xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 /* Free all the resources and finish the transactions. */
149 STATIC int
150 xchk_teardown(
151 	struct xfs_scrub	*sc,
152 	int			error)
153 {
154 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
155 
156 	xchk_ag_free(sc, &sc->sa);
157 	if (sc->tp) {
158 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
159 			error = xfs_trans_commit(sc->tp);
160 		else
161 			xfs_trans_cancel(sc->tp);
162 		sc->tp = NULL;
163 	}
164 	if (sc->ip) {
165 		if (sc->ilock_flags)
166 			xfs_iunlock(sc->ip, sc->ilock_flags);
167 		if (sc->ip != ip_in &&
168 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
169 			xfs_irele(sc->ip);
170 		sc->ip = NULL;
171 	}
172 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
173 		mnt_drop_write_file(sc->file);
174 	if (sc->flags & XCHK_REAPING_DISABLED)
175 		xchk_start_reaping(sc);
176 	if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
177 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
178 		sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
179 	}
180 	if (sc->buf) {
181 		kmem_free(sc->buf);
182 		sc->buf = NULL;
183 	}
184 	return error;
185 }
186 
187 /* Scrubbing dispatch. */
188 
189 static const struct xchk_meta_ops meta_scrub_ops[] = {
190 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
191 		.type	= ST_NONE,
192 		.setup	= xchk_setup_fs,
193 		.scrub	= xchk_probe,
194 		.repair = xrep_probe,
195 	},
196 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
197 		.type	= ST_PERAG,
198 		.setup	= xchk_setup_fs,
199 		.scrub	= xchk_superblock,
200 		.repair	= xrep_superblock,
201 	},
202 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
203 		.type	= ST_PERAG,
204 		.setup	= xchk_setup_fs,
205 		.scrub	= xchk_agf,
206 		.repair	= xrep_agf,
207 	},
208 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
209 		.type	= ST_PERAG,
210 		.setup	= xchk_setup_fs,
211 		.scrub	= xchk_agfl,
212 		.repair	= xrep_agfl,
213 	},
214 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
215 		.type	= ST_PERAG,
216 		.setup	= xchk_setup_fs,
217 		.scrub	= xchk_agi,
218 		.repair	= xrep_agi,
219 	},
220 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
221 		.type	= ST_PERAG,
222 		.setup	= xchk_setup_ag_allocbt,
223 		.scrub	= xchk_bnobt,
224 		.repair	= xrep_notsupported,
225 	},
226 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
227 		.type	= ST_PERAG,
228 		.setup	= xchk_setup_ag_allocbt,
229 		.scrub	= xchk_cntbt,
230 		.repair	= xrep_notsupported,
231 	},
232 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
233 		.type	= ST_PERAG,
234 		.setup	= xchk_setup_ag_iallocbt,
235 		.scrub	= xchk_inobt,
236 		.repair	= xrep_notsupported,
237 	},
238 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
239 		.type	= ST_PERAG,
240 		.setup	= xchk_setup_ag_iallocbt,
241 		.scrub	= xchk_finobt,
242 		.has	= xfs_has_finobt,
243 		.repair	= xrep_notsupported,
244 	},
245 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
246 		.type	= ST_PERAG,
247 		.setup	= xchk_setup_ag_rmapbt,
248 		.scrub	= xchk_rmapbt,
249 		.has	= xfs_has_rmapbt,
250 		.repair	= xrep_notsupported,
251 	},
252 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
253 		.type	= ST_PERAG,
254 		.setup	= xchk_setup_ag_refcountbt,
255 		.scrub	= xchk_refcountbt,
256 		.has	= xfs_has_reflink,
257 		.repair	= xrep_notsupported,
258 	},
259 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
260 		.type	= ST_INODE,
261 		.setup	= xchk_setup_inode,
262 		.scrub	= xchk_inode,
263 		.repair	= xrep_notsupported,
264 	},
265 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
266 		.type	= ST_INODE,
267 		.setup	= xchk_setup_inode_bmap,
268 		.scrub	= xchk_bmap_data,
269 		.repair	= xrep_notsupported,
270 	},
271 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
272 		.type	= ST_INODE,
273 		.setup	= xchk_setup_inode_bmap,
274 		.scrub	= xchk_bmap_attr,
275 		.repair	= xrep_notsupported,
276 	},
277 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
278 		.type	= ST_INODE,
279 		.setup	= xchk_setup_inode_bmap,
280 		.scrub	= xchk_bmap_cow,
281 		.repair	= xrep_notsupported,
282 	},
283 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
284 		.type	= ST_INODE,
285 		.setup	= xchk_setup_directory,
286 		.scrub	= xchk_directory,
287 		.repair	= xrep_notsupported,
288 	},
289 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
290 		.type	= ST_INODE,
291 		.setup	= xchk_setup_xattr,
292 		.scrub	= xchk_xattr,
293 		.repair	= xrep_notsupported,
294 	},
295 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
296 		.type	= ST_INODE,
297 		.setup	= xchk_setup_symlink,
298 		.scrub	= xchk_symlink,
299 		.repair	= xrep_notsupported,
300 	},
301 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
302 		.type	= ST_INODE,
303 		.setup	= xchk_setup_parent,
304 		.scrub	= xchk_parent,
305 		.repair	= xrep_notsupported,
306 	},
307 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
308 		.type	= ST_FS,
309 		.setup	= xchk_setup_rt,
310 		.scrub	= xchk_rtbitmap,
311 		.has	= xfs_has_realtime,
312 		.repair	= xrep_notsupported,
313 	},
314 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
315 		.type	= ST_FS,
316 		.setup	= xchk_setup_rt,
317 		.scrub	= xchk_rtsummary,
318 		.has	= xfs_has_realtime,
319 		.repair	= xrep_notsupported,
320 	},
321 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
322 		.type	= ST_FS,
323 		.setup	= xchk_setup_quota,
324 		.scrub	= xchk_quota,
325 		.repair	= xrep_notsupported,
326 	},
327 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
328 		.type	= ST_FS,
329 		.setup	= xchk_setup_quota,
330 		.scrub	= xchk_quota,
331 		.repair	= xrep_notsupported,
332 	},
333 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
334 		.type	= ST_FS,
335 		.setup	= xchk_setup_quota,
336 		.scrub	= xchk_quota,
337 		.repair	= xrep_notsupported,
338 	},
339 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
340 		.type	= ST_FS,
341 		.setup	= xchk_setup_fscounters,
342 		.scrub	= xchk_fscounters,
343 		.repair	= xrep_notsupported,
344 	},
345 };
346 
347 /* This isn't a stable feature, warn once per day. */
348 static inline void
349 xchk_experimental_warning(
350 	struct xfs_mount	*mp)
351 {
352 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
353 			"xchk_warning", 86400 * HZ, 1);
354 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
355 
356 	if (__ratelimit(&scrub_warning))
357 		xfs_alert(mp,
358 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
359 }
360 
361 static int
362 xchk_validate_inputs(
363 	struct xfs_mount		*mp,
364 	struct xfs_scrub_metadata	*sm)
365 {
366 	int				error;
367 	const struct xchk_meta_ops	*ops;
368 
369 	error = -EINVAL;
370 	/* Check our inputs. */
371 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
372 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
373 		goto out;
374 	/* sm_reserved[] must be zero */
375 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
376 		goto out;
377 
378 	error = -ENOENT;
379 	/* Do we know about this type of metadata? */
380 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
381 		goto out;
382 	ops = &meta_scrub_ops[sm->sm_type];
383 	if (ops->setup == NULL || ops->scrub == NULL)
384 		goto out;
385 	/* Does this fs even support this type of metadata? */
386 	if (ops->has && !ops->has(mp))
387 		goto out;
388 
389 	error = -EINVAL;
390 	/* restricting fields must be appropriate for type */
391 	switch (ops->type) {
392 	case ST_NONE:
393 	case ST_FS:
394 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
395 			goto out;
396 		break;
397 	case ST_PERAG:
398 		if (sm->sm_ino || sm->sm_gen ||
399 		    sm->sm_agno >= mp->m_sb.sb_agcount)
400 			goto out;
401 		break;
402 	case ST_INODE:
403 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
404 			goto out;
405 		break;
406 	default:
407 		goto out;
408 	}
409 
410 	/*
411 	 * We only want to repair read-write v5+ filesystems.  Defer the check
412 	 * for ops->repair until after our scrub confirms that we need to
413 	 * perform repairs so that we avoid failing due to not supporting
414 	 * repairing an object that doesn't need repairs.
415 	 */
416 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
417 		error = -EOPNOTSUPP;
418 		if (!xfs_has_crc(mp))
419 			goto out;
420 
421 		error = -EROFS;
422 		if (xfs_is_readonly(mp))
423 			goto out;
424 	}
425 
426 	error = 0;
427 out:
428 	return error;
429 }
430 
431 #ifdef CONFIG_XFS_ONLINE_REPAIR
432 static inline void xchk_postmortem(struct xfs_scrub *sc)
433 {
434 	/*
435 	 * Userspace asked us to repair something, we repaired it, rescanned
436 	 * it, and the rescan says it's still broken.  Scream about this in
437 	 * the system logs.
438 	 */
439 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
440 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
441 				 XFS_SCRUB_OFLAG_XCORRUPT)))
442 		xrep_failure(sc->mp);
443 }
444 #else
445 static inline void xchk_postmortem(struct xfs_scrub *sc)
446 {
447 	/*
448 	 * Userspace asked us to scrub something, it's broken, and we have no
449 	 * way of fixing it.  Scream in the logs.
450 	 */
451 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
452 				XFS_SCRUB_OFLAG_XCORRUPT))
453 		xfs_alert_ratelimited(sc->mp,
454 				"Corruption detected during scrub.");
455 }
456 #endif /* CONFIG_XFS_ONLINE_REPAIR */
457 
458 /* Dispatch metadata scrubbing. */
459 int
460 xfs_scrub_metadata(
461 	struct file			*file,
462 	struct xfs_scrub_metadata	*sm)
463 {
464 	struct xfs_scrub		*sc;
465 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
466 	int				error = 0;
467 
468 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
469 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
470 
471 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
472 
473 	/* Forbidden if we are shut down or mounted norecovery. */
474 	error = -ESHUTDOWN;
475 	if (xfs_is_shutdown(mp))
476 		goto out;
477 	error = -ENOTRECOVERABLE;
478 	if (xfs_has_norecovery(mp))
479 		goto out;
480 
481 	error = xchk_validate_inputs(mp, sm);
482 	if (error)
483 		goto out;
484 
485 	xchk_experimental_warning(mp);
486 
487 	sc = kmem_zalloc(sizeof(struct xfs_scrub), KM_NOFS | KM_MAYFAIL);
488 	if (!sc) {
489 		error = -ENOMEM;
490 		goto out;
491 	}
492 
493 	sc->mp = mp;
494 	sc->file = file;
495 	sc->sm = sm;
496 	sc->ops = &meta_scrub_ops[sm->sm_type];
497 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
498 retry_op:
499 	/*
500 	 * When repairs are allowed, prevent freezing or readonly remount while
501 	 * scrub is running with a real transaction.
502 	 */
503 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
504 		error = mnt_want_write_file(sc->file);
505 		if (error)
506 			goto out_sc;
507 	}
508 
509 	/* Set up for the operation. */
510 	error = sc->ops->setup(sc);
511 	if (error)
512 		goto out_teardown;
513 
514 	/* Scrub for errors. */
515 	error = sc->ops->scrub(sc);
516 	if (!(sc->flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
517 		/*
518 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
519 		 * Tear down everything we hold, then set up again with
520 		 * preparation for worst-case scenarios.
521 		 */
522 		error = xchk_teardown(sc, 0);
523 		if (error)
524 			goto out_sc;
525 		sc->flags |= XCHK_TRY_HARDER;
526 		goto retry_op;
527 	} else if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
528 		goto out_teardown;
529 
530 	xchk_update_health(sc);
531 
532 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
533 	    !(sc->flags & XREP_ALREADY_FIXED)) {
534 		bool needs_fix;
535 
536 		/* Let debug users force us into the repair routines. */
537 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
538 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
539 
540 		needs_fix = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
541 						 XFS_SCRUB_OFLAG_XCORRUPT |
542 						 XFS_SCRUB_OFLAG_PREEN));
543 		/*
544 		 * If userspace asked for a repair but it wasn't necessary,
545 		 * report that back to userspace.
546 		 */
547 		if (!needs_fix) {
548 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
549 			goto out_nofix;
550 		}
551 
552 		/*
553 		 * If it's broken, userspace wants us to fix it, and we haven't
554 		 * already tried to fix it, then attempt a repair.
555 		 */
556 		error = xrep_attempt(sc);
557 		if (error == -EAGAIN) {
558 			/*
559 			 * Either the repair function succeeded or it couldn't
560 			 * get all the resources it needs; either way, we go
561 			 * back to the beginning and call the scrub function.
562 			 */
563 			error = xchk_teardown(sc, 0);
564 			if (error) {
565 				xrep_failure(mp);
566 				goto out_sc;
567 			}
568 			goto retry_op;
569 		}
570 	}
571 
572 out_nofix:
573 	xchk_postmortem(sc);
574 out_teardown:
575 	error = xchk_teardown(sc, error);
576 out_sc:
577 	kmem_free(sc);
578 out:
579 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
580 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
581 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
582 		error = 0;
583 	}
584 	return error;
585 }
586