xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 /* Free all the resources and finish the transactions. */
149 STATIC int
150 xchk_teardown(
151 	struct xfs_scrub	*sc,
152 	struct xfs_inode	*ip_in,
153 	int			error)
154 {
155 	xchk_ag_free(sc, &sc->sa);
156 	if (sc->tp) {
157 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
158 			error = xfs_trans_commit(sc->tp);
159 		else
160 			xfs_trans_cancel(sc->tp);
161 		sc->tp = NULL;
162 	}
163 	if (sc->ip) {
164 		if (sc->ilock_flags)
165 			xfs_iunlock(sc->ip, sc->ilock_flags);
166 		if (sc->ip != ip_in &&
167 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
168 			xfs_irele(sc->ip);
169 		sc->ip = NULL;
170 	}
171 	sb_end_write(sc->mp->m_super);
172 	if (sc->flags & XCHK_REAPING_DISABLED)
173 		xchk_start_reaping(sc);
174 	if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
175 		mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
176 		sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
177 	}
178 	if (sc->buf) {
179 		kmem_free(sc->buf);
180 		sc->buf = NULL;
181 	}
182 	return error;
183 }
184 
185 /* Scrubbing dispatch. */
186 
187 static const struct xchk_meta_ops meta_scrub_ops[] = {
188 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
189 		.type	= ST_NONE,
190 		.setup	= xchk_setup_fs,
191 		.scrub	= xchk_probe,
192 		.repair = xrep_probe,
193 	},
194 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
195 		.type	= ST_PERAG,
196 		.setup	= xchk_setup_fs,
197 		.scrub	= xchk_superblock,
198 		.repair	= xrep_superblock,
199 	},
200 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
201 		.type	= ST_PERAG,
202 		.setup	= xchk_setup_fs,
203 		.scrub	= xchk_agf,
204 		.repair	= xrep_agf,
205 	},
206 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
207 		.type	= ST_PERAG,
208 		.setup	= xchk_setup_fs,
209 		.scrub	= xchk_agfl,
210 		.repair	= xrep_agfl,
211 	},
212 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
213 		.type	= ST_PERAG,
214 		.setup	= xchk_setup_fs,
215 		.scrub	= xchk_agi,
216 		.repair	= xrep_agi,
217 	},
218 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
219 		.type	= ST_PERAG,
220 		.setup	= xchk_setup_ag_allocbt,
221 		.scrub	= xchk_bnobt,
222 		.repair	= xrep_notsupported,
223 	},
224 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
225 		.type	= ST_PERAG,
226 		.setup	= xchk_setup_ag_allocbt,
227 		.scrub	= xchk_cntbt,
228 		.repair	= xrep_notsupported,
229 	},
230 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
231 		.type	= ST_PERAG,
232 		.setup	= xchk_setup_ag_iallocbt,
233 		.scrub	= xchk_inobt,
234 		.repair	= xrep_notsupported,
235 	},
236 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
237 		.type	= ST_PERAG,
238 		.setup	= xchk_setup_ag_iallocbt,
239 		.scrub	= xchk_finobt,
240 		.has	= xfs_sb_version_hasfinobt,
241 		.repair	= xrep_notsupported,
242 	},
243 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
244 		.type	= ST_PERAG,
245 		.setup	= xchk_setup_ag_rmapbt,
246 		.scrub	= xchk_rmapbt,
247 		.has	= xfs_sb_version_hasrmapbt,
248 		.repair	= xrep_notsupported,
249 	},
250 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
251 		.type	= ST_PERAG,
252 		.setup	= xchk_setup_ag_refcountbt,
253 		.scrub	= xchk_refcountbt,
254 		.has	= xfs_sb_version_hasreflink,
255 		.repair	= xrep_notsupported,
256 	},
257 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
258 		.type	= ST_INODE,
259 		.setup	= xchk_setup_inode,
260 		.scrub	= xchk_inode,
261 		.repair	= xrep_notsupported,
262 	},
263 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
264 		.type	= ST_INODE,
265 		.setup	= xchk_setup_inode_bmap,
266 		.scrub	= xchk_bmap_data,
267 		.repair	= xrep_notsupported,
268 	},
269 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
270 		.type	= ST_INODE,
271 		.setup	= xchk_setup_inode_bmap,
272 		.scrub	= xchk_bmap_attr,
273 		.repair	= xrep_notsupported,
274 	},
275 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
276 		.type	= ST_INODE,
277 		.setup	= xchk_setup_inode_bmap,
278 		.scrub	= xchk_bmap_cow,
279 		.repair	= xrep_notsupported,
280 	},
281 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
282 		.type	= ST_INODE,
283 		.setup	= xchk_setup_directory,
284 		.scrub	= xchk_directory,
285 		.repair	= xrep_notsupported,
286 	},
287 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
288 		.type	= ST_INODE,
289 		.setup	= xchk_setup_xattr,
290 		.scrub	= xchk_xattr,
291 		.repair	= xrep_notsupported,
292 	},
293 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
294 		.type	= ST_INODE,
295 		.setup	= xchk_setup_symlink,
296 		.scrub	= xchk_symlink,
297 		.repair	= xrep_notsupported,
298 	},
299 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
300 		.type	= ST_INODE,
301 		.setup	= xchk_setup_parent,
302 		.scrub	= xchk_parent,
303 		.repair	= xrep_notsupported,
304 	},
305 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
306 		.type	= ST_FS,
307 		.setup	= xchk_setup_rt,
308 		.scrub	= xchk_rtbitmap,
309 		.has	= xfs_sb_version_hasrealtime,
310 		.repair	= xrep_notsupported,
311 	},
312 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
313 		.type	= ST_FS,
314 		.setup	= xchk_setup_rt,
315 		.scrub	= xchk_rtsummary,
316 		.has	= xfs_sb_version_hasrealtime,
317 		.repair	= xrep_notsupported,
318 	},
319 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
320 		.type	= ST_FS,
321 		.setup	= xchk_setup_quota,
322 		.scrub	= xchk_quota,
323 		.repair	= xrep_notsupported,
324 	},
325 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
326 		.type	= ST_FS,
327 		.setup	= xchk_setup_quota,
328 		.scrub	= xchk_quota,
329 		.repair	= xrep_notsupported,
330 	},
331 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
332 		.type	= ST_FS,
333 		.setup	= xchk_setup_quota,
334 		.scrub	= xchk_quota,
335 		.repair	= xrep_notsupported,
336 	},
337 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
338 		.type	= ST_FS,
339 		.setup	= xchk_setup_fscounters,
340 		.scrub	= xchk_fscounters,
341 		.repair	= xrep_notsupported,
342 	},
343 };
344 
345 /* This isn't a stable feature, warn once per day. */
346 static inline void
347 xchk_experimental_warning(
348 	struct xfs_mount	*mp)
349 {
350 	static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
351 			"xchk_warning", 86400 * HZ, 1);
352 	ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
353 
354 	if (__ratelimit(&scrub_warning))
355 		xfs_alert(mp,
356 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
357 }
358 
359 static int
360 xchk_validate_inputs(
361 	struct xfs_mount		*mp,
362 	struct xfs_scrub_metadata	*sm)
363 {
364 	int				error;
365 	const struct xchk_meta_ops	*ops;
366 
367 	error = -EINVAL;
368 	/* Check our inputs. */
369 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
370 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
371 		goto out;
372 	/* sm_reserved[] must be zero */
373 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
374 		goto out;
375 
376 	error = -ENOENT;
377 	/* Do we know about this type of metadata? */
378 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
379 		goto out;
380 	ops = &meta_scrub_ops[sm->sm_type];
381 	if (ops->setup == NULL || ops->scrub == NULL)
382 		goto out;
383 	/* Does this fs even support this type of metadata? */
384 	if (ops->has && !ops->has(&mp->m_sb))
385 		goto out;
386 
387 	error = -EINVAL;
388 	/* restricting fields must be appropriate for type */
389 	switch (ops->type) {
390 	case ST_NONE:
391 	case ST_FS:
392 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
393 			goto out;
394 		break;
395 	case ST_PERAG:
396 		if (sm->sm_ino || sm->sm_gen ||
397 		    sm->sm_agno >= mp->m_sb.sb_agcount)
398 			goto out;
399 		break;
400 	case ST_INODE:
401 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
402 			goto out;
403 		break;
404 	default:
405 		goto out;
406 	}
407 
408 	/*
409 	 * We only want to repair read-write v5+ filesystems.  Defer the check
410 	 * for ops->repair until after our scrub confirms that we need to
411 	 * perform repairs so that we avoid failing due to not supporting
412 	 * repairing an object that doesn't need repairs.
413 	 */
414 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
415 		error = -EOPNOTSUPP;
416 		if (!xfs_sb_version_hascrc(&mp->m_sb))
417 			goto out;
418 
419 		error = -EROFS;
420 		if (mp->m_flags & XFS_MOUNT_RDONLY)
421 			goto out;
422 	}
423 
424 	error = 0;
425 out:
426 	return error;
427 }
428 
429 #ifdef CONFIG_XFS_ONLINE_REPAIR
430 static inline void xchk_postmortem(struct xfs_scrub *sc)
431 {
432 	/*
433 	 * Userspace asked us to repair something, we repaired it, rescanned
434 	 * it, and the rescan says it's still broken.  Scream about this in
435 	 * the system logs.
436 	 */
437 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
438 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
439 				 XFS_SCRUB_OFLAG_XCORRUPT)))
440 		xrep_failure(sc->mp);
441 }
442 #else
443 static inline void xchk_postmortem(struct xfs_scrub *sc)
444 {
445 	/*
446 	 * Userspace asked us to scrub something, it's broken, and we have no
447 	 * way of fixing it.  Scream in the logs.
448 	 */
449 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
450 				XFS_SCRUB_OFLAG_XCORRUPT))
451 		xfs_alert_ratelimited(sc->mp,
452 				"Corruption detected during scrub.");
453 }
454 #endif /* CONFIG_XFS_ONLINE_REPAIR */
455 
456 /* Dispatch metadata scrubbing. */
457 int
458 xfs_scrub_metadata(
459 	struct xfs_inode		*ip,
460 	struct xfs_scrub_metadata	*sm)
461 {
462 	struct xfs_scrub		sc = {
463 		.mp			= ip->i_mount,
464 		.sm			= sm,
465 		.sa			= {
466 			.agno		= NULLAGNUMBER,
467 		},
468 	};
469 	struct xfs_mount		*mp = ip->i_mount;
470 	int				error = 0;
471 
472 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
473 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
474 
475 	trace_xchk_start(ip, sm, error);
476 
477 	/* Forbidden if we are shut down or mounted norecovery. */
478 	error = -ESHUTDOWN;
479 	if (XFS_FORCED_SHUTDOWN(mp))
480 		goto out;
481 	error = -ENOTRECOVERABLE;
482 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
483 		goto out;
484 
485 	error = xchk_validate_inputs(mp, sm);
486 	if (error)
487 		goto out;
488 
489 	xchk_experimental_warning(mp);
490 
491 	sc.ops = &meta_scrub_ops[sm->sm_type];
492 	sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
493 retry_op:
494 	/*
495 	 * If freeze runs concurrently with a scrub, the freeze can be delayed
496 	 * indefinitely as we walk the filesystem and iterate over metadata
497 	 * buffers.  Freeze quiesces the log (which waits for the buffer LRU to
498 	 * be emptied) and that won't happen while checking is running.
499 	 */
500 	sb_start_write(mp->m_super);
501 
502 	/* Set up for the operation. */
503 	error = sc.ops->setup(&sc, ip);
504 	if (error)
505 		goto out_teardown;
506 
507 	/* Scrub for errors. */
508 	error = sc.ops->scrub(&sc);
509 	if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
510 		/*
511 		 * Scrubbers return -EDEADLOCK to mean 'try harder'.
512 		 * Tear down everything we hold, then set up again with
513 		 * preparation for worst-case scenarios.
514 		 */
515 		error = xchk_teardown(&sc, ip, 0);
516 		if (error)
517 			goto out;
518 		sc.flags |= XCHK_TRY_HARDER;
519 		goto retry_op;
520 	} else if (error)
521 		goto out_teardown;
522 
523 	xchk_update_health(&sc);
524 
525 	if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
526 	    !(sc.flags & XREP_ALREADY_FIXED)) {
527 		bool needs_fix;
528 
529 		/* Let debug users force us into the repair routines. */
530 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
531 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
532 
533 		needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
534 						XFS_SCRUB_OFLAG_XCORRUPT |
535 						XFS_SCRUB_OFLAG_PREEN));
536 		/*
537 		 * If userspace asked for a repair but it wasn't necessary,
538 		 * report that back to userspace.
539 		 */
540 		if (!needs_fix) {
541 			sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
542 			goto out_nofix;
543 		}
544 
545 		/*
546 		 * If it's broken, userspace wants us to fix it, and we haven't
547 		 * already tried to fix it, then attempt a repair.
548 		 */
549 		error = xrep_attempt(ip, &sc);
550 		if (error == -EAGAIN) {
551 			/*
552 			 * Either the repair function succeeded or it couldn't
553 			 * get all the resources it needs; either way, we go
554 			 * back to the beginning and call the scrub function.
555 			 */
556 			error = xchk_teardown(&sc, ip, 0);
557 			if (error) {
558 				xrep_failure(mp);
559 				goto out;
560 			}
561 			goto retry_op;
562 		}
563 	}
564 
565 out_nofix:
566 	xchk_postmortem(&sc);
567 out_teardown:
568 	error = xchk_teardown(&sc, ip, error);
569 out:
570 	trace_xchk_done(ip, sm, error);
571 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
572 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
573 		error = 0;
574 	}
575 	return error;
576 }
577