need to issue a transaction to convert the range from unwritten to written
1370  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1371  * to do this and we are done.  But in case this was a successful AIO
1372  * request this handler is called from interrupt context, from which we
1373  * can't start transactions.  In that case offload the I/O completion to
1374  * the workqueues we also use for buffered I/O completion.
1375  */
1376 STATIC void
1377 xfs_end_io_direct_write(
1378 	struct kiocb		*iocb,
1379 	loff_t			offset,
1380 	ssize_t			size,
1381 	void			*private,
1382 	int			ret,
1383 	bool			is_async)
1384 {
1385 	struct xfs_ioend	*ioend = iocb->private;
1386 
1387 	/*
1388 	 * While the generic direct I/O code updates the inode size, it does
1389 	 * so only after the end_io handler is called, which means our
1390 	 * end_io handler thinks the on-disk size is outside the in-core
1391 	 * size.  To prevent this just update it a little bit earlier here.
1392 	 */
1393 	if (offset + size > i_size_read(ioend->io_inode))
1394 		i_size_write(ioend->io_inode, offset + size);
1395 
1396 	/*
1397 	 * blockdev_direct_IO can return an error even after the I/O
1398 	 * completion handler was called.  Thus we need to protect
1399 	 * against double-freeing.
1400 	 */
1401 	iocb->private = NULL;
1402 
1403 	ioend->io_offset = offset;
1404 	ioend->io_size = size;
1405 	ioend->io_iocb = iocb;
1406 	ioend->io_result = ret;
1407 	if (private && size > 0)
1408 		ioend->io_type = XFS_IO_UNWRITTEN;
1409 
1410 	if (is_async) {
1411 		ioend->io_isasync = 1;
1412 		xfs_finish_ioend(ioend);
1413 	} else {
1414 		xfs_finish_ioend_sync(ioend);
1415 	}
1416 }
1417 
1418 STATIC ssize_t
1419 xfs_vm_direct_IO(
1420 	int			rw,
1421 	struct kiocb		*iocb,
1422 	const struct iovec	*iov,
1423 	loff_t			offset,
1424 	unsigned long		nr_segs)
1425 {
1426 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1427 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1428 	struct xfs_ioend	*ioend = NULL;
1429 	ssize_t			ret;
1430 
1431 	if (rw & WRITE) {
1432 		size_t size = iov_length(iov, nr_segs);
1433 
1434 		/*
1435 		 * We need to preallocate a transaction for a size update
1436 		 * here.  In the case that this write both updates the size
1437 		 * and converts at least on unwritten extent we will cancel
1438 		 * the still clean transaction after the I/O has finished.
1439 		 */
1440 		iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT);
1441 		if (offset + size > XFS_I(inode)->i_d.di_size) {
1442 			ret = xfs_setfilesize_trans_alloc(ioend);
1443 			if (ret)
1444 				goto out_destroy_ioend;
1445 			ioend->io_isdirect = 1;
1446 		}
1447 
1448 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1449 					    offset, nr_segs,
1450 					    xfs_get_blocks_direct,
1451 					    xfs_end_io_direct_write, NULL, 0);
1452 		if (ret != -EIOCBQUEUED && iocb->private)
1453 			goto out_trans_cancel;
1454 	} else {
1455 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1456 					    offset, nr_segs,
1457 					    xfs_get_blocks_direct,
1458 					    NULL, NULL, 0);
1459 	}
1460 
1461 	return ret;
1462 
1463 out_trans_cancel:
1464 	if (ioend->io_append_trans) {
1465 		current_set_flags_nested(&ioend->io_append_trans->t_pflags,
1466 					 PF_FSTRANS);
1467 		rwsem_acquire_read(
1468 			&inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
1469 			0, 1, _THIS_IP_);
1470 		xfs_trans_cancel(ioend->io_append_trans, 0);
1471 	}
1472 out_destroy_ioend:
1473 	xfs_destroy_ioend(ioend);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * Punch out the delalloc blocks we have already allocated.
1479  *
1480  * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1481  * as the page is still locked at this point.
1482  */
1483 STATIC void
1484 xfs_vm_kill_delalloc_range(
1485 	struct inode		*inode,
1486 	loff_t			start,
1487 	loff_t			end)
1488 {
1489 	struct xfs_inode	*ip = XFS_I(inode);
1490 	xfs_fileoff_t		start_fsb;
1491 	xfs_fileoff_t		end_fsb;
1492 	int			error;
1493 
1494 	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1495 	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1496 	if (end_fsb <= start_fsb)
1497 		return;
1498 
1499 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1500 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1501 						end_fsb - start_fsb);
1502 	if (error) {
1503 		/* something screwed, just bail */
1504 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1505 			xfs_alert(ip->i_mount,
1506 		"xfs_vm_write_failed: unable to clean up ino %lld",
1507 					ip->i_ino);
1508 		}
1509 	}
1510 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1511 }
1512 
1513 STATIC void
1514 xfs_vm_write_failed(
1515 	struct inode		*inode,
1516 	struct page		*page,
1517 	loff_t			pos,
1518 	unsigned		len)
1519 {
1520 	loff_t			block_offset = pos & PAGE_MASK;
1521 	loff_t			block_start;
1522 	loff_t			block_end;
1523 	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1524 	loff_t			to = from + len;
1525 	struct buffer_head	*bh, *head;
1526 
1527 	ASSERT(block_offset + from == pos);
1528 
1529 	head = page_buffers(page);
1530 	block_start = 0;
1531 	for (bh = head; bh != head || !block_start;
1532 	     bh = bh->b_this_page, block_start = block_end,
1533 				   block_offset += bh->b_size) {
1534 		block_end = block_start + bh->b_size;
1535 
1536 		/* skip buffers before the write */
1537 		if (block_end <= from)
1538 			continue;
1539 
1540 		/* if the buffer is after the write, we're done */
1541 		if (block_start >= to)
1542 			break;
1543 
1544 		if (!buffer_delay(bh))
1545 			continue;
1546 
1547 		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1548 			continue;
1549 
1550 		xfs_vm_kill_delalloc_range(inode, block_offset,
1551 					   block_offset + bh->b_size);
1552 	}
1553 
1554 }
1555 
1556 /*
1557  * This used to call block_write_begin(), but it unlocks and releases the page
1558  * on error, and we need that page to be able to punch stale delalloc blocks out
1559  * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1560  * the appropriate point.
1561  */
1562 STATIC int
1563 xfs_vm_write_begin(
1564 	struct file		*file,
1565 	struct address_space	*mapping,
1566 	loff_t			pos,
1567 	unsigned		len,
1568 	unsigned		flags,
1569 	struct page		**pagep,
1570 	void			**fsdata)
1571 {
1572 	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1573 	struct page		*page;
1574 	int			status;
1575 
1576 	ASSERT(len <= PAGE_CACHE_SIZE);
1577 
1578 	page = grab_cache_page_write_begin(mapping, index,
1579 					   flags | AOP_FLAG_NOFS);
1580 	if (!page)
1581 		return -ENOMEM;
1582 
1583 	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1584 	if (unlikely(status)) {
1585 		struct inode	*inode = mapping->host;
1586 
1587 		xfs_vm_write_failed(inode, page, pos, len);
1588 		unlock_page(page);
1589 
1590 		if (pos + len > i_size_read(inode))
1591 			truncate_pagecache(inode, pos + len, i_size_read(inode));
1592 
1593 		page_cache_release(page);
1594 		page = NULL;
1595 	}
1596 
1597 	*pagep = page;
1598 	return status;
1599 }
1600 
1601 /*
1602  * On failure, we only need to kill delalloc blocks beyond EOF because they
1603  * will never be written. For blocks within EOF, generic_write_end() zeros them
1604  * so they are safe to leave alone and be written with all the other valid data.
1605  */
1606 STATIC int
1607 xfs_vm_write_end(
1608 	struct file		*file,
1609 	struct address_space	*mapping,
1610 	loff_t			pos,
1611 	unsigned		len,
1612 	unsigned		copied,
1613 	struct page		*page,
1614 	void			*fsdata)
1615 {
1616 	int			ret;
1617 
1618 	ASSERT(len <= PAGE_CACHE_SIZE);
1619 
1620 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1621 	if (unlikely(ret < len)) {
1622 		struct inode	*inode = mapping->host;
1623 		size_t		isize = i_size_read(inode);
1624 		loff_t		to = pos + len;
1625 
1626 		if (to > isize) {
1627 			truncate_pagecache(inode, to, isize);
1628 			xfs_vm_kill_delalloc_range(inode, isize, to);
1629 		}
1630 	}
1631 	return ret;
1632 }
1633 
1634 STATIC sector_t
1635 xfs_vm_bmap(
1636 	struct address_space	*mapping,
1637 	sector_t		block)
1638 {
1639 	struct inode		*inode = (struct inode *)mapping->host;
1640 	struct xfs_inode	*ip = XFS_I(inode);
1641 
1642 	trace_xfs_vm_bmap(XFS_I(inode));
1643 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1644 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1645 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1646 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1647 }
1648 
1649 STATIC int
1650 xfs_vm_readpage(
1651 	struct file		*unused,
1652 	struct page		*page)
1653 {
1654 	return mpage_readpage(page, xfs_get_blocks);
1655 }
1656 
1657 STATIC int
1658 xfs_vm_readpages(
1659 	struct file		*unused,
1660 	struct address_space	*mapping,
1661 	struct list_head	*pages,
1662 	unsigned		nr_pages)
1663 {
1664 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1665 }
1666 
1667 const struct address_space_operations xfs_address_space_operations = {
1668 	.readpage		= xfs_vm_readpage,
1669 	.readpages		= xfs_vm_readpages,
1670 	.writepage		= xfs_vm_writepage,
1671 	.writepages		= xfs_vm_writepages,
1672 	.releasepage		= xfs_vm_releasepage,
1673 	.invalidatepage		= xfs_vm_invalidatepage,
1674 	.write_begin		= xfs_vm_write_begin,
1675 	.write_end		= xfs_vm_write_end,
1676 	.bmap			= xfs_vm_bmap,
1677 	.direct_IO		= xfs_vm_direct_IO,
1678 	.migratepage		= buffer_migrate_page,
1679 	.is_partially_uptodate  = block_is_partially_uptodate,
1680 	.error_remove_page	= generic_error_remove_page,
1681 };
1682