xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision 82e6fdd6)
1 /*
2  * Copyright (C) 2017 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_btree.h"
28 #include "xfs_bit.h"
29 #include "xfs_log_format.h"
30 #include "xfs_trans.h"
31 #include "xfs_sb.h"
32 #include "xfs_inode.h"
33 #include "xfs_icache.h"
34 #include "xfs_itable.h"
35 #include "xfs_alloc.h"
36 #include "xfs_alloc_btree.h"
37 #include "xfs_bmap.h"
38 #include "xfs_bmap_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_ialloc_btree.h"
41 #include "xfs_refcount.h"
42 #include "xfs_refcount_btree.h"
43 #include "xfs_rmap.h"
44 #include "xfs_rmap_btree.h"
45 #include "scrub/xfs_scrub.h"
46 #include "scrub/scrub.h"
47 #include "scrub/common.h"
48 #include "scrub/trace.h"
49 #include "scrub/btree.h"
50 
51 /*
52  * Online Scrub and Repair
53  *
54  * Traditionally, XFS (the kernel driver) did not know how to check or
55  * repair on-disk data structures.  That task was left to the xfs_check
56  * and xfs_repair tools, both of which require taking the filesystem
57  * offline for a thorough but time consuming examination.  Online
58  * scrub & repair, on the other hand, enables us to check the metadata
59  * for obvious errors while carefully stepping around the filesystem's
60  * ongoing operations, locking rules, etc.
61  *
62  * Given that most XFS metadata consist of records stored in a btree,
63  * most of the checking functions iterate the btree blocks themselves
64  * looking for irregularities.  When a record block is encountered, each
65  * record can be checked for obviously bad values.  Record values can
66  * also be cross-referenced against other btrees to look for potential
67  * misunderstandings between pieces of metadata.
68  *
69  * It is expected that the checkers responsible for per-AG metadata
70  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
71  * metadata structure, and perform any relevant cross-referencing before
72  * unlocking the AG and returning the results to userspace.  These
73  * scrubbers must not keep an AG locked for too long to avoid tying up
74  * the block and inode allocators.
75  *
76  * Block maps and b-trees rooted in an inode present a special challenge
77  * because they can involve extents from any AG.  The general scrubber
78  * structure of lock -> check -> xref -> unlock still holds, but AG
79  * locking order rules /must/ be obeyed to avoid deadlocks.  The
80  * ordering rule, of course, is that we must lock in increasing AG
81  * order.  Helper functions are provided to track which AG headers we've
82  * already locked.  If we detect an imminent locking order violation, we
83  * can signal a potential deadlock, in which case the scrubber can jump
84  * out to the top level, lock all the AGs in order, and retry the scrub.
85  *
86  * For file data (directories, extended attributes, symlinks) scrub, we
87  * can simply lock the inode and walk the data.  For btree data
88  * (directories and attributes) we follow the same btree-scrubbing
89  * strategy outlined previously to check the records.
90  *
91  * We use a bit of trickery with transactions to avoid buffer deadlocks
92  * if there is a cycle in the metadata.  The basic problem is that
93  * travelling down a btree involves locking the current buffer at each
94  * tree level.  If a pointer should somehow point back to a buffer that
95  * we've already examined, we will deadlock due to the second buffer
96  * locking attempt.  Note however that grabbing a buffer in transaction
97  * context links the locked buffer to the transaction.  If we try to
98  * re-grab the buffer in the context of the same transaction, we avoid
99  * the second lock attempt and continue.  Between the verifier and the
100  * scrubber, something will notice that something is amiss and report
101  * the corruption.  Therefore, each scrubber will allocate an empty
102  * transaction, attach buffers to it, and cancel the transaction at the
103  * end of the scrub run.  Cancelling a non-dirty transaction simply
104  * unlocks the buffers.
105  *
106  * There are four pieces of data that scrub can communicate to
107  * userspace.  The first is the error code (errno), which can be used to
108  * communicate operational errors in performing the scrub.  There are
109  * also three flags that can be set in the scrub context.  If the data
110  * structure itself is corrupt, the CORRUPT flag will be set.  If
111  * the metadata is correct but otherwise suboptimal, the PREEN flag
112  * will be set.
113  *
114  * We perform secondary validation of filesystem metadata by
115  * cross-referencing every record with all other available metadata.
116  * For example, for block mapping extents, we verify that there are no
117  * records in the free space and inode btrees corresponding to that
118  * space extent and that there is a corresponding entry in the reverse
119  * mapping btree.  Inconsistent metadata is noted by setting the
120  * XCORRUPT flag; btree query function errors are noted by setting the
121  * XFAIL flag and deleting the cursor to prevent further attempts to
122  * cross-reference with a defective btree.
123  */
124 
125 /*
126  * Scrub probe -- userspace uses this to probe if we're willing to scrub
127  * or repair a given mountpoint.  This will be used by xfs_scrub to
128  * probe the kernel's abilities to scrub (and repair) the metadata.  We
129  * do this by validating the ioctl inputs from userspace, preparing the
130  * filesystem for a scrub (or a repair) operation, and immediately
131  * returning to userspace.  Userspace can use the returned errno and
132  * structure state to decide (in broad terms) if scrub/repair are
133  * supported by the running kernel.
134  */
135 static int
136 xfs_scrub_probe(
137 	struct xfs_scrub_context	*sc)
138 {
139 	int				error = 0;
140 
141 	if (xfs_scrub_should_terminate(sc, &error))
142 		return error;
143 
144 	return 0;
145 }
146 
147 /* Scrub setup and teardown */
148 
149 /* Free all the resources and finish the transactions. */
150 STATIC int
151 xfs_scrub_teardown(
152 	struct xfs_scrub_context	*sc,
153 	struct xfs_inode		*ip_in,
154 	int				error)
155 {
156 	xfs_scrub_ag_free(sc, &sc->sa);
157 	if (sc->tp) {
158 		xfs_trans_cancel(sc->tp);
159 		sc->tp = NULL;
160 	}
161 	if (sc->ip) {
162 		if (sc->ilock_flags)
163 			xfs_iunlock(sc->ip, sc->ilock_flags);
164 		if (sc->ip != ip_in &&
165 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
166 			iput(VFS_I(sc->ip));
167 		sc->ip = NULL;
168 	}
169 	if (sc->buf) {
170 		kmem_free(sc->buf);
171 		sc->buf = NULL;
172 	}
173 	return error;
174 }
175 
176 /* Scrubbing dispatch. */
177 
178 static const struct xfs_scrub_meta_ops meta_scrub_ops[] = {
179 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
180 		.type	= ST_NONE,
181 		.setup	= xfs_scrub_setup_fs,
182 		.scrub	= xfs_scrub_probe,
183 	},
184 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
185 		.type	= ST_PERAG,
186 		.setup	= xfs_scrub_setup_fs,
187 		.scrub	= xfs_scrub_superblock,
188 	},
189 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
190 		.type	= ST_PERAG,
191 		.setup	= xfs_scrub_setup_fs,
192 		.scrub	= xfs_scrub_agf,
193 	},
194 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
195 		.type	= ST_PERAG,
196 		.setup	= xfs_scrub_setup_fs,
197 		.scrub	= xfs_scrub_agfl,
198 	},
199 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
200 		.type	= ST_PERAG,
201 		.setup	= xfs_scrub_setup_fs,
202 		.scrub	= xfs_scrub_agi,
203 	},
204 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
205 		.type	= ST_PERAG,
206 		.setup	= xfs_scrub_setup_ag_allocbt,
207 		.scrub	= xfs_scrub_bnobt,
208 	},
209 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
210 		.type	= ST_PERAG,
211 		.setup	= xfs_scrub_setup_ag_allocbt,
212 		.scrub	= xfs_scrub_cntbt,
213 	},
214 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
215 		.type	= ST_PERAG,
216 		.setup	= xfs_scrub_setup_ag_iallocbt,
217 		.scrub	= xfs_scrub_inobt,
218 	},
219 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
220 		.type	= ST_PERAG,
221 		.setup	= xfs_scrub_setup_ag_iallocbt,
222 		.scrub	= xfs_scrub_finobt,
223 		.has	= xfs_sb_version_hasfinobt,
224 	},
225 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
226 		.type	= ST_PERAG,
227 		.setup	= xfs_scrub_setup_ag_rmapbt,
228 		.scrub	= xfs_scrub_rmapbt,
229 		.has	= xfs_sb_version_hasrmapbt,
230 	},
231 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
232 		.type	= ST_PERAG,
233 		.setup	= xfs_scrub_setup_ag_refcountbt,
234 		.scrub	= xfs_scrub_refcountbt,
235 		.has	= xfs_sb_version_hasreflink,
236 	},
237 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
238 		.type	= ST_INODE,
239 		.setup	= xfs_scrub_setup_inode,
240 		.scrub	= xfs_scrub_inode,
241 	},
242 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
243 		.type	= ST_INODE,
244 		.setup	= xfs_scrub_setup_inode_bmap,
245 		.scrub	= xfs_scrub_bmap_data,
246 	},
247 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
248 		.type	= ST_INODE,
249 		.setup	= xfs_scrub_setup_inode_bmap,
250 		.scrub	= xfs_scrub_bmap_attr,
251 	},
252 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
253 		.type	= ST_INODE,
254 		.setup	= xfs_scrub_setup_inode_bmap,
255 		.scrub	= xfs_scrub_bmap_cow,
256 	},
257 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
258 		.type	= ST_INODE,
259 		.setup	= xfs_scrub_setup_directory,
260 		.scrub	= xfs_scrub_directory,
261 	},
262 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
263 		.type	= ST_INODE,
264 		.setup	= xfs_scrub_setup_xattr,
265 		.scrub	= xfs_scrub_xattr,
266 	},
267 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
268 		.type	= ST_INODE,
269 		.setup	= xfs_scrub_setup_symlink,
270 		.scrub	= xfs_scrub_symlink,
271 	},
272 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
273 		.type	= ST_INODE,
274 		.setup	= xfs_scrub_setup_parent,
275 		.scrub	= xfs_scrub_parent,
276 	},
277 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
278 		.type	= ST_FS,
279 		.setup	= xfs_scrub_setup_rt,
280 		.scrub	= xfs_scrub_rtbitmap,
281 		.has	= xfs_sb_version_hasrealtime,
282 	},
283 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
284 		.type	= ST_FS,
285 		.setup	= xfs_scrub_setup_rt,
286 		.scrub	= xfs_scrub_rtsummary,
287 		.has	= xfs_sb_version_hasrealtime,
288 	},
289 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
290 		.type	= ST_FS,
291 		.setup	= xfs_scrub_setup_quota,
292 		.scrub	= xfs_scrub_quota,
293 	},
294 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
295 		.type	= ST_FS,
296 		.setup	= xfs_scrub_setup_quota,
297 		.scrub	= xfs_scrub_quota,
298 	},
299 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
300 		.type	= ST_FS,
301 		.setup	= xfs_scrub_setup_quota,
302 		.scrub	= xfs_scrub_quota,
303 	},
304 };
305 
306 /* This isn't a stable feature, warn once per day. */
307 static inline void
308 xfs_scrub_experimental_warning(
309 	struct xfs_mount	*mp)
310 {
311 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
312 			"xfs_scrub_warning", 86400 * HZ, 1);
313 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
314 
315 	if (__ratelimit(&scrub_warning))
316 		xfs_alert(mp,
317 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
318 }
319 
320 static int
321 xfs_scrub_validate_inputs(
322 	struct xfs_mount		*mp,
323 	struct xfs_scrub_metadata	*sm)
324 {
325 	int				error;
326 	const struct xfs_scrub_meta_ops	*ops;
327 
328 	error = -EINVAL;
329 	/* Check our inputs. */
330 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
331 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
332 		goto out;
333 	/* sm_reserved[] must be zero */
334 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
335 		goto out;
336 
337 	error = -ENOENT;
338 	/* Do we know about this type of metadata? */
339 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
340 		goto out;
341 	ops = &meta_scrub_ops[sm->sm_type];
342 	if (ops->setup == NULL || ops->scrub == NULL)
343 		goto out;
344 	/* Does this fs even support this type of metadata? */
345 	if (ops->has && !ops->has(&mp->m_sb))
346 		goto out;
347 
348 	error = -EINVAL;
349 	/* restricting fields must be appropriate for type */
350 	switch (ops->type) {
351 	case ST_NONE:
352 	case ST_FS:
353 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
354 			goto out;
355 		break;
356 	case ST_PERAG:
357 		if (sm->sm_ino || sm->sm_gen ||
358 		    sm->sm_agno >= mp->m_sb.sb_agcount)
359 			goto out;
360 		break;
361 	case ST_INODE:
362 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
363 			goto out;
364 		break;
365 	default:
366 		goto out;
367 	}
368 
369 	error = -EOPNOTSUPP;
370 	/*
371 	 * We won't scrub any filesystem that doesn't have the ability
372 	 * to record unwritten extents.  The option was made default in
373 	 * 2003, removed from mkfs in 2007, and cannot be disabled in
374 	 * v5, so if we find a filesystem without this flag it's either
375 	 * really old or totally unsupported.  Avoid it either way.
376 	 * We also don't support v1-v3 filesystems, which aren't
377 	 * mountable.
378 	 */
379 	if (!xfs_sb_version_hasextflgbit(&mp->m_sb))
380 		goto out;
381 
382 	/* We don't know how to repair anything yet. */
383 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
384 		goto out;
385 
386 	error = 0;
387 out:
388 	return error;
389 }
390 
391 /* Dispatch metadata scrubbing. */
392 int
393 xfs_scrub_metadata(
394 	struct xfs_inode		*ip,
395 	struct xfs_scrub_metadata	*sm)
396 {
397 	struct xfs_scrub_context	sc;
398 	struct xfs_mount		*mp = ip->i_mount;
399 	bool				try_harder = false;
400 	int				error = 0;
401 
402 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
403 		(sizeof(struct xfs_scrub_meta_ops) * XFS_SCRUB_TYPE_NR));
404 
405 	trace_xfs_scrub_start(ip, sm, error);
406 
407 	/* Forbidden if we are shut down or mounted norecovery. */
408 	error = -ESHUTDOWN;
409 	if (XFS_FORCED_SHUTDOWN(mp))
410 		goto out;
411 	error = -ENOTRECOVERABLE;
412 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
413 		goto out;
414 
415 	error = xfs_scrub_validate_inputs(mp, sm);
416 	if (error)
417 		goto out;
418 
419 	xfs_scrub_experimental_warning(mp);
420 
421 retry_op:
422 	/* Set up for the operation. */
423 	memset(&sc, 0, sizeof(sc));
424 	sc.mp = ip->i_mount;
425 	sc.sm = sm;
426 	sc.ops = &meta_scrub_ops[sm->sm_type];
427 	sc.try_harder = try_harder;
428 	sc.sa.agno = NULLAGNUMBER;
429 	error = sc.ops->setup(&sc, ip);
430 	if (error)
431 		goto out_teardown;
432 
433 	/* Scrub for errors. */
434 	error = sc.ops->scrub(&sc);
435 	if (!try_harder && error == -EDEADLOCK) {
436 		/*
437 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
438 		 * Tear down everything we hold, then set up again with
439 		 * preparation for worst-case scenarios.
440 		 */
441 		error = xfs_scrub_teardown(&sc, ip, 0);
442 		if (error)
443 			goto out;
444 		try_harder = true;
445 		goto retry_op;
446 	} else if (error)
447 		goto out_teardown;
448 
449 	if (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
450 			       XFS_SCRUB_OFLAG_XCORRUPT))
451 		xfs_alert_ratelimited(mp, "Corruption detected during scrub.");
452 
453 out_teardown:
454 	error = xfs_scrub_teardown(&sc, ip, error);
455 out:
456 	trace_xfs_scrub_done(ip, sm, error);
457 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
458 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
459 		error = 0;
460 	}
461 	return error;
462 }
463