xref: /openbmc/linux/fs/xfs/scrub/repair.c (revision f68f2ff9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_sb.h"
16 #include "xfs_inode.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_rmap.h"
22 #include "xfs_rmap_btree.h"
23 #include "xfs_refcount_btree.h"
24 #include "xfs_extent_busy.h"
25 #include "xfs_ag.h"
26 #include "xfs_ag_resv.h"
27 #include "xfs_quota.h"
28 #include "xfs_qm.h"
29 #include "scrub/scrub.h"
30 #include "scrub/common.h"
31 #include "scrub/trace.h"
32 #include "scrub/repair.h"
33 #include "scrub/bitmap.h"
34 
35 /*
36  * Attempt to repair some metadata, if the metadata is corrupt and userspace
37  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
38  * and will set *fixed to true if it thinks it repaired anything.
39  */
40 int
41 xrep_attempt(
42 	struct xfs_scrub	*sc)
43 {
44 	int			error = 0;
45 
46 	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
47 
48 	xchk_ag_btcur_free(&sc->sa);
49 
50 	/* Repair whatever's broken. */
51 	ASSERT(sc->ops->repair);
52 	error = sc->ops->repair(sc);
53 	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
54 	switch (error) {
55 	case 0:
56 		/*
57 		 * Repair succeeded.  Commit the fixes and perform a second
58 		 * scrub so that we can tell userspace if we fixed the problem.
59 		 */
60 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
61 		sc->flags |= XREP_ALREADY_FIXED;
62 		return -EAGAIN;
63 	case -EDEADLOCK:
64 	case -EAGAIN:
65 		/* Tell the caller to try again having grabbed all the locks. */
66 		if (!(sc->flags & XCHK_TRY_HARDER)) {
67 			sc->flags |= XCHK_TRY_HARDER;
68 			return -EAGAIN;
69 		}
70 		/*
71 		 * We tried harder but still couldn't grab all the resources
72 		 * we needed to fix it.  The corruption has not been fixed,
73 		 * so report back to userspace.
74 		 */
75 		return -EFSCORRUPTED;
76 	default:
77 		return error;
78 	}
79 }
80 
81 /*
82  * Complain about unfixable problems in the filesystem.  We don't log
83  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
84  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
85  * administrator isn't running xfs_scrub in no-repairs mode.
86  *
87  * Use this helper function because _ratelimited silently declares a static
88  * structure to track rate limiting information.
89  */
90 void
91 xrep_failure(
92 	struct xfs_mount	*mp)
93 {
94 	xfs_alert_ratelimited(mp,
95 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
96 }
97 
98 /*
99  * Repair probe -- userspace uses this to probe if we're willing to repair a
100  * given mountpoint.
101  */
102 int
103 xrep_probe(
104 	struct xfs_scrub	*sc)
105 {
106 	int			error = 0;
107 
108 	if (xchk_should_terminate(sc, &error))
109 		return error;
110 
111 	return 0;
112 }
113 
114 /*
115  * Roll a transaction, keeping the AG headers locked and reinitializing
116  * the btree cursors.
117  */
118 int
119 xrep_roll_ag_trans(
120 	struct xfs_scrub	*sc)
121 {
122 	int			error;
123 
124 	/* Keep the AG header buffers locked so we can keep going. */
125 	if (sc->sa.agi_bp)
126 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
127 	if (sc->sa.agf_bp)
128 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
129 	if (sc->sa.agfl_bp)
130 		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
131 
132 	/*
133 	 * Roll the transaction.  We still own the buffer and the buffer lock
134 	 * regardless of whether or not the roll succeeds.  If the roll fails,
135 	 * the buffers will be released during teardown on our way out of the
136 	 * kernel.  If it succeeds, we join them to the new transaction and
137 	 * move on.
138 	 */
139 	error = xfs_trans_roll(&sc->tp);
140 	if (error)
141 		return error;
142 
143 	/* Join AG headers to the new transaction. */
144 	if (sc->sa.agi_bp)
145 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
146 	if (sc->sa.agf_bp)
147 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
148 	if (sc->sa.agfl_bp)
149 		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
150 
151 	return 0;
152 }
153 
154 /*
155  * Does the given AG have enough space to rebuild a btree?  Neither AG
156  * reservation can be critical, and we must have enough space (factoring
157  * in AG reservations) to construct a whole btree.
158  */
159 bool
160 xrep_ag_has_space(
161 	struct xfs_perag	*pag,
162 	xfs_extlen_t		nr_blocks,
163 	enum xfs_ag_resv_type	type)
164 {
165 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
166 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
167 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
168 }
169 
170 /*
171  * Figure out how many blocks to reserve for an AG repair.  We calculate the
172  * worst case estimate for the number of blocks we'd need to rebuild one of
173  * any type of per-AG btree.
174  */
175 xfs_extlen_t
176 xrep_calc_ag_resblks(
177 	struct xfs_scrub		*sc)
178 {
179 	struct xfs_mount		*mp = sc->mp;
180 	struct xfs_scrub_metadata	*sm = sc->sm;
181 	struct xfs_perag		*pag;
182 	struct xfs_buf			*bp;
183 	xfs_agino_t			icount = NULLAGINO;
184 	xfs_extlen_t			aglen = NULLAGBLOCK;
185 	xfs_extlen_t			usedlen;
186 	xfs_extlen_t			freelen;
187 	xfs_extlen_t			bnobt_sz;
188 	xfs_extlen_t			inobt_sz;
189 	xfs_extlen_t			rmapbt_sz;
190 	xfs_extlen_t			refcbt_sz;
191 	int				error;
192 
193 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
194 		return 0;
195 
196 	pag = xfs_perag_get(mp, sm->sm_agno);
197 	if (pag->pagi_init) {
198 		/* Use in-core icount if possible. */
199 		icount = pag->pagi_count;
200 	} else {
201 		/* Try to get the actual counters from disk. */
202 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
203 		if (!error) {
204 			icount = pag->pagi_count;
205 			xfs_buf_relse(bp);
206 		}
207 	}
208 
209 	/* Now grab the block counters from the AGF. */
210 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
211 	if (error) {
212 		aglen = xfs_ag_block_count(mp, sm->sm_agno);
213 		freelen = aglen;
214 		usedlen = aglen;
215 	} else {
216 		struct xfs_agf	*agf = bp->b_addr;
217 
218 		aglen = be32_to_cpu(agf->agf_length);
219 		freelen = be32_to_cpu(agf->agf_freeblks);
220 		usedlen = aglen - freelen;
221 		xfs_buf_relse(bp);
222 	}
223 	xfs_perag_put(pag);
224 
225 	/* If the icount is impossible, make some worst-case assumptions. */
226 	if (icount == NULLAGINO ||
227 	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
228 		xfs_agino_t	first, last;
229 
230 		xfs_agino_range(mp, sm->sm_agno, &first, &last);
231 		icount = last - first + 1;
232 	}
233 
234 	/* If the block counts are impossible, make worst-case assumptions. */
235 	if (aglen == NULLAGBLOCK ||
236 	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
237 	    freelen >= aglen) {
238 		aglen = xfs_ag_block_count(mp, sm->sm_agno);
239 		freelen = aglen;
240 		usedlen = aglen;
241 	}
242 
243 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
244 			freelen, usedlen);
245 
246 	/*
247 	 * Figure out how many blocks we'd need worst case to rebuild
248 	 * each type of btree.  Note that we can only rebuild the
249 	 * bnobt/cntbt or inobt/finobt as pairs.
250 	 */
251 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
252 	if (xfs_has_sparseinodes(mp))
253 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
254 				XFS_INODES_PER_HOLEMASK_BIT);
255 	else
256 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
257 				XFS_INODES_PER_CHUNK);
258 	if (xfs_has_finobt(mp))
259 		inobt_sz *= 2;
260 	if (xfs_has_reflink(mp))
261 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
262 	else
263 		refcbt_sz = 0;
264 	if (xfs_has_rmapbt(mp)) {
265 		/*
266 		 * Guess how many blocks we need to rebuild the rmapbt.
267 		 * For non-reflink filesystems we can't have more records than
268 		 * used blocks.  However, with reflink it's possible to have
269 		 * more than one rmap record per AG block.  We don't know how
270 		 * many rmaps there could be in the AG, so we start off with
271 		 * what we hope is an generous over-estimation.
272 		 */
273 		if (xfs_has_reflink(mp))
274 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
275 					(unsigned long long)aglen * 2);
276 		else
277 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
278 	} else {
279 		rmapbt_sz = 0;
280 	}
281 
282 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
283 			inobt_sz, rmapbt_sz, refcbt_sz);
284 
285 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
286 }
287 
288 /* Allocate a block in an AG. */
289 int
290 xrep_alloc_ag_block(
291 	struct xfs_scrub		*sc,
292 	const struct xfs_owner_info	*oinfo,
293 	xfs_fsblock_t			*fsbno,
294 	enum xfs_ag_resv_type		resv)
295 {
296 	struct xfs_alloc_arg		args = {0};
297 	xfs_agblock_t			bno;
298 	int				error;
299 
300 	switch (resv) {
301 	case XFS_AG_RESV_AGFL:
302 	case XFS_AG_RESV_RMAPBT:
303 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
304 		if (error)
305 			return error;
306 		if (bno == NULLAGBLOCK)
307 			return -ENOSPC;
308 		xfs_extent_busy_reuse(sc->mp, sc->sa.pag, bno,
309 				1, false);
310 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.pag->pag_agno, bno);
311 		if (resv == XFS_AG_RESV_RMAPBT)
312 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.pag->pag_agno);
313 		return 0;
314 	default:
315 		break;
316 	}
317 
318 	args.tp = sc->tp;
319 	args.mp = sc->mp;
320 	args.oinfo = *oinfo;
321 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.pag->pag_agno, 0);
322 	args.minlen = 1;
323 	args.maxlen = 1;
324 	args.prod = 1;
325 	args.type = XFS_ALLOCTYPE_THIS_AG;
326 	args.resv = resv;
327 
328 	error = xfs_alloc_vextent(&args);
329 	if (error)
330 		return error;
331 	if (args.fsbno == NULLFSBLOCK)
332 		return -ENOSPC;
333 	ASSERT(args.len == 1);
334 	*fsbno = args.fsbno;
335 
336 	return 0;
337 }
338 
339 /* Initialize a new AG btree root block with zero entries. */
340 int
341 xrep_init_btblock(
342 	struct xfs_scrub		*sc,
343 	xfs_fsblock_t			fsb,
344 	struct xfs_buf			**bpp,
345 	xfs_btnum_t			btnum,
346 	const struct xfs_buf_ops	*ops)
347 {
348 	struct xfs_trans		*tp = sc->tp;
349 	struct xfs_mount		*mp = sc->mp;
350 	struct xfs_buf			*bp;
351 	int				error;
352 
353 	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
354 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
355 
356 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.pag->pag_agno);
357 	error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
358 			XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
359 			&bp);
360 	if (error)
361 		return error;
362 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
363 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.pag->pag_agno);
364 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
365 	xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
366 	bp->b_ops = ops;
367 	*bpp = bp;
368 
369 	return 0;
370 }
371 
372 /*
373  * Reconstructing per-AG Btrees
374  *
375  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
376  * we scan secondary space metadata to derive the records that should be in
377  * the damaged btree, initialize a fresh btree root, and insert the records.
378  * Note that for rebuilding the rmapbt we scan all the primary data to
379  * generate the new records.
380  *
381  * However, that leaves the matter of removing all the metadata describing the
382  * old broken structure.  For primary metadata we use the rmap data to collect
383  * every extent with a matching rmap owner (bitmap); we then iterate all other
384  * metadata structures with the same rmap owner to collect the extents that
385  * cannot be removed (sublist).  We then subtract sublist from bitmap to
386  * derive the blocks that were used by the old btree.  These blocks can be
387  * reaped.
388  *
389  * For rmapbt reconstructions we must use different tactics for extent
390  * collection.  First we iterate all primary metadata (this excludes the old
391  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
392  * records are collected as bitmap.  The bnobt records are collected as
393  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
394  * result (since the rmapbt lives in the free space) are the blocks from the
395  * old rmapbt.
396  *
397  * Disposal of Blocks from Old per-AG Btrees
398  *
399  * Now that we've constructed a new btree to replace the damaged one, we want
400  * to dispose of the blocks that (we think) the old btree was using.
401  * Previously, we used the rmapbt to collect the extents (bitmap) with the
402  * rmap owner corresponding to the tree we rebuilt, collected extents for any
403  * blocks with the same rmap owner that are owned by another data structure
404  * (sublist), and subtracted sublist from bitmap.  In theory the extents
405  * remaining in bitmap are the old btree's blocks.
406  *
407  * Unfortunately, it's possible that the btree was crosslinked with other
408  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
409  * if the rmapbt says there is an owner of this block other than @oinfo, then
410  * the block is crosslinked.  Remove the reverse mapping and continue.
411  *
412  * If there is one rmap record, we can free the block, which removes the
413  * reverse mapping but doesn't add the block to the free space.  Our repair
414  * strategy is to hope the other metadata objects crosslinked on this block
415  * will be rebuilt (atop different blocks), thereby removing all the cross
416  * links.
417  *
418  * If there are no rmap records at all, we also free the block.  If the btree
419  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
420  * supposed to be a rmap record and everything is ok.  For other btrees there
421  * had to have been an rmap entry for the block to have ended up on @bitmap,
422  * so if it's gone now there's something wrong and the fs will shut down.
423  *
424  * Note: If there are multiple rmap records with only the same rmap owner as
425  * the btree we're trying to rebuild and the block is indeed owned by another
426  * data structure with the same rmap owner, then the block will be in sublist
427  * and therefore doesn't need disposal.  If there are multiple rmap records
428  * with only the same rmap owner but the block is not owned by something with
429  * the same rmap owner, the block will be freed.
430  *
431  * The caller is responsible for locking the AG headers for the entire rebuild
432  * operation so that nothing else can sneak in and change the AG state while
433  * we're not looking.  We also assume that the caller already invalidated any
434  * buffers associated with @bitmap.
435  */
436 
437 /*
438  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
439  * is not intended for use with file data repairs; we have bunmapi for that.
440  */
441 int
442 xrep_invalidate_blocks(
443 	struct xfs_scrub	*sc,
444 	struct xbitmap		*bitmap)
445 {
446 	struct xbitmap_range	*bmr;
447 	struct xbitmap_range	*n;
448 	struct xfs_buf		*bp;
449 	xfs_fsblock_t		fsbno;
450 
451 	/*
452 	 * For each block in each extent, see if there's an incore buffer for
453 	 * exactly that block; if so, invalidate it.  The buffer cache only
454 	 * lets us look for one buffer at a time, so we have to look one block
455 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
456 	 * because we never own those; and if we can't TRYLOCK the buffer we
457 	 * assume it's owned by someone else.
458 	 */
459 	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
460 		/* Skip AG headers and post-EOFS blocks */
461 		if (!xfs_verify_fsbno(sc->mp, fsbno))
462 			continue;
463 		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
464 				XFS_FSB_TO_DADDR(sc->mp, fsbno),
465 				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
466 		if (bp) {
467 			xfs_trans_bjoin(sc->tp, bp);
468 			xfs_trans_binval(sc->tp, bp);
469 		}
470 	}
471 
472 	return 0;
473 }
474 
475 /* Ensure the freelist is the correct size. */
476 int
477 xrep_fix_freelist(
478 	struct xfs_scrub	*sc,
479 	bool			can_shrink)
480 {
481 	struct xfs_alloc_arg	args = {0};
482 
483 	args.mp = sc->mp;
484 	args.tp = sc->tp;
485 	args.agno = sc->sa.pag->pag_agno;
486 	args.alignment = 1;
487 	args.pag = sc->sa.pag;
488 
489 	return xfs_alloc_fix_freelist(&args,
490 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
491 }
492 
493 /*
494  * Put a block back on the AGFL.
495  */
496 STATIC int
497 xrep_put_freelist(
498 	struct xfs_scrub	*sc,
499 	xfs_agblock_t		agbno)
500 {
501 	int			error;
502 
503 	/* Make sure there's space on the freelist. */
504 	error = xrep_fix_freelist(sc, true);
505 	if (error)
506 		return error;
507 
508 	/*
509 	 * Since we're "freeing" a lost block onto the AGFL, we have to
510 	 * create an rmap for the block prior to merging it or else other
511 	 * parts will break.
512 	 */
513 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.pag, agbno, 1,
514 			&XFS_RMAP_OINFO_AG);
515 	if (error)
516 		return error;
517 
518 	/* Put the block on the AGFL. */
519 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
520 			agbno, 0);
521 	if (error)
522 		return error;
523 	xfs_extent_busy_insert(sc->tp, sc->sa.pag, agbno, 1,
524 			XFS_EXTENT_BUSY_SKIP_DISCARD);
525 
526 	return 0;
527 }
528 
529 /* Dispose of a single block. */
530 STATIC int
531 xrep_reap_block(
532 	struct xfs_scrub		*sc,
533 	xfs_fsblock_t			fsbno,
534 	const struct xfs_owner_info	*oinfo,
535 	enum xfs_ag_resv_type		resv)
536 {
537 	struct xfs_btree_cur		*cur;
538 	struct xfs_buf			*agf_bp = NULL;
539 	xfs_agnumber_t			agno;
540 	xfs_agblock_t			agbno;
541 	bool				has_other_rmap;
542 	int				error;
543 
544 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
545 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
546 
547 	/*
548 	 * If we are repairing per-inode metadata, we need to read in the AGF
549 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
550 	 * the AGF buffer that the setup functions already grabbed.
551 	 */
552 	if (sc->ip) {
553 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
554 		if (error)
555 			return error;
556 	} else {
557 		agf_bp = sc->sa.agf_bp;
558 	}
559 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, sc->sa.pag);
560 
561 	/* Can we find any other rmappings? */
562 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
563 	xfs_btree_del_cursor(cur, error);
564 	if (error)
565 		goto out_free;
566 
567 	/*
568 	 * If there are other rmappings, this block is cross linked and must
569 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
570 	 * we were the only owner of the block, so free the extent, which will
571 	 * also remove the rmap.
572 	 *
573 	 * XXX: XFS doesn't support detecting the case where a single block
574 	 * metadata structure is crosslinked with a multi-block structure
575 	 * because the buffer cache doesn't detect aliasing problems, so we
576 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
577 	 * blow on writeout, the filesystem will shut down, and the admin gets
578 	 * to run xfs_repair.
579 	 */
580 	if (has_other_rmap)
581 		error = xfs_rmap_free(sc->tp, agf_bp, sc->sa.pag, agbno,
582 					1, oinfo);
583 	else if (resv == XFS_AG_RESV_AGFL)
584 		error = xrep_put_freelist(sc, agbno);
585 	else
586 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
587 	if (agf_bp != sc->sa.agf_bp)
588 		xfs_trans_brelse(sc->tp, agf_bp);
589 	if (error)
590 		return error;
591 
592 	if (sc->ip)
593 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
594 	return xrep_roll_ag_trans(sc);
595 
596 out_free:
597 	if (agf_bp != sc->sa.agf_bp)
598 		xfs_trans_brelse(sc->tp, agf_bp);
599 	return error;
600 }
601 
602 /* Dispose of every block of every extent in the bitmap. */
603 int
604 xrep_reap_extents(
605 	struct xfs_scrub		*sc,
606 	struct xbitmap			*bitmap,
607 	const struct xfs_owner_info	*oinfo,
608 	enum xfs_ag_resv_type		type)
609 {
610 	struct xbitmap_range		*bmr;
611 	struct xbitmap_range		*n;
612 	xfs_fsblock_t			fsbno;
613 	int				error = 0;
614 
615 	ASSERT(xfs_has_rmapbt(sc->mp));
616 
617 	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
618 		ASSERT(sc->ip != NULL ||
619 		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.pag->pag_agno);
620 		trace_xrep_dispose_btree_extent(sc->mp,
621 				XFS_FSB_TO_AGNO(sc->mp, fsbno),
622 				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
623 
624 		error = xrep_reap_block(sc, fsbno, oinfo, type);
625 		if (error)
626 			break;
627 	}
628 
629 	return error;
630 }
631 
632 /*
633  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
634  *
635  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
636  * the AG headers by using the rmap data to rummage through the AG looking for
637  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
638  * or the rmap data are corrupt.
639  *
640  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
641  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
642  * AGI is being rebuilt.  It must maintain these locks until it's safe for
643  * other threads to change the btrees' shapes.  The caller provides
644  * information about the btrees to look for by passing in an array of
645  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
646  * The (root, height) fields will be set on return if anything is found.  The
647  * last element of the array should have a NULL buf_ops to mark the end of the
648  * array.
649  *
650  * For every rmapbt record matching any of the rmap owners in btree_info,
651  * read each block referenced by the rmap record.  If the block is a btree
652  * block from this filesystem matching any of the magic numbers and has a
653  * level higher than what we've already seen, remember the block and the
654  * height of the tree required to have such a block.  When the call completes,
655  * we return the highest block we've found for each btree description; those
656  * should be the roots.
657  */
658 
659 struct xrep_findroot {
660 	struct xfs_scrub		*sc;
661 	struct xfs_buf			*agfl_bp;
662 	struct xfs_agf			*agf;
663 	struct xrep_find_ag_btree	*btree_info;
664 };
665 
666 /* See if our block is in the AGFL. */
667 STATIC int
668 xrep_findroot_agfl_walk(
669 	struct xfs_mount	*mp,
670 	xfs_agblock_t		bno,
671 	void			*priv)
672 {
673 	xfs_agblock_t		*agbno = priv;
674 
675 	return (*agbno == bno) ? -ECANCELED : 0;
676 }
677 
678 /* Does this block match the btree information passed in? */
679 STATIC int
680 xrep_findroot_block(
681 	struct xrep_findroot		*ri,
682 	struct xrep_find_ag_btree	*fab,
683 	uint64_t			owner,
684 	xfs_agblock_t			agbno,
685 	bool				*done_with_block)
686 {
687 	struct xfs_mount		*mp = ri->sc->mp;
688 	struct xfs_buf			*bp;
689 	struct xfs_btree_block		*btblock;
690 	xfs_daddr_t			daddr;
691 	int				block_level;
692 	int				error = 0;
693 
694 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
695 
696 	/*
697 	 * Blocks in the AGFL have stale contents that might just happen to
698 	 * have a matching magic and uuid.  We don't want to pull these blocks
699 	 * in as part of a tree root, so we have to filter out the AGFL stuff
700 	 * here.  If the AGFL looks insane we'll just refuse to repair.
701 	 */
702 	if (owner == XFS_RMAP_OWN_AG) {
703 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
704 				xrep_findroot_agfl_walk, &agbno);
705 		if (error == -ECANCELED)
706 			return 0;
707 		if (error)
708 			return error;
709 	}
710 
711 	/*
712 	 * Read the buffer into memory so that we can see if it's a match for
713 	 * our btree type.  We have no clue if it is beforehand, and we want to
714 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
715 	 * will cause needless disk reads in subsequent calls to this function)
716 	 * and logging metadata verifier failures.
717 	 *
718 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
719 	 * memory from some other caller it will already have b_ops assigned.
720 	 * If it was in memory from a previous unsuccessful findroot_block
721 	 * call, the buffer won't have b_ops but it should be clean and ready
722 	 * for us to try to verify if the read call succeeds.  The same applies
723 	 * if the buffer wasn't in memory at all.
724 	 *
725 	 * Note: If we never match a btree type with this buffer, it will be
726 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
727 	 * the buffer gets written.
728 	 */
729 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
730 			mp->m_bsize, 0, &bp, NULL);
731 	if (error)
732 		return error;
733 
734 	/* Ensure the block magic matches the btree type we're looking for. */
735 	btblock = XFS_BUF_TO_BLOCK(bp);
736 	ASSERT(fab->buf_ops->magic[1] != 0);
737 	if (btblock->bb_magic != fab->buf_ops->magic[1])
738 		goto out;
739 
740 	/*
741 	 * If the buffer already has ops applied and they're not the ones for
742 	 * this btree type, we know this block doesn't match the btree and we
743 	 * can bail out.
744 	 *
745 	 * If the buffer ops match ours, someone else has already validated
746 	 * the block for us, so we can move on to checking if this is a root
747 	 * block candidate.
748 	 *
749 	 * If the buffer does not have ops, nobody has successfully validated
750 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
751 	 * and structure match this btree type then we'll move on to checking
752 	 * if it's a root block candidate.  If there is no match, bail out.
753 	 */
754 	if (bp->b_ops) {
755 		if (bp->b_ops != fab->buf_ops)
756 			goto out;
757 	} else {
758 		ASSERT(!xfs_trans_buf_is_dirty(bp));
759 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
760 				&mp->m_sb.sb_meta_uuid))
761 			goto out;
762 		/*
763 		 * Read verifiers can reference b_ops, so we set the pointer
764 		 * here.  If the verifier fails we'll reset the buffer state
765 		 * to what it was before we touched the buffer.
766 		 */
767 		bp->b_ops = fab->buf_ops;
768 		fab->buf_ops->verify_read(bp);
769 		if (bp->b_error) {
770 			bp->b_ops = NULL;
771 			bp->b_error = 0;
772 			goto out;
773 		}
774 
775 		/*
776 		 * Some read verifiers will (re)set b_ops, so we must be
777 		 * careful not to change b_ops after running the verifier.
778 		 */
779 	}
780 
781 	/*
782 	 * This block passes the magic/uuid and verifier tests for this btree
783 	 * type.  We don't need the caller to try the other tree types.
784 	 */
785 	*done_with_block = true;
786 
787 	/*
788 	 * Compare this btree block's level to the height of the current
789 	 * candidate root block.
790 	 *
791 	 * If the level matches the root we found previously, throw away both
792 	 * blocks because there can't be two candidate roots.
793 	 *
794 	 * If level is lower in the tree than the root we found previously,
795 	 * ignore this block.
796 	 */
797 	block_level = xfs_btree_get_level(btblock);
798 	if (block_level + 1 == fab->height) {
799 		fab->root = NULLAGBLOCK;
800 		goto out;
801 	} else if (block_level < fab->height) {
802 		goto out;
803 	}
804 
805 	/*
806 	 * This is the highest block in the tree that we've found so far.
807 	 * Update the btree height to reflect what we've learned from this
808 	 * block.
809 	 */
810 	fab->height = block_level + 1;
811 
812 	/*
813 	 * If this block doesn't have sibling pointers, then it's the new root
814 	 * block candidate.  Otherwise, the root will be found farther up the
815 	 * tree.
816 	 */
817 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
818 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
819 		fab->root = agbno;
820 	else
821 		fab->root = NULLAGBLOCK;
822 
823 	trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
824 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
825 out:
826 	xfs_trans_brelse(ri->sc->tp, bp);
827 	return error;
828 }
829 
830 /*
831  * Do any of the blocks in this rmap record match one of the btrees we're
832  * looking for?
833  */
834 STATIC int
835 xrep_findroot_rmap(
836 	struct xfs_btree_cur		*cur,
837 	const struct xfs_rmap_irec	*rec,
838 	void				*priv)
839 {
840 	struct xrep_findroot		*ri = priv;
841 	struct xrep_find_ag_btree	*fab;
842 	xfs_agblock_t			b;
843 	bool				done;
844 	int				error = 0;
845 
846 	/* Ignore anything that isn't AG metadata. */
847 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
848 		return 0;
849 
850 	/* Otherwise scan each block + btree type. */
851 	for (b = 0; b < rec->rm_blockcount; b++) {
852 		done = false;
853 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
854 			if (rec->rm_owner != fab->rmap_owner)
855 				continue;
856 			error = xrep_findroot_block(ri, fab,
857 					rec->rm_owner, rec->rm_startblock + b,
858 					&done);
859 			if (error)
860 				return error;
861 			if (done)
862 				break;
863 		}
864 	}
865 
866 	return 0;
867 }
868 
869 /* Find the roots of the per-AG btrees described in btree_info. */
870 int
871 xrep_find_ag_btree_roots(
872 	struct xfs_scrub		*sc,
873 	struct xfs_buf			*agf_bp,
874 	struct xrep_find_ag_btree	*btree_info,
875 	struct xfs_buf			*agfl_bp)
876 {
877 	struct xfs_mount		*mp = sc->mp;
878 	struct xrep_findroot		ri;
879 	struct xrep_find_ag_btree	*fab;
880 	struct xfs_btree_cur		*cur;
881 	int				error;
882 
883 	ASSERT(xfs_buf_islocked(agf_bp));
884 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
885 
886 	ri.sc = sc;
887 	ri.btree_info = btree_info;
888 	ri.agf = agf_bp->b_addr;
889 	ri.agfl_bp = agfl_bp;
890 	for (fab = btree_info; fab->buf_ops; fab++) {
891 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
892 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
893 		fab->root = NULLAGBLOCK;
894 		fab->height = 0;
895 	}
896 
897 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
898 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
899 	xfs_btree_del_cursor(cur, error);
900 
901 	return error;
902 }
903 
904 /* Force a quotacheck the next time we mount. */
905 void
906 xrep_force_quotacheck(
907 	struct xfs_scrub	*sc,
908 	xfs_dqtype_t		type)
909 {
910 	uint			flag;
911 
912 	flag = xfs_quota_chkd_flag(type);
913 	if (!(flag & sc->mp->m_qflags))
914 		return;
915 
916 	mutex_lock(&sc->mp->m_quotainfo->qi_quotaofflock);
917 	sc->mp->m_qflags &= ~flag;
918 	spin_lock(&sc->mp->m_sb_lock);
919 	sc->mp->m_sb.sb_qflags &= ~flag;
920 	spin_unlock(&sc->mp->m_sb_lock);
921 	xfs_log_sb(sc->tp);
922 	mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
923 }
924 
925 /*
926  * Attach dquots to this inode, or schedule quotacheck to fix them.
927  *
928  * This function ensures that the appropriate dquots are attached to an inode.
929  * We cannot allow the dquot code to allocate an on-disk dquot block here
930  * because we're already in transaction context with the inode locked.  The
931  * on-disk dquot should already exist anyway.  If the quota code signals
932  * corruption or missing quota information, schedule quotacheck, which will
933  * repair corruptions in the quota metadata.
934  */
935 int
936 xrep_ino_dqattach(
937 	struct xfs_scrub	*sc)
938 {
939 	int			error;
940 
941 	error = xfs_qm_dqattach_locked(sc->ip, false);
942 	switch (error) {
943 	case -EFSBADCRC:
944 	case -EFSCORRUPTED:
945 	case -ENOENT:
946 		xfs_err_ratelimited(sc->mp,
947 "inode %llu repair encountered quota error %d, quotacheck forced.",
948 				(unsigned long long)sc->ip->i_ino, error);
949 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
950 			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
951 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
952 			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
953 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
954 			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
955 		fallthrough;
956 	case -ESRCH:
957 		error = 0;
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	return error;
964 }
965