xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_itable.h"
21 #include "xfs_alloc.h"
22 #include "xfs_alloc_btree.h"
23 #include "xfs_bmap.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_refcount.h"
28 #include "xfs_refcount_btree.h"
29 #include "xfs_rmap.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_quota.h"
32 #include "xfs_qm.h"
33 #include "xfs_errortag.h"
34 #include "xfs_error.h"
35 #include "xfs_log.h"
36 #include "xfs_trans_priv.h"
37 #include "scrub/xfs_scrub.h"
38 #include "scrub/scrub.h"
39 #include "scrub/common.h"
40 #include "scrub/trace.h"
41 #include "scrub/btree.h"
42 #include "scrub/repair.h"
43 #include "scrub/health.h"
44 
45 /*
46  * Online Scrub and Repair
47  *
48  * Traditionally, XFS (the kernel driver) did not know how to check or
49  * repair on-disk data structures.  That task was left to the xfs_check
50  * and xfs_repair tools, both of which require taking the filesystem
51  * offline for a thorough but time consuming examination.  Online
52  * scrub & repair, on the other hand, enables us to check the metadata
53  * for obvious errors while carefully stepping around the filesystem's
54  * ongoing operations, locking rules, etc.
55  *
56  * Given that most XFS metadata consist of records stored in a btree,
57  * most of the checking functions iterate the btree blocks themselves
58  * looking for irregularities.  When a record block is encountered, each
59  * record can be checked for obviously bad values.  Record values can
60  * also be cross-referenced against other btrees to look for potential
61  * misunderstandings between pieces of metadata.
62  *
63  * It is expected that the checkers responsible for per-AG metadata
64  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
65  * metadata structure, and perform any relevant cross-referencing before
66  * unlocking the AG and returning the results to userspace.  These
67  * scrubbers must not keep an AG locked for too long to avoid tying up
68  * the block and inode allocators.
69  *
70  * Block maps and b-trees rooted in an inode present a special challenge
71  * because they can involve extents from any AG.  The general scrubber
72  * structure of lock -> check -> xref -> unlock still holds, but AG
73  * locking order rules /must/ be obeyed to avoid deadlocks.  The
74  * ordering rule, of course, is that we must lock in increasing AG
75  * order.  Helper functions are provided to track which AG headers we've
76  * already locked.  If we detect an imminent locking order violation, we
77  * can signal a potential deadlock, in which case the scrubber can jump
78  * out to the top level, lock all the AGs in order, and retry the scrub.
79  *
80  * For file data (directories, extended attributes, symlinks) scrub, we
81  * can simply lock the inode and walk the data.  For btree data
82  * (directories and attributes) we follow the same btree-scrubbing
83  * strategy outlined previously to check the records.
84  *
85  * We use a bit of trickery with transactions to avoid buffer deadlocks
86  * if there is a cycle in the metadata.  The basic problem is that
87  * travelling down a btree involves locking the current buffer at each
88  * tree level.  If a pointer should somehow point back to a buffer that
89  * we've already examined, we will deadlock due to the second buffer
90  * locking attempt.  Note however that grabbing a buffer in transaction
91  * context links the locked buffer to the transaction.  If we try to
92  * re-grab the buffer in the context of the same transaction, we avoid
93  * the second lock attempt and continue.  Between the verifier and the
94  * scrubber, something will notice that something is amiss and report
95  * the corruption.  Therefore, each scrubber will allocate an empty
96  * transaction, attach buffers to it, and cancel the transaction at the
97  * end of the scrub run.  Cancelling a non-dirty transaction simply
98  * unlocks the buffers.
99  *
100  * There are four pieces of data that scrub can communicate to
101  * userspace.  The first is the error code (errno), which can be used to
102  * communicate operational errors in performing the scrub.  There are
103  * also three flags that can be set in the scrub context.  If the data
104  * structure itself is corrupt, the CORRUPT flag will be set.  If
105  * the metadata is correct but otherwise suboptimal, the PREEN flag
106  * will be set.
107  *
108  * We perform secondary validation of filesystem metadata by
109  * cross-referencing every record with all other available metadata.
110  * For example, for block mapping extents, we verify that there are no
111  * records in the free space and inode btrees corresponding to that
112  * space extent and that there is a corresponding entry in the reverse
113  * mapping btree.  Inconsistent metadata is noted by setting the
114  * XCORRUPT flag; btree query function errors are noted by setting the
115  * XFAIL flag and deleting the cursor to prevent further attempts to
116  * cross-reference with a defective btree.
117  *
118  * If a piece of metadata proves corrupt or suboptimal, the userspace
119  * program can ask the kernel to apply some tender loving care (TLC) to
120  * the metadata object by setting the REPAIR flag and re-calling the
121  * scrub ioctl.  "Corruption" is defined by metadata violating the
122  * on-disk specification; operations cannot continue if the violation is
123  * left untreated.  It is possible for XFS to continue if an object is
124  * "suboptimal", however performance may be degraded.  Repairs are
125  * usually performed by rebuilding the metadata entirely out of
126  * redundant metadata.  Optimizing, on the other hand, can sometimes be
127  * done without rebuilding entire structures.
128  *
129  * Generally speaking, the repair code has the following code structure:
130  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
131  * The first check helps us figure out if we need to rebuild or simply
132  * optimize the structure so that the rebuild knows what to do.  The
133  * second check evaluates the completeness of the repair; that is what
134  * is reported to userspace.
135  *
136  * A quick note on symbol prefixes:
137  * - "xfs_" are general XFS symbols.
138  * - "xchk_" are symbols related to metadata checking.
139  * - "xrep_" are symbols related to metadata repair.
140  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
141  */
142 
143 /*
144  * Scrub probe -- userspace uses this to probe if we're willing to scrub
145  * or repair a given mountpoint.  This will be used by xfs_scrub to
146  * probe the kernel's abilities to scrub (and repair) the metadata.  We
147  * do this by validating the ioctl inputs from userspace, preparing the
148  * filesystem for a scrub (or a repair) operation, and immediately
149  * returning to userspace.  Userspace can use the returned errno and
150  * structure state to decide (in broad terms) if scrub/repair are
151  * supported by the running kernel.
152  */
153 static int
154 xchk_probe(
155 	struct xfs_scrub	*sc)
156 {
157 	int			error = 0;
158 
159 	if (xchk_should_terminate(sc, &error))
160 		return error;
161 
162 	return 0;
163 }
164 
165 /* Scrub setup and teardown */
166 
167 /* Free all the resources and finish the transactions. */
168 STATIC int
169 xchk_teardown(
170 	struct xfs_scrub	*sc,
171 	struct xfs_inode	*ip_in,
172 	int			error)
173 {
174 	xchk_ag_free(sc, &sc->sa);
175 	if (sc->tp) {
176 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
177 			error = xfs_trans_commit(sc->tp);
178 		else
179 			xfs_trans_cancel(sc->tp);
180 		sc->tp = NULL;
181 	}
182 	if (sc->ip) {
183 		if (sc->ilock_flags)
184 			xfs_iunlock(sc->ip, sc->ilock_flags);
185 		if (sc->ip != ip_in &&
186 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
187 			xfs_irele(sc->ip);
188 		sc->ip = NULL;
189 	}
190 	if (sc->flags & XCHK_REAPING_DISABLED)
191 		xchk_start_reaping(sc);
192 	if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
193 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
194 		sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
195 	}
196 	if (sc->buf) {
197 		kmem_free(sc->buf);
198 		sc->buf = NULL;
199 	}
200 	return error;
201 }
202 
203 /* Scrubbing dispatch. */
204 
205 static const struct xchk_meta_ops meta_scrub_ops[] = {
206 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
207 		.type	= ST_NONE,
208 		.setup	= xchk_setup_fs,
209 		.scrub	= xchk_probe,
210 		.repair = xrep_probe,
211 	},
212 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
213 		.type	= ST_PERAG,
214 		.setup	= xchk_setup_fs,
215 		.scrub	= xchk_superblock,
216 		.repair	= xrep_superblock,
217 	},
218 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
219 		.type	= ST_PERAG,
220 		.setup	= xchk_setup_fs,
221 		.scrub	= xchk_agf,
222 		.repair	= xrep_agf,
223 	},
224 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
225 		.type	= ST_PERAG,
226 		.setup	= xchk_setup_fs,
227 		.scrub	= xchk_agfl,
228 		.repair	= xrep_agfl,
229 	},
230 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
231 		.type	= ST_PERAG,
232 		.setup	= xchk_setup_fs,
233 		.scrub	= xchk_agi,
234 		.repair	= xrep_agi,
235 	},
236 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
237 		.type	= ST_PERAG,
238 		.setup	= xchk_setup_ag_allocbt,
239 		.scrub	= xchk_bnobt,
240 		.repair	= xrep_notsupported,
241 	},
242 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
243 		.type	= ST_PERAG,
244 		.setup	= xchk_setup_ag_allocbt,
245 		.scrub	= xchk_cntbt,
246 		.repair	= xrep_notsupported,
247 	},
248 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
249 		.type	= ST_PERAG,
250 		.setup	= xchk_setup_ag_iallocbt,
251 		.scrub	= xchk_inobt,
252 		.repair	= xrep_notsupported,
253 	},
254 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
255 		.type	= ST_PERAG,
256 		.setup	= xchk_setup_ag_iallocbt,
257 		.scrub	= xchk_finobt,
258 		.has	= xfs_sb_version_hasfinobt,
259 		.repair	= xrep_notsupported,
260 	},
261 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
262 		.type	= ST_PERAG,
263 		.setup	= xchk_setup_ag_rmapbt,
264 		.scrub	= xchk_rmapbt,
265 		.has	= xfs_sb_version_hasrmapbt,
266 		.repair	= xrep_notsupported,
267 	},
268 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
269 		.type	= ST_PERAG,
270 		.setup	= xchk_setup_ag_refcountbt,
271 		.scrub	= xchk_refcountbt,
272 		.has	= xfs_sb_version_hasreflink,
273 		.repair	= xrep_notsupported,
274 	},
275 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
276 		.type	= ST_INODE,
277 		.setup	= xchk_setup_inode,
278 		.scrub	= xchk_inode,
279 		.repair	= xrep_notsupported,
280 	},
281 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
282 		.type	= ST_INODE,
283 		.setup	= xchk_setup_inode_bmap,
284 		.scrub	= xchk_bmap_data,
285 		.repair	= xrep_notsupported,
286 	},
287 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
288 		.type	= ST_INODE,
289 		.setup	= xchk_setup_inode_bmap,
290 		.scrub	= xchk_bmap_attr,
291 		.repair	= xrep_notsupported,
292 	},
293 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
294 		.type	= ST_INODE,
295 		.setup	= xchk_setup_inode_bmap,
296 		.scrub	= xchk_bmap_cow,
297 		.repair	= xrep_notsupported,
298 	},
299 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
300 		.type	= ST_INODE,
301 		.setup	= xchk_setup_directory,
302 		.scrub	= xchk_directory,
303 		.repair	= xrep_notsupported,
304 	},
305 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
306 		.type	= ST_INODE,
307 		.setup	= xchk_setup_xattr,
308 		.scrub	= xchk_xattr,
309 		.repair	= xrep_notsupported,
310 	},
311 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
312 		.type	= ST_INODE,
313 		.setup	= xchk_setup_symlink,
314 		.scrub	= xchk_symlink,
315 		.repair	= xrep_notsupported,
316 	},
317 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
318 		.type	= ST_INODE,
319 		.setup	= xchk_setup_parent,
320 		.scrub	= xchk_parent,
321 		.repair	= xrep_notsupported,
322 	},
323 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
324 		.type	= ST_FS,
325 		.setup	= xchk_setup_rt,
326 		.scrub	= xchk_rtbitmap,
327 		.has	= xfs_sb_version_hasrealtime,
328 		.repair	= xrep_notsupported,
329 	},
330 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
331 		.type	= ST_FS,
332 		.setup	= xchk_setup_rt,
333 		.scrub	= xchk_rtsummary,
334 		.has	= xfs_sb_version_hasrealtime,
335 		.repair	= xrep_notsupported,
336 	},
337 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
338 		.type	= ST_FS,
339 		.setup	= xchk_setup_quota,
340 		.scrub	= xchk_quota,
341 		.repair	= xrep_notsupported,
342 	},
343 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
344 		.type	= ST_FS,
345 		.setup	= xchk_setup_quota,
346 		.scrub	= xchk_quota,
347 		.repair	= xrep_notsupported,
348 	},
349 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
350 		.type	= ST_FS,
351 		.setup	= xchk_setup_quota,
352 		.scrub	= xchk_quota,
353 		.repair	= xrep_notsupported,
354 	},
355 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
356 		.type	= ST_FS,
357 		.setup	= xchk_setup_fscounters,
358 		.scrub	= xchk_fscounters,
359 		.repair	= xrep_notsupported,
360 	},
361 };
362 
363 /* This isn't a stable feature, warn once per day. */
364 static inline void
365 xchk_experimental_warning(
366 	struct xfs_mount	*mp)
367 {
368 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
369 			"xchk_warning", 86400 * HZ, 1);
370 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
371 
372 	if (__ratelimit(&scrub_warning))
373 		xfs_alert(mp,
374 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
375 }
376 
377 static int
378 xchk_validate_inputs(
379 	struct xfs_mount		*mp,
380 	struct xfs_scrub_metadata	*sm)
381 {
382 	int				error;
383 	const struct xchk_meta_ops	*ops;
384 
385 	error = -EINVAL;
386 	/* Check our inputs. */
387 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
388 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
389 		goto out;
390 	/* sm_reserved[] must be zero */
391 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
392 		goto out;
393 
394 	error = -ENOENT;
395 	/* Do we know about this type of metadata? */
396 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
397 		goto out;
398 	ops = &meta_scrub_ops[sm->sm_type];
399 	if (ops->setup == NULL || ops->scrub == NULL)
400 		goto out;
401 	/* Does this fs even support this type of metadata? */
402 	if (ops->has && !ops->has(&mp->m_sb))
403 		goto out;
404 
405 	error = -EINVAL;
406 	/* restricting fields must be appropriate for type */
407 	switch (ops->type) {
408 	case ST_NONE:
409 	case ST_FS:
410 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
411 			goto out;
412 		break;
413 	case ST_PERAG:
414 		if (sm->sm_ino || sm->sm_gen ||
415 		    sm->sm_agno >= mp->m_sb.sb_agcount)
416 			goto out;
417 		break;
418 	case ST_INODE:
419 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
420 			goto out;
421 		break;
422 	default:
423 		goto out;
424 	}
425 
426 	/*
427 	 * We only want to repair read-write v5+ filesystems.  Defer the check
428 	 * for ops->repair until after our scrub confirms that we need to
429 	 * perform repairs so that we avoid failing due to not supporting
430 	 * repairing an object that doesn't need repairs.
431 	 */
432 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
433 		error = -EOPNOTSUPP;
434 		if (!xfs_sb_version_hascrc(&mp->m_sb))
435 			goto out;
436 
437 		error = -EROFS;
438 		if (mp->m_flags & XFS_MOUNT_RDONLY)
439 			goto out;
440 	}
441 
442 	error = 0;
443 out:
444 	return error;
445 }
446 
447 #ifdef CONFIG_XFS_ONLINE_REPAIR
448 static inline void xchk_postmortem(struct xfs_scrub *sc)
449 {
450 	/*
451 	 * Userspace asked us to repair something, we repaired it, rescanned
452 	 * it, and the rescan says it's still broken.  Scream about this in
453 	 * the system logs.
454 	 */
455 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
456 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
457 				 XFS_SCRUB_OFLAG_XCORRUPT)))
458 		xrep_failure(sc->mp);
459 }
460 #else
461 static inline void xchk_postmortem(struct xfs_scrub *sc)
462 {
463 	/*
464 	 * Userspace asked us to scrub something, it's broken, and we have no
465 	 * way of fixing it.  Scream in the logs.
466 	 */
467 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
468 				XFS_SCRUB_OFLAG_XCORRUPT))
469 		xfs_alert_ratelimited(sc->mp,
470 				"Corruption detected during scrub.");
471 }
472 #endif /* CONFIG_XFS_ONLINE_REPAIR */
473 
474 /* Dispatch metadata scrubbing. */
475 int
476 xfs_scrub_metadata(
477 	struct xfs_inode		*ip,
478 	struct xfs_scrub_metadata	*sm)
479 {
480 	struct xfs_scrub		sc = {
481 		.mp			= ip->i_mount,
482 		.sm			= sm,
483 		.sa			= {
484 			.agno		= NULLAGNUMBER,
485 		},
486 	};
487 	struct xfs_mount		*mp = ip->i_mount;
488 	int				error = 0;
489 
490 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
491 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
492 
493 	trace_xchk_start(ip, sm, error);
494 
495 	/* Forbidden if we are shut down or mounted norecovery. */
496 	error = -ESHUTDOWN;
497 	if (XFS_FORCED_SHUTDOWN(mp))
498 		goto out;
499 	error = -ENOTRECOVERABLE;
500 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
501 		goto out;
502 
503 	error = xchk_validate_inputs(mp, sm);
504 	if (error)
505 		goto out;
506 
507 	xchk_experimental_warning(mp);
508 
509 	sc.ops = &meta_scrub_ops[sm->sm_type];
510 	sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
511 retry_op:
512 	/* Set up for the operation. */
513 	error = sc.ops->setup(&sc, ip);
514 	if (error)
515 		goto out_teardown;
516 
517 	/* Scrub for errors. */
518 	error = sc.ops->scrub(&sc);
519 	if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
520 		/*
521 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
522 		 * Tear down everything we hold, then set up again with
523 		 * preparation for worst-case scenarios.
524 		 */
525 		error = xchk_teardown(&sc, ip, 0);
526 		if (error)
527 			goto out;
528 		sc.flags |= XCHK_TRY_HARDER;
529 		goto retry_op;
530 	} else if (error)
531 		goto out_teardown;
532 
533 	xchk_update_health(&sc);
534 
535 	if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
536 	    !(sc.flags & XREP_ALREADY_FIXED)) {
537 		bool needs_fix;
538 
539 		/* Let debug users force us into the repair routines. */
540 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
541 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
542 
543 		needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
544 						XFS_SCRUB_OFLAG_XCORRUPT |
545 						XFS_SCRUB_OFLAG_PREEN));
546 		/*
547 		 * If userspace asked for a repair but it wasn't necessary,
548 		 * report that back to userspace.
549 		 */
550 		if (!needs_fix) {
551 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
552 			goto out_nofix;
553 		}
554 
555 		/*
556 		 * If it's broken, userspace wants us to fix it, and we haven't
557 		 * already tried to fix it, then attempt a repair.
558 		 */
559 		error = xrep_attempt(ip, &sc);
560 		if (error == -EAGAIN) {
561 			/*
562 			 * Either the repair function succeeded or it couldn't
563 			 * get all the resources it needs; either way, we go
564 			 * back to the beginning and call the scrub function.
565 			 */
566 			error = xchk_teardown(&sc, ip, 0);
567 			if (error) {
568 				xrep_failure(mp);
569 				goto out;
570 			}
571 			goto retry_op;
572 		}
573 	}
574 
575 out_nofix:
576 	xchk_postmortem(&sc);
577 out_teardown:
578 	error = xchk_teardown(&sc, ip, error);
579 out:
580 	trace_xchk_done(ip, sm, error);
581 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
582 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
583 		error = 0;
584 	}
585 	return error;
586 }
587