xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 /* Free all the resources and finish the transactions. */
149 STATIC int
150 xchk_teardown(
151 	struct xfs_scrub	*sc,
152 	int			error)
153 {
154 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
155 
156 	xchk_ag_free(sc, &sc->sa);
157 	if (sc->tp) {
158 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
159 			error = xfs_trans_commit(sc->tp);
160 		else
161 			xfs_trans_cancel(sc->tp);
162 		sc->tp = NULL;
163 	}
164 	if (sc->ip) {
165 		if (sc->ilock_flags)
166 			xfs_iunlock(sc->ip, sc->ilock_flags);
167 		if (sc->ip != ip_in &&
168 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
169 			xfs_irele(sc->ip);
170 		sc->ip = NULL;
171 	}
172 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
173 		mnt_drop_write_file(sc->file);
174 	if (sc->flags & XCHK_REAPING_DISABLED)
175 		xchk_start_reaping(sc);
176 	if (sc->buf) {
177 		kmem_free(sc->buf);
178 		sc->buf = NULL;
179 	}
180 	return error;
181 }
182 
183 /* Scrubbing dispatch. */
184 
185 static const struct xchk_meta_ops meta_scrub_ops[] = {
186 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
187 		.type	= ST_NONE,
188 		.setup	= xchk_setup_fs,
189 		.scrub	= xchk_probe,
190 		.repair = xrep_probe,
191 	},
192 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
193 		.type	= ST_PERAG,
194 		.setup	= xchk_setup_fs,
195 		.scrub	= xchk_superblock,
196 		.repair	= xrep_superblock,
197 	},
198 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
199 		.type	= ST_PERAG,
200 		.setup	= xchk_setup_fs,
201 		.scrub	= xchk_agf,
202 		.repair	= xrep_agf,
203 	},
204 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
205 		.type	= ST_PERAG,
206 		.setup	= xchk_setup_fs,
207 		.scrub	= xchk_agfl,
208 		.repair	= xrep_agfl,
209 	},
210 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
211 		.type	= ST_PERAG,
212 		.setup	= xchk_setup_fs,
213 		.scrub	= xchk_agi,
214 		.repair	= xrep_agi,
215 	},
216 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
217 		.type	= ST_PERAG,
218 		.setup	= xchk_setup_ag_allocbt,
219 		.scrub	= xchk_bnobt,
220 		.repair	= xrep_notsupported,
221 	},
222 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
223 		.type	= ST_PERAG,
224 		.setup	= xchk_setup_ag_allocbt,
225 		.scrub	= xchk_cntbt,
226 		.repair	= xrep_notsupported,
227 	},
228 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
229 		.type	= ST_PERAG,
230 		.setup	= xchk_setup_ag_iallocbt,
231 		.scrub	= xchk_inobt,
232 		.repair	= xrep_notsupported,
233 	},
234 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
235 		.type	= ST_PERAG,
236 		.setup	= xchk_setup_ag_iallocbt,
237 		.scrub	= xchk_finobt,
238 		.has	= xfs_has_finobt,
239 		.repair	= xrep_notsupported,
240 	},
241 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
242 		.type	= ST_PERAG,
243 		.setup	= xchk_setup_ag_rmapbt,
244 		.scrub	= xchk_rmapbt,
245 		.has	= xfs_has_rmapbt,
246 		.repair	= xrep_notsupported,
247 	},
248 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
249 		.type	= ST_PERAG,
250 		.setup	= xchk_setup_ag_refcountbt,
251 		.scrub	= xchk_refcountbt,
252 		.has	= xfs_has_reflink,
253 		.repair	= xrep_notsupported,
254 	},
255 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
256 		.type	= ST_INODE,
257 		.setup	= xchk_setup_inode,
258 		.scrub	= xchk_inode,
259 		.repair	= xrep_notsupported,
260 	},
261 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
262 		.type	= ST_INODE,
263 		.setup	= xchk_setup_inode_bmap,
264 		.scrub	= xchk_bmap_data,
265 		.repair	= xrep_notsupported,
266 	},
267 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
268 		.type	= ST_INODE,
269 		.setup	= xchk_setup_inode_bmap,
270 		.scrub	= xchk_bmap_attr,
271 		.repair	= xrep_notsupported,
272 	},
273 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
274 		.type	= ST_INODE,
275 		.setup	= xchk_setup_inode_bmap,
276 		.scrub	= xchk_bmap_cow,
277 		.repair	= xrep_notsupported,
278 	},
279 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
280 		.type	= ST_INODE,
281 		.setup	= xchk_setup_directory,
282 		.scrub	= xchk_directory,
283 		.repair	= xrep_notsupported,
284 	},
285 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
286 		.type	= ST_INODE,
287 		.setup	= xchk_setup_xattr,
288 		.scrub	= xchk_xattr,
289 		.repair	= xrep_notsupported,
290 	},
291 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
292 		.type	= ST_INODE,
293 		.setup	= xchk_setup_symlink,
294 		.scrub	= xchk_symlink,
295 		.repair	= xrep_notsupported,
296 	},
297 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
298 		.type	= ST_INODE,
299 		.setup	= xchk_setup_parent,
300 		.scrub	= xchk_parent,
301 		.repair	= xrep_notsupported,
302 	},
303 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
304 		.type	= ST_FS,
305 		.setup	= xchk_setup_rt,
306 		.scrub	= xchk_rtbitmap,
307 		.has	= xfs_has_realtime,
308 		.repair	= xrep_notsupported,
309 	},
310 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
311 		.type	= ST_FS,
312 		.setup	= xchk_setup_rt,
313 		.scrub	= xchk_rtsummary,
314 		.has	= xfs_has_realtime,
315 		.repair	= xrep_notsupported,
316 	},
317 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
318 		.type	= ST_FS,
319 		.setup	= xchk_setup_quota,
320 		.scrub	= xchk_quota,
321 		.repair	= xrep_notsupported,
322 	},
323 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
324 		.type	= ST_FS,
325 		.setup	= xchk_setup_quota,
326 		.scrub	= xchk_quota,
327 		.repair	= xrep_notsupported,
328 	},
329 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
330 		.type	= ST_FS,
331 		.setup	= xchk_setup_quota,
332 		.scrub	= xchk_quota,
333 		.repair	= xrep_notsupported,
334 	},
335 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
336 		.type	= ST_FS,
337 		.setup	= xchk_setup_fscounters,
338 		.scrub	= xchk_fscounters,
339 		.repair	= xrep_notsupported,
340 	},
341 };
342 
343 /* This isn't a stable feature, warn once per day. */
344 static inline void
345 xchk_experimental_warning(
346 	struct xfs_mount	*mp)
347 {
348 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
349 			"xchk_warning", 86400 * HZ, 1);
350 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
351 
352 	if (__ratelimit(&scrub_warning))
353 		xfs_alert(mp,
354 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
355 }
356 
357 static int
358 xchk_validate_inputs(
359 	struct xfs_mount		*mp,
360 	struct xfs_scrub_metadata	*sm)
361 {
362 	int				error;
363 	const struct xchk_meta_ops	*ops;
364 
365 	error = -EINVAL;
366 	/* Check our inputs. */
367 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
368 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
369 		goto out;
370 	/* sm_reserved[] must be zero */
371 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
372 		goto out;
373 
374 	error = -ENOENT;
375 	/* Do we know about this type of metadata? */
376 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
377 		goto out;
378 	ops = &meta_scrub_ops[sm->sm_type];
379 	if (ops->setup == NULL || ops->scrub == NULL)
380 		goto out;
381 	/* Does this fs even support this type of metadata? */
382 	if (ops->has && !ops->has(mp))
383 		goto out;
384 
385 	error = -EINVAL;
386 	/* restricting fields must be appropriate for type */
387 	switch (ops->type) {
388 	case ST_NONE:
389 	case ST_FS:
390 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
391 			goto out;
392 		break;
393 	case ST_PERAG:
394 		if (sm->sm_ino || sm->sm_gen ||
395 		    sm->sm_agno >= mp->m_sb.sb_agcount)
396 			goto out;
397 		break;
398 	case ST_INODE:
399 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
400 			goto out;
401 		break;
402 	default:
403 		goto out;
404 	}
405 
406 	/*
407 	 * We only want to repair read-write v5+ filesystems.  Defer the check
408 	 * for ops->repair until after our scrub confirms that we need to
409 	 * perform repairs so that we avoid failing due to not supporting
410 	 * repairing an object that doesn't need repairs.
411 	 */
412 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
413 		error = -EOPNOTSUPP;
414 		if (!xfs_has_crc(mp))
415 			goto out;
416 
417 		error = -EROFS;
418 		if (xfs_is_readonly(mp))
419 			goto out;
420 	}
421 
422 	error = 0;
423 out:
424 	return error;
425 }
426 
427 #ifdef CONFIG_XFS_ONLINE_REPAIR
428 static inline void xchk_postmortem(struct xfs_scrub *sc)
429 {
430 	/*
431 	 * Userspace asked us to repair something, we repaired it, rescanned
432 	 * it, and the rescan says it's still broken.  Scream about this in
433 	 * the system logs.
434 	 */
435 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
436 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
437 				 XFS_SCRUB_OFLAG_XCORRUPT)))
438 		xrep_failure(sc->mp);
439 }
440 #else
441 static inline void xchk_postmortem(struct xfs_scrub *sc)
442 {
443 	/*
444 	 * Userspace asked us to scrub something, it's broken, and we have no
445 	 * way of fixing it.  Scream in the logs.
446 	 */
447 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
448 				XFS_SCRUB_OFLAG_XCORRUPT))
449 		xfs_alert_ratelimited(sc->mp,
450 				"Corruption detected during scrub.");
451 }
452 #endif /* CONFIG_XFS_ONLINE_REPAIR */
453 
454 /* Dispatch metadata scrubbing. */
455 int
456 xfs_scrub_metadata(
457 	struct file			*file,
458 	struct xfs_scrub_metadata	*sm)
459 {
460 	struct xfs_scrub		*sc;
461 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
462 	int				error = 0;
463 
464 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
465 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
466 
467 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
468 
469 	/* Forbidden if we are shut down or mounted norecovery. */
470 	error = -ESHUTDOWN;
471 	if (xfs_is_shutdown(mp))
472 		goto out;
473 	error = -ENOTRECOVERABLE;
474 	if (xfs_has_norecovery(mp))
475 		goto out;
476 
477 	error = xchk_validate_inputs(mp, sm);
478 	if (error)
479 		goto out;
480 
481 	xchk_experimental_warning(mp);
482 
483 	sc = kmem_zalloc(sizeof(struct xfs_scrub), KM_NOFS | KM_MAYFAIL);
484 	if (!sc) {
485 		error = -ENOMEM;
486 		goto out;
487 	}
488 
489 	sc->mp = mp;
490 	sc->file = file;
491 	sc->sm = sm;
492 	sc->ops = &meta_scrub_ops[sm->sm_type];
493 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
494 retry_op:
495 	/*
496 	 * When repairs are allowed, prevent freezing or readonly remount while
497 	 * scrub is running with a real transaction.
498 	 */
499 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
500 		error = mnt_want_write_file(sc->file);
501 		if (error)
502 			goto out_sc;
503 	}
504 
505 	/* Set up for the operation. */
506 	error = sc->ops->setup(sc);
507 	if (error)
508 		goto out_teardown;
509 
510 	/* Scrub for errors. */
511 	error = sc->ops->scrub(sc);
512 	if (!(sc->flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
513 		/*
514 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
515 		 * Tear down everything we hold, then set up again with
516 		 * preparation for worst-case scenarios.
517 		 */
518 		error = xchk_teardown(sc, 0);
519 		if (error)
520 			goto out_sc;
521 		sc->flags |= XCHK_TRY_HARDER;
522 		goto retry_op;
523 	} else if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
524 		goto out_teardown;
525 
526 	xchk_update_health(sc);
527 
528 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
529 	    !(sc->flags & XREP_ALREADY_FIXED)) {
530 		bool needs_fix;
531 
532 		/* Let debug users force us into the repair routines. */
533 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
534 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
535 
536 		needs_fix = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
537 						 XFS_SCRUB_OFLAG_XCORRUPT |
538 						 XFS_SCRUB_OFLAG_PREEN));
539 		/*
540 		 * If userspace asked for a repair but it wasn't necessary,
541 		 * report that back to userspace.
542 		 */
543 		if (!needs_fix) {
544 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
545 			goto out_nofix;
546 		}
547 
548 		/*
549 		 * If it's broken, userspace wants us to fix it, and we haven't
550 		 * already tried to fix it, then attempt a repair.
551 		 */
552 		error = xrep_attempt(sc);
553 		if (error == -EAGAIN) {
554 			/*
555 			 * Either the repair function succeeded or it couldn't
556 			 * get all the resources it needs; either way, we go
557 			 * back to the beginning and call the scrub function.
558 			 */
559 			error = xchk_teardown(sc, 0);
560 			if (error) {
561 				xrep_failure(mp);
562 				goto out_sc;
563 			}
564 			goto retry_op;
565 		}
566 	}
567 
568 out_nofix:
569 	xchk_postmortem(sc);
570 out_teardown:
571 	error = xchk_teardown(sc, error);
572 out_sc:
573 	kmem_free(sc);
574 out:
575 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
576 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
577 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
578 		error = 0;
579 	}
580 	return error;
581 }
582