xref: /openbmc/linux/fs/xfs/scrub/scrub.c (revision 12109610)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017-2023 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <djwong@kernel.org>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans.h"
14 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_qm.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 #include "xfs_scrub.h"
20 #include "scrub/scrub.h"
21 #include "scrub/common.h"
22 #include "scrub/trace.h"
23 #include "scrub/repair.h"
24 #include "scrub/health.h"
25 
26 /*
27  * Online Scrub and Repair
28  *
29  * Traditionally, XFS (the kernel driver) did not know how to check or
30  * repair on-disk data structures.  That task was left to the xfs_check
31  * and xfs_repair tools, both of which require taking the filesystem
32  * offline for a thorough but time consuming examination.  Online
33  * scrub & repair, on the other hand, enables us to check the metadata
34  * for obvious errors while carefully stepping around the filesystem's
35  * ongoing operations, locking rules, etc.
36  *
37  * Given that most XFS metadata consist of records stored in a btree,
38  * most of the checking functions iterate the btree blocks themselves
39  * looking for irregularities.  When a record block is encountered, each
40  * record can be checked for obviously bad values.  Record values can
41  * also be cross-referenced against other btrees to look for potential
42  * misunderstandings between pieces of metadata.
43  *
44  * It is expected that the checkers responsible for per-AG metadata
45  * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
46  * metadata structure, and perform any relevant cross-referencing before
47  * unlocking the AG and returning the results to userspace.  These
48  * scrubbers must not keep an AG locked for too long to avoid tying up
49  * the block and inode allocators.
50  *
51  * Block maps and b-trees rooted in an inode present a special challenge
52  * because they can involve extents from any AG.  The general scrubber
53  * structure of lock -> check -> xref -> unlock still holds, but AG
54  * locking order rules /must/ be obeyed to avoid deadlocks.  The
55  * ordering rule, of course, is that we must lock in increasing AG
56  * order.  Helper functions are provided to track which AG headers we've
57  * already locked.  If we detect an imminent locking order violation, we
58  * can signal a potential deadlock, in which case the scrubber can jump
59  * out to the top level, lock all the AGs in order, and retry the scrub.
60  *
61  * For file data (directories, extended attributes, symlinks) scrub, we
62  * can simply lock the inode and walk the data.  For btree data
63  * (directories and attributes) we follow the same btree-scrubbing
64  * strategy outlined previously to check the records.
65  *
66  * We use a bit of trickery with transactions to avoid buffer deadlocks
67  * if there is a cycle in the metadata.  The basic problem is that
68  * travelling down a btree involves locking the current buffer at each
69  * tree level.  If a pointer should somehow point back to a buffer that
70  * we've already examined, we will deadlock due to the second buffer
71  * locking attempt.  Note however that grabbing a buffer in transaction
72  * context links the locked buffer to the transaction.  If we try to
73  * re-grab the buffer in the context of the same transaction, we avoid
74  * the second lock attempt and continue.  Between the verifier and the
75  * scrubber, something will notice that something is amiss and report
76  * the corruption.  Therefore, each scrubber will allocate an empty
77  * transaction, attach buffers to it, and cancel the transaction at the
78  * end of the scrub run.  Cancelling a non-dirty transaction simply
79  * unlocks the buffers.
80  *
81  * There are four pieces of data that scrub can communicate to
82  * userspace.  The first is the error code (errno), which can be used to
83  * communicate operational errors in performing the scrub.  There are
84  * also three flags that can be set in the scrub context.  If the data
85  * structure itself is corrupt, the CORRUPT flag will be set.  If
86  * the metadata is correct but otherwise suboptimal, the PREEN flag
87  * will be set.
88  *
89  * We perform secondary validation of filesystem metadata by
90  * cross-referencing every record with all other available metadata.
91  * For example, for block mapping extents, we verify that there are no
92  * records in the free space and inode btrees corresponding to that
93  * space extent and that there is a corresponding entry in the reverse
94  * mapping btree.  Inconsistent metadata is noted by setting the
95  * XCORRUPT flag; btree query function errors are noted by setting the
96  * XFAIL flag and deleting the cursor to prevent further attempts to
97  * cross-reference with a defective btree.
98  *
99  * If a piece of metadata proves corrupt or suboptimal, the userspace
100  * program can ask the kernel to apply some tender loving care (TLC) to
101  * the metadata object by setting the REPAIR flag and re-calling the
102  * scrub ioctl.  "Corruption" is defined by metadata violating the
103  * on-disk specification; operations cannot continue if the violation is
104  * left untreated.  It is possible for XFS to continue if an object is
105  * "suboptimal", however performance may be degraded.  Repairs are
106  * usually performed by rebuilding the metadata entirely out of
107  * redundant metadata.  Optimizing, on the other hand, can sometimes be
108  * done without rebuilding entire structures.
109  *
110  * Generally speaking, the repair code has the following code structure:
111  * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
112  * The first check helps us figure out if we need to rebuild or simply
113  * optimize the structure so that the rebuild knows what to do.  The
114  * second check evaluates the completeness of the repair; that is what
115  * is reported to userspace.
116  *
117  * A quick note on symbol prefixes:
118  * - "xfs_" are general XFS symbols.
119  * - "xchk_" are symbols related to metadata checking.
120  * - "xrep_" are symbols related to metadata repair.
121  * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
122  */
123 
124 /*
125  * Scrub probe -- userspace uses this to probe if we're willing to scrub
126  * or repair a given mountpoint.  This will be used by xfs_scrub to
127  * probe the kernel's abilities to scrub (and repair) the metadata.  We
128  * do this by validating the ioctl inputs from userspace, preparing the
129  * filesystem for a scrub (or a repair) operation, and immediately
130  * returning to userspace.  Userspace can use the returned errno and
131  * structure state to decide (in broad terms) if scrub/repair are
132  * supported by the running kernel.
133  */
134 static int
135 xchk_probe(
136 	struct xfs_scrub	*sc)
137 {
138 	int			error = 0;
139 
140 	if (xchk_should_terminate(sc, &error))
141 		return error;
142 
143 	return 0;
144 }
145 
146 /* Scrub setup and teardown */
147 
148 static inline void
149 xchk_fsgates_disable(
150 	struct xfs_scrub	*sc)
151 {
152 	if (!(sc->flags & XCHK_FSGATES_ALL))
153 		return;
154 
155 	trace_xchk_fsgates_disable(sc, sc->flags & XCHK_FSGATES_ALL);
156 
157 	if (sc->flags & XCHK_FSGATES_DRAIN)
158 		xfs_drain_wait_disable();
159 
160 	sc->flags &= ~XCHK_FSGATES_ALL;
161 }
162 
163 /* Free all the resources and finish the transactions. */
164 STATIC int
165 xchk_teardown(
166 	struct xfs_scrub	*sc,
167 	int			error)
168 {
169 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
170 
171 	xchk_ag_free(sc, &sc->sa);
172 	if (sc->tp) {
173 		if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
174 			error = xfs_trans_commit(sc->tp);
175 		else
176 			xfs_trans_cancel(sc->tp);
177 		sc->tp = NULL;
178 	}
179 	if (sc->ip) {
180 		if (sc->ilock_flags)
181 			xfs_iunlock(sc->ip, sc->ilock_flags);
182 		if (sc->ip != ip_in &&
183 		    !xfs_internal_inum(sc->mp, sc->ip->i_ino))
184 			xchk_irele(sc, sc->ip);
185 		sc->ip = NULL;
186 	}
187 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
188 		mnt_drop_write_file(sc->file);
189 	if (sc->buf) {
190 		if (sc->buf_cleanup)
191 			sc->buf_cleanup(sc->buf);
192 		kvfree(sc->buf);
193 		sc->buf_cleanup = NULL;
194 		sc->buf = NULL;
195 	}
196 
197 	xchk_fsgates_disable(sc);
198 	return error;
199 }
200 
201 /* Scrubbing dispatch. */
202 
203 static const struct xchk_meta_ops meta_scrub_ops[] = {
204 	[XFS_SCRUB_TYPE_PROBE] = {	/* ioctl presence test */
205 		.type	= ST_NONE,
206 		.setup	= xchk_setup_fs,
207 		.scrub	= xchk_probe,
208 		.repair = xrep_probe,
209 	},
210 	[XFS_SCRUB_TYPE_SB] = {		/* superblock */
211 		.type	= ST_PERAG,
212 		.setup	= xchk_setup_agheader,
213 		.scrub	= xchk_superblock,
214 		.repair	= xrep_superblock,
215 	},
216 	[XFS_SCRUB_TYPE_AGF] = {	/* agf */
217 		.type	= ST_PERAG,
218 		.setup	= xchk_setup_agheader,
219 		.scrub	= xchk_agf,
220 		.repair	= xrep_agf,
221 	},
222 	[XFS_SCRUB_TYPE_AGFL]= {	/* agfl */
223 		.type	= ST_PERAG,
224 		.setup	= xchk_setup_agheader,
225 		.scrub	= xchk_agfl,
226 		.repair	= xrep_agfl,
227 	},
228 	[XFS_SCRUB_TYPE_AGI] = {	/* agi */
229 		.type	= ST_PERAG,
230 		.setup	= xchk_setup_agheader,
231 		.scrub	= xchk_agi,
232 		.repair	= xrep_agi,
233 	},
234 	[XFS_SCRUB_TYPE_BNOBT] = {	/* bnobt */
235 		.type	= ST_PERAG,
236 		.setup	= xchk_setup_ag_allocbt,
237 		.scrub	= xchk_bnobt,
238 		.repair	= xrep_notsupported,
239 	},
240 	[XFS_SCRUB_TYPE_CNTBT] = {	/* cntbt */
241 		.type	= ST_PERAG,
242 		.setup	= xchk_setup_ag_allocbt,
243 		.scrub	= xchk_cntbt,
244 		.repair	= xrep_notsupported,
245 	},
246 	[XFS_SCRUB_TYPE_INOBT] = {	/* inobt */
247 		.type	= ST_PERAG,
248 		.setup	= xchk_setup_ag_iallocbt,
249 		.scrub	= xchk_inobt,
250 		.repair	= xrep_notsupported,
251 	},
252 	[XFS_SCRUB_TYPE_FINOBT] = {	/* finobt */
253 		.type	= ST_PERAG,
254 		.setup	= xchk_setup_ag_iallocbt,
255 		.scrub	= xchk_finobt,
256 		.has	= xfs_has_finobt,
257 		.repair	= xrep_notsupported,
258 	},
259 	[XFS_SCRUB_TYPE_RMAPBT] = {	/* rmapbt */
260 		.type	= ST_PERAG,
261 		.setup	= xchk_setup_ag_rmapbt,
262 		.scrub	= xchk_rmapbt,
263 		.has	= xfs_has_rmapbt,
264 		.repair	= xrep_notsupported,
265 	},
266 	[XFS_SCRUB_TYPE_REFCNTBT] = {	/* refcountbt */
267 		.type	= ST_PERAG,
268 		.setup	= xchk_setup_ag_refcountbt,
269 		.scrub	= xchk_refcountbt,
270 		.has	= xfs_has_reflink,
271 		.repair	= xrep_notsupported,
272 	},
273 	[XFS_SCRUB_TYPE_INODE] = {	/* inode record */
274 		.type	= ST_INODE,
275 		.setup	= xchk_setup_inode,
276 		.scrub	= xchk_inode,
277 		.repair	= xrep_notsupported,
278 	},
279 	[XFS_SCRUB_TYPE_BMBTD] = {	/* inode data fork */
280 		.type	= ST_INODE,
281 		.setup	= xchk_setup_inode_bmap,
282 		.scrub	= xchk_bmap_data,
283 		.repair	= xrep_notsupported,
284 	},
285 	[XFS_SCRUB_TYPE_BMBTA] = {	/* inode attr fork */
286 		.type	= ST_INODE,
287 		.setup	= xchk_setup_inode_bmap,
288 		.scrub	= xchk_bmap_attr,
289 		.repair	= xrep_notsupported,
290 	},
291 	[XFS_SCRUB_TYPE_BMBTC] = {	/* inode CoW fork */
292 		.type	= ST_INODE,
293 		.setup	= xchk_setup_inode_bmap,
294 		.scrub	= xchk_bmap_cow,
295 		.repair	= xrep_notsupported,
296 	},
297 	[XFS_SCRUB_TYPE_DIR] = {	/* directory */
298 		.type	= ST_INODE,
299 		.setup	= xchk_setup_directory,
300 		.scrub	= xchk_directory,
301 		.repair	= xrep_notsupported,
302 	},
303 	[XFS_SCRUB_TYPE_XATTR] = {	/* extended attributes */
304 		.type	= ST_INODE,
305 		.setup	= xchk_setup_xattr,
306 		.scrub	= xchk_xattr,
307 		.repair	= xrep_notsupported,
308 	},
309 	[XFS_SCRUB_TYPE_SYMLINK] = {	/* symbolic link */
310 		.type	= ST_INODE,
311 		.setup	= xchk_setup_symlink,
312 		.scrub	= xchk_symlink,
313 		.repair	= xrep_notsupported,
314 	},
315 	[XFS_SCRUB_TYPE_PARENT] = {	/* parent pointers */
316 		.type	= ST_INODE,
317 		.setup	= xchk_setup_parent,
318 		.scrub	= xchk_parent,
319 		.repair	= xrep_notsupported,
320 	},
321 	[XFS_SCRUB_TYPE_RTBITMAP] = {	/* realtime bitmap */
322 		.type	= ST_FS,
323 		.setup	= xchk_setup_rt,
324 		.scrub	= xchk_rtbitmap,
325 		.has	= xfs_has_realtime,
326 		.repair	= xrep_notsupported,
327 	},
328 	[XFS_SCRUB_TYPE_RTSUM] = {	/* realtime summary */
329 		.type	= ST_FS,
330 		.setup	= xchk_setup_rt,
331 		.scrub	= xchk_rtsummary,
332 		.has	= xfs_has_realtime,
333 		.repair	= xrep_notsupported,
334 	},
335 	[XFS_SCRUB_TYPE_UQUOTA] = {	/* user quota */
336 		.type	= ST_FS,
337 		.setup	= xchk_setup_quota,
338 		.scrub	= xchk_quota,
339 		.repair	= xrep_notsupported,
340 	},
341 	[XFS_SCRUB_TYPE_GQUOTA] = {	/* group quota */
342 		.type	= ST_FS,
343 		.setup	= xchk_setup_quota,
344 		.scrub	= xchk_quota,
345 		.repair	= xrep_notsupported,
346 	},
347 	[XFS_SCRUB_TYPE_PQUOTA] = {	/* project quota */
348 		.type	= ST_FS,
349 		.setup	= xchk_setup_quota,
350 		.scrub	= xchk_quota,
351 		.repair	= xrep_notsupported,
352 	},
353 	[XFS_SCRUB_TYPE_FSCOUNTERS] = {	/* fs summary counters */
354 		.type	= ST_FS,
355 		.setup	= xchk_setup_fscounters,
356 		.scrub	= xchk_fscounters,
357 		.repair	= xrep_notsupported,
358 	},
359 };
360 
361 static int
362 xchk_validate_inputs(
363 	struct xfs_mount		*mp,
364 	struct xfs_scrub_metadata	*sm)
365 {
366 	int				error;
367 	const struct xchk_meta_ops	*ops;
368 
369 	error = -EINVAL;
370 	/* Check our inputs. */
371 	sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
372 	if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
373 		goto out;
374 	/* sm_reserved[] must be zero */
375 	if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
376 		goto out;
377 
378 	error = -ENOENT;
379 	/* Do we know about this type of metadata? */
380 	if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
381 		goto out;
382 	ops = &meta_scrub_ops[sm->sm_type];
383 	if (ops->setup == NULL || ops->scrub == NULL)
384 		goto out;
385 	/* Does this fs even support this type of metadata? */
386 	if (ops->has && !ops->has(mp))
387 		goto out;
388 
389 	error = -EINVAL;
390 	/* restricting fields must be appropriate for type */
391 	switch (ops->type) {
392 	case ST_NONE:
393 	case ST_FS:
394 		if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
395 			goto out;
396 		break;
397 	case ST_PERAG:
398 		if (sm->sm_ino || sm->sm_gen ||
399 		    sm->sm_agno >= mp->m_sb.sb_agcount)
400 			goto out;
401 		break;
402 	case ST_INODE:
403 		if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
404 			goto out;
405 		break;
406 	default:
407 		goto out;
408 	}
409 
410 	/*
411 	 * We only want to repair read-write v5+ filesystems.  Defer the check
412 	 * for ops->repair until after our scrub confirms that we need to
413 	 * perform repairs so that we avoid failing due to not supporting
414 	 * repairing an object that doesn't need repairs.
415 	 */
416 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
417 		error = -EOPNOTSUPP;
418 		if (!xfs_has_crc(mp))
419 			goto out;
420 
421 		error = -EROFS;
422 		if (xfs_is_readonly(mp))
423 			goto out;
424 	}
425 
426 	error = 0;
427 out:
428 	return error;
429 }
430 
431 #ifdef CONFIG_XFS_ONLINE_REPAIR
432 static inline void xchk_postmortem(struct xfs_scrub *sc)
433 {
434 	/*
435 	 * Userspace asked us to repair something, we repaired it, rescanned
436 	 * it, and the rescan says it's still broken.  Scream about this in
437 	 * the system logs.
438 	 */
439 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
440 	    (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
441 				 XFS_SCRUB_OFLAG_XCORRUPT)))
442 		xrep_failure(sc->mp);
443 }
444 #else
445 static inline void xchk_postmortem(struct xfs_scrub *sc)
446 {
447 	/*
448 	 * Userspace asked us to scrub something, it's broken, and we have no
449 	 * way of fixing it.  Scream in the logs.
450 	 */
451 	if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
452 				XFS_SCRUB_OFLAG_XCORRUPT))
453 		xfs_alert_ratelimited(sc->mp,
454 				"Corruption detected during scrub.");
455 }
456 #endif /* CONFIG_XFS_ONLINE_REPAIR */
457 
458 /* Dispatch metadata scrubbing. */
459 int
460 xfs_scrub_metadata(
461 	struct file			*file,
462 	struct xfs_scrub_metadata	*sm)
463 {
464 	struct xfs_scrub		*sc;
465 	struct xfs_mount		*mp = XFS_I(file_inode(file))->i_mount;
466 	int				error = 0;
467 
468 	BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
469 		(sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
470 
471 	trace_xchk_start(XFS_I(file_inode(file)), sm, error);
472 
473 	/* Forbidden if we are shut down or mounted norecovery. */
474 	error = -ESHUTDOWN;
475 	if (xfs_is_shutdown(mp))
476 		goto out;
477 	error = -ENOTRECOVERABLE;
478 	if (xfs_has_norecovery(mp))
479 		goto out;
480 
481 	error = xchk_validate_inputs(mp, sm);
482 	if (error)
483 		goto out;
484 
485 	xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SCRUB,
486  "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
487 
488 	sc = kzalloc(sizeof(struct xfs_scrub), XCHK_GFP_FLAGS);
489 	if (!sc) {
490 		error = -ENOMEM;
491 		goto out;
492 	}
493 
494 	sc->mp = mp;
495 	sc->file = file;
496 	sc->sm = sm;
497 	sc->ops = &meta_scrub_ops[sm->sm_type];
498 	sc->sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
499 retry_op:
500 	/*
501 	 * When repairs are allowed, prevent freezing or readonly remount while
502 	 * scrub is running with a real transaction.
503 	 */
504 	if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
505 		error = mnt_want_write_file(sc->file);
506 		if (error)
507 			goto out_sc;
508 	}
509 
510 	/* Set up for the operation. */
511 	error = sc->ops->setup(sc);
512 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
513 		goto try_harder;
514 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
515 		goto need_drain;
516 	if (error)
517 		goto out_teardown;
518 
519 	/* Scrub for errors. */
520 	error = sc->ops->scrub(sc);
521 	if (error == -EDEADLOCK && !(sc->flags & XCHK_TRY_HARDER))
522 		goto try_harder;
523 	if (error == -ECHRNG && !(sc->flags & XCHK_NEED_DRAIN))
524 		goto need_drain;
525 	if (error || (sm->sm_flags & XFS_SCRUB_OFLAG_INCOMPLETE))
526 		goto out_teardown;
527 
528 	xchk_update_health(sc);
529 
530 	if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
531 	    !(sc->flags & XREP_ALREADY_FIXED)) {
532 		bool needs_fix;
533 
534 		/* Let debug users force us into the repair routines. */
535 		if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
536 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
537 
538 		needs_fix = (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
539 						 XFS_SCRUB_OFLAG_XCORRUPT |
540 						 XFS_SCRUB_OFLAG_PREEN));
541 		/*
542 		 * If userspace asked for a repair but it wasn't necessary,
543 		 * report that back to userspace.
544 		 */
545 		if (!needs_fix) {
546 			sc->sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
547 			goto out_nofix;
548 		}
549 
550 		/*
551 		 * If it's broken, userspace wants us to fix it, and we haven't
552 		 * already tried to fix it, then attempt a repair.
553 		 */
554 		error = xrep_attempt(sc);
555 		if (error == -EAGAIN) {
556 			/*
557 			 * Either the repair function succeeded or it couldn't
558 			 * get all the resources it needs; either way, we go
559 			 * back to the beginning and call the scrub function.
560 			 */
561 			error = xchk_teardown(sc, 0);
562 			if (error) {
563 				xrep_failure(mp);
564 				goto out_sc;
565 			}
566 			goto retry_op;
567 		}
568 	}
569 
570 out_nofix:
571 	xchk_postmortem(sc);
572 out_teardown:
573 	error = xchk_teardown(sc, error);
574 out_sc:
575 	kfree(sc);
576 out:
577 	trace_xchk_done(XFS_I(file_inode(file)), sm, error);
578 	if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
579 		sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
580 		error = 0;
581 	}
582 	return error;
583 need_drain:
584 	error = xchk_teardown(sc, 0);
585 	if (error)
586 		goto out_sc;
587 	sc->flags |= XCHK_NEED_DRAIN;
588 	goto retry_op;
589 try_harder:
590 	/*
591 	 * Scrubbers return -EDEADLOCK to mean 'try harder'.  Tear down
592 	 * everything we hold, then set up again with preparation for
593 	 * worst-case scenarios.
594 	 */
595 	error = xchk_teardown(sc, 0);
596 	if (error)
597 		goto out_sc;
598 	sc->flags |= XCHK_TRY_HARDER;
599 	goto retry_op;
600 }
601