xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision fa0dadde)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 static inline void
149 xchk_fsgates_disable(
150 	struct xfs_scrub	*sc)
151 {
152 	if (!(sc->flags & XCHK_FSGATES_ALL))
153 		return;
154 
155 	trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);
156 
157 	if (sc->flags & XCHK_FSGATES_DRAIN)
158 		xfs_drain_wait_disable();
159 
160 	sc->flags &= ~XCHK_FSGATES_ALL;
161 }
162 
163 /* Free all the resources and finish the transactions. */
164 STATIC int
165 xchk_teardown(
166 	struct xfs_scrub	*sc,
167 	int			error)
168 {
169 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
170 
171 	xchk_ag_free(sc, &sc->sa);
172 	if (sc->tp) {
173 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
174 			error = xfs_trans_commit(sc->tp);
175 		else
176 			xfs_trans_cancel(sc->tp);
177 		sc->tp = NULL;
178 	}
179 	if (sc->ip) {
180 		if (sc->ilock_flags)
181 			xfs_iunlock(sc->ip, sc->ilock_flags);
182 		if (sc->ip != ip_in &&
183 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
184 			xchk_irele(sc, sc->ip);
185 		sc->ip = NULL;
186 	}
187 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
188 		mnt_drop_write_file(sc->file);
189 	if (sc->flags & XCHK_REAPING_DISABLED)
190 		xchk_start_reaping(sc);
191 	if (sc->buf) {
192 		if (sc->buf_cleanup)
193 			sc->buf_cleanup(sc->buf);
194 		kvfree(sc->buf);
195 		sc->buf_cleanup = NULL;
196 		sc->buf = NULL;
197 	}
198 
199 	xchk_fsgates_disable(sc);
200 	return error;
201 }
202 
203 /* Scrubbing dispatch. */
204 
205 static const struct xchk_meta_ops meta_scrub_ops[] = {
206 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
207 		.type	= ST_NONE,
208 		.setup	= xchk_setup_fs,
209 		.scrub	= xchk_probe,
210 		.repair = xrep_probe,
211 	},
212 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
213 		.type	= ST_PERAG,
214 		.setup	= xchk_setup_agheader,
215 		.scrub	= xchk_superblock,
216 		.repair	= xrep_superblock,
217 	},
218 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
219 		.type	= ST_PERAG,
220 		.setup	= xchk_setup_agheader,
221 		.scrub	= xchk_agf,
222 		.repair	= xrep_agf,
223 	},
224 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
225 		.type	= ST_PERAG,
226 		.setup	= xchk_setup_agheader,
227 		.scrub	= xchk_agfl,
228 		.repair	= xrep_agfl,
229 	},
230 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
231 		.type	= ST_PERAG,
232 		.setup	= xchk_setup_agheader,
233 		.scrub	= xchk_agi,
234 		.repair	= xrep_agi,
235 	},
236 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
237 		.type	= ST_PERAG,
238 		.setup	= xchk_setup_ag_allocbt,
239 		.scrub	= xchk_bnobt,
240 		.repair	= xrep_notsupported,
241 	},
242 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
243 		.type	= ST_PERAG,
244 		.setup	= xchk_setup_ag_allocbt,
245 		.scrub	= xchk_cntbt,
246 		.repair	= xrep_notsupported,
247 	},
248 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
249 		.type	= ST_PERAG,
250 		.setup	= xchk_setup_ag_iallocbt,
251 		.scrub	= xchk_inobt,
252 		.repair	= xrep_notsupported,
253 	},
254 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
255 		.type	= ST_PERAG,
256 		.setup	= xchk_setup_ag_iallocbt,
257 		.scrub	= xchk_finobt,
258 		.has	= xfs_has_finobt,
259 		.repair	= xrep_notsupported,
260 	},
261 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
262 		.type	= ST_PERAG,
263 		.setup	= xchk_setup_ag_rmapbt,
264 		.scrub	= xchk_rmapbt,
265 		.has	= xfs_has_rmapbt,
266 		.repair	= xrep_notsupported,
267 	},
268 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
269 		.type	= ST_PERAG,
270 		.setup	= xchk_setup_ag_refcountbt,
271 		.scrub	= xchk_refcountbt,
272 		.has	= xfs_has_reflink,
273 		.repair	= xrep_notsupported,
274 	},
275 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
276 		.type	= ST_INODE,
277 		.setup	= xchk_setup_inode,
278 		.scrub	= xchk_inode,
279 		.repair	= xrep_notsupported,
280 	},
281 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
282 		.type	= ST_INODE,
283 		.setup	= xchk_setup_inode_bmap,
284 		.scrub	= xchk_bmap_data,
285 		.repair	= xrep_notsupported,
286 	},
287 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
288 		.type	= ST_INODE,
289 		.setup	= xchk_setup_inode_bmap,
290 		.scrub	= xchk_bmap_attr,
291 		.repair	= xrep_notsupported,
292 	},
293 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
294 		.type	= ST_INODE,
295 		.setup	= xchk_setup_inode_bmap,
296 		.scrub	= xchk_bmap_cow,
297 		.repair	= xrep_notsupported,
298 	},
299 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
300 		.type	= ST_INODE,
301 		.setup	= xchk_setup_directory,
302 		.scrub	= xchk_directory,
303 		.repair	= xrep_notsupported,
304 	},
305 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
306 		.type	= ST_INODE,
307 		.setup	= xchk_setup_xattr,
308 		.scrub	= xchk_xattr,
309 		.repair	= xrep_notsupported,
310 	},
311 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
312 		.type	= ST_INODE,
313 		.setup	= xchk_setup_symlink,
314 		.scrub	= xchk_symlink,
315 		.repair	= xrep_notsupported,
316 	},
317 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
318 		.type	= ST_INODE,
319 		.setup	= xchk_setup_parent,
320 		.scrub	= xchk_parent,
321 		.repair	= xrep_notsupported,
322 	},
323 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
324 		.type	= ST_FS,
325 		.setup	= xchk_setup_rt,
326 		.scrub	= xchk_rtbitmap,
327 		.has	= xfs_has_realtime,
328 		.repair	= xrep_notsupported,
329 	},
330 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
331 		.type	= ST_FS,
332 		.setup	= xchk_setup_rt,
333 		.scrub	= xchk_rtsummary,
334 		.has	= xfs_has_realtime,
335 		.repair	= xrep_notsupported,
336 	},
337 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
338 		.type	= ST_FS,
339 		.setup	= xchk_setup_quota,
340 		.scrub	= xchk_quota,
341 		.repair	= xrep_notsupported,
342 	},
343 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
344 		.type	= ST_FS,
345 		.setup	= xchk_setup_quota,
346 		.scrub	= xchk_quota,
347 		.repair	= xrep_notsupported,
348 	},
349 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
350 		.type	= ST_FS,
351 		.setup	= xchk_setup_quota,
352 		.scrub	= xchk_quota,
353 		.repair	= xrep_notsupported,
354 	},
355 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
356 		.type	= ST_FS,
357 		.setup	= xchk_setup_fscounters,
358 		.scrub	= xchk_fscounters,
359 		.repair	= xrep_notsupported,
360 	},
361 };
362 
363 static int
364 xchk_validate_inputs(
365 	struct xfs_mount		*mp,
366 	struct xfs_scrub_metadata	*sm)
367 {
368 	int				error;
369 	const struct xchk_meta_ops	*ops;
370 
371 	error = -EINVAL;
372 	/* Check our inputs. */
373 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
374 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
375 		goto out;
376 	/* sm_reserved[] must be zero */
377 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
378 		goto out;
379 
380 	error = -ENOENT;
381 	/* Do we know about this type of metadata? */
382 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
383 		goto out;
384 	ops = &meta_scrub_ops[sm->sm_type];
385 	if (ops->setup == NULL || ops->scrub == NULL)
386 		goto out;
387 	/* Does this fs even support this type of metadata? */
388 	if (ops->has && !ops->has(mp))
389 		goto out;
390 
391 	error = -EINVAL;
392 	/* restricting fields must be appropriate for type */
393 	switch (ops->type) {
394 	case ST_NONE:
395 	case ST_FS:
396 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
397 			goto out;
398 		break;
399 	case ST_PERAG:
400 		if (sm->sm_ino || sm->sm_gen ||
401 		    sm->sm_agno >= mp->m_sb.sb_agcount)
402 			goto out;
403 		break;
404 	case ST_INODE:
405 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
406 			goto out;
407 		break;
408 	default:
409 		goto out;
410 	}
411 
412 	/*
413 	 * We only want to repair read-write v5+ filesystems.  Defer the check
414 	 * for ops->repair until after our scrub confirms that we need to
415 	 * perform repairs so that we avoid failing due to not supporting
416 	 * repairing an object that doesn't need repairs.
417 	 */
418 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
419 		error = -EOPNOTSUPP;
420 		if (!xfs_has_crc(mp))
421 			goto out;
422 
423 		error = -EROFS;
424 		if (xfs_is_readonly(mp))
425 			goto out;
426 	}
427 
428 	error = 0;
429 out:
430 	return error;
431 }
432 
433 #ifdef CONFIG_XFS_ONLINE_REPAIR
434 static inline void xchk_postmortem(struct xfs_scrub *sc)
435 {
436 	/*
437 	 * Userspace asked us to repair something, we repaired it, rescanned
438 	 * it, and the rescan says it's still broken.  Scream about this in
439 	 * the system logs.
440 	 */
441 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
442 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
443 				 XFS_SCRUB_OFLAG_XCORRUPT)))
444 		xrep_failure(sc->mp);
445 }
446 #else
447 static inline void xchk_postmortem(struct xfs_scrub *sc)
448 {
449 	/*
450 	 * Userspace asked us to scrub something, it's broken, and we have no
451 	 * way of fixing it.  Scream in the logs.
452 	 */
453 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
454 				XFS_SCRUB_OFLAG_XCORRUPT))
455 		xfs_alert_ratelimited(sc->mp,
456 				"Corruption detected during scrub.");
457 }
458 #endif /* CONFIG_XFS_ONLINE_REPAIR */
459 
460 /* Dispatch metadata scrubbing. */
461 int
462 xfs_scrub_metadata(
463 	struct file			*file,
464 	struct xfs_scrub_metadata	*sm)
465 {
466 	struct xfs_scrub		*sc;
467 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
468 	int				error = 0;
469 
470 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
471 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
472 
473 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
474 
475 	/* Forbidden if we are shut down or mounted norecovery. */
476 	error = -ESHUTDOWN;
477 	if (xfs_is_shutdown(mp))
478 		goto out;
479 	error = -ENOTRECOVERABLE;
480 	if (xfs_has_norecovery(mp))
481 		goto out;
482 
483 	error = xchk_validate_inputs(mp, sm);
484 	if (error)
485 		goto out;
486 
487 	xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SCRUB,
488  "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
489 
490 	sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
491 	if (!sc) {
492 		error = -ENOMEM;
493 		goto out;
494 	}
495 
496 	sc->mp = mp;
497 	sc->file = file;
498 	sc->sm = sm;
499 	sc->ops = &meta_scrub_ops[sm->sm_type];
500 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
501 retry_op:
502 	/*
503 	 * When repairs are allowed, prevent freezing or readonly remount while
504 	 * scrub is running with a real transaction.
505 	 */
506 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
507 		error = mnt_want_write_file(sc->file);
508 		if (error)
509 			goto out_sc;
510 	}
511 
512 	/* Set up for the operation. */
513 	error = sc->ops->setup(sc);
514 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
515 		goto try_harder;
516 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
517 		goto need_drain;
518 	if (error)
519 		goto out_teardown;
520 
521 	/* Scrub for errors. */
522 	error = sc->ops->scrub(sc);
523 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
524 		goto try_harder;
525 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
526 		goto need_drain;
527 	if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
528 		goto out_teardown;
529 
530 	xchk_update_health(sc);
531 
532 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
533 	    !(sc->flags & XREP_ALREADY_FIXED)) {
534 		bool needs_fix;
535 
536 		/* Let debug users force us into the repair routines. */
537 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
538 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
539 
540 		needs_fix = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
541 						 XFS_SCRUB_OFLAG_XCORRUPT |
542 						 XFS_SCRUB_OFLAG_PREEN));
543 		/*
544 		 * If userspace asked for a repair but it wasn't necessary,
545 		 * report that back to userspace.
546 		 */
547 		if (!needs_fix) {
548 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
549 			goto out_nofix;
550 		}
551 
552 		/*
553 		 * If it's broken, userspace wants us to fix it, and we haven't
554 		 * already tried to fix it, then attempt a repair.
555 		 */
556 		error = xrep_attempt(sc);
557 		if (error == -EAGAIN) {
558 			/*
559 			 * Either the repair function succeeded or it couldn't
560 			 * get all the resources it needs; either way, we go
561 			 * back to the beginning and call the scrub function.
562 			 */
563 			error = xchk_teardown(sc, 0);
564 			if (error) {
565 				xrep_failure(mp);
566 				goto out_sc;
567 			}
568 			goto retry_op;
569 		}
570 	}
571 
572 out_nofix:
573 	xchk_postmortem(sc);
574 out_teardown:
575 	error = xchk_teardown(sc, error);
576 out_sc:
577 	kfree(sc);
578 out:
579 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
580 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
581 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
582 		error = 0;
583 	}
584 	return error;
585 need_drain:
586 	error = xchk_teardown(sc, 0);
587 	if (error)
588 		goto out_sc;
589 	sc->flags |= XCHK_NEED_DRAIN;
590 	goto retry_op;
591 try_harder:
592 	/*
593 	 * Scrubbers return -EDEADLOCK to mean 'try harder'.  Tear down
594 	 * everything we hold, then set up again with preparation for
595 	 * worst-case scenarios.
596 	 */
597 	error = xchk_teardown(sc, 0);
598 	if (error)
599 		goto out_sc;
600 	sc->flags |= XCHK_TRY_HARDER;
601 	goto retry_op;
602 }
603