1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_defer.h" 13 #include "xfs_btree.h" 14 #include "xfs_bit.h" 15 #include "xfs_log_format.h" 16 #include "xfs_trans.h" 17 #include "xfs_sb.h" 18 #include "xfs_inode.h" 19 #include "xfs_icache.h" 20 #include "xfs_alloc.h" 21 #include "xfs_alloc_btree.h" 22 #include "xfs_ialloc.h" 23 #include "xfs_ialloc_btree.h" 24 #include "xfs_rmap.h" 25 #include "xfs_rmap_btree.h" 26 #include "xfs_refcount.h" 27 #include "xfs_refcount_btree.h" 28 #include "xfs_extent_busy.h" 29 #include "xfs_ag_resv.h" 30 #include "xfs_trans_space.h" 31 #include "xfs_quota.h" 32 #include "xfs_attr.h" 33 #include "xfs_reflink.h" 34 #include "scrub/xfs_scrub.h" 35 #include "scrub/scrub.h" 36 #include "scrub/common.h" 37 #include "scrub/trace.h" 38 #include "scrub/repair.h" 39 #include "scrub/bitmap.h" 40 41 /* 42 * Attempt to repair some metadata, if the metadata is corrupt and userspace 43 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 44 * and will set *fixed to true if it thinks it repaired anything. 45 */ 46 int 47 xrep_attempt( 48 struct xfs_inode *ip, 49 struct xfs_scrub *sc, 50 bool *fixed) 51 { 52 int error = 0; 53 54 trace_xrep_attempt(ip, sc->sm, error); 55 56 xchk_ag_btcur_free(&sc->sa); 57 58 /* Repair whatever's broken. */ 59 ASSERT(sc->ops->repair); 60 error = sc->ops->repair(sc); 61 trace_xrep_done(ip, sc->sm, error); 62 switch (error) { 63 case 0: 64 /* 65 * Repair succeeded. Commit the fixes and perform a second 66 * scrub so that we can tell userspace if we fixed the problem. 67 */ 68 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 69 *fixed = true; 70 return -EAGAIN; 71 case -EDEADLOCK: 72 case -EAGAIN: 73 /* Tell the caller to try again having grabbed all the locks. */ 74 if (!sc->try_harder) { 75 sc->try_harder = true; 76 return -EAGAIN; 77 } 78 /* 79 * We tried harder but still couldn't grab all the resources 80 * we needed to fix it. The corruption has not been fixed, 81 * so report back to userspace. 82 */ 83 return -EFSCORRUPTED; 84 default: 85 return error; 86 } 87 } 88 89 /* 90 * Complain about unfixable problems in the filesystem. We don't log 91 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 92 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 93 * administrator isn't running xfs_scrub in no-repairs mode. 94 * 95 * Use this helper function because _ratelimited silently declares a static 96 * structure to track rate limiting information. 97 */ 98 void 99 xrep_failure( 100 struct xfs_mount *mp) 101 { 102 xfs_alert_ratelimited(mp, 103 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 104 } 105 106 /* 107 * Repair probe -- userspace uses this to probe if we're willing to repair a 108 * given mountpoint. 109 */ 110 int 111 xrep_probe( 112 struct xfs_scrub *sc) 113 { 114 int error = 0; 115 116 if (xchk_should_terminate(sc, &error)) 117 return error; 118 119 return 0; 120 } 121 122 /* 123 * Roll a transaction, keeping the AG headers locked and reinitializing 124 * the btree cursors. 125 */ 126 int 127 xrep_roll_ag_trans( 128 struct xfs_scrub *sc) 129 { 130 int error; 131 132 /* Keep the AG header buffers locked so we can keep going. */ 133 if (sc->sa.agi_bp) 134 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 135 if (sc->sa.agf_bp) 136 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 137 if (sc->sa.agfl_bp) 138 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 139 140 /* Roll the transaction. */ 141 error = xfs_trans_roll(&sc->tp); 142 if (error) 143 goto out_release; 144 145 /* Join AG headers to the new transaction. */ 146 if (sc->sa.agi_bp) 147 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 148 if (sc->sa.agf_bp) 149 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 150 if (sc->sa.agfl_bp) 151 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 152 153 return 0; 154 155 out_release: 156 /* 157 * Rolling failed, so release the hold on the buffers. The 158 * buffers will be released during teardown on our way out 159 * of the kernel. 160 */ 161 if (sc->sa.agi_bp) 162 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 163 if (sc->sa.agf_bp) 164 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 165 if (sc->sa.agfl_bp) 166 xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp); 167 168 return error; 169 } 170 171 /* 172 * Does the given AG have enough space to rebuild a btree? Neither AG 173 * reservation can be critical, and we must have enough space (factoring 174 * in AG reservations) to construct a whole btree. 175 */ 176 bool 177 xrep_ag_has_space( 178 struct xfs_perag *pag, 179 xfs_extlen_t nr_blocks, 180 enum xfs_ag_resv_type type) 181 { 182 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 183 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 184 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 185 } 186 187 /* 188 * Figure out how many blocks to reserve for an AG repair. We calculate the 189 * worst case estimate for the number of blocks we'd need to rebuild one of 190 * any type of per-AG btree. 191 */ 192 xfs_extlen_t 193 xrep_calc_ag_resblks( 194 struct xfs_scrub *sc) 195 { 196 struct xfs_mount *mp = sc->mp; 197 struct xfs_scrub_metadata *sm = sc->sm; 198 struct xfs_perag *pag; 199 struct xfs_buf *bp; 200 xfs_agino_t icount = NULLAGINO; 201 xfs_extlen_t aglen = NULLAGBLOCK; 202 xfs_extlen_t usedlen; 203 xfs_extlen_t freelen; 204 xfs_extlen_t bnobt_sz; 205 xfs_extlen_t inobt_sz; 206 xfs_extlen_t rmapbt_sz; 207 xfs_extlen_t refcbt_sz; 208 int error; 209 210 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 211 return 0; 212 213 pag = xfs_perag_get(mp, sm->sm_agno); 214 if (pag->pagi_init) { 215 /* Use in-core icount if possible. */ 216 icount = pag->pagi_count; 217 } else { 218 /* Try to get the actual counters from disk. */ 219 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 220 if (!error) { 221 icount = pag->pagi_count; 222 xfs_buf_relse(bp); 223 } 224 } 225 226 /* Now grab the block counters from the AGF. */ 227 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 228 if (!error) { 229 aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length); 230 freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks); 231 usedlen = aglen - freelen; 232 xfs_buf_relse(bp); 233 } 234 xfs_perag_put(pag); 235 236 /* If the icount is impossible, make some worst-case assumptions. */ 237 if (icount == NULLAGINO || 238 !xfs_verify_agino(mp, sm->sm_agno, icount)) { 239 xfs_agino_t first, last; 240 241 xfs_agino_range(mp, sm->sm_agno, &first, &last); 242 icount = last - first + 1; 243 } 244 245 /* If the block counts are impossible, make worst-case assumptions. */ 246 if (aglen == NULLAGBLOCK || 247 aglen != xfs_ag_block_count(mp, sm->sm_agno) || 248 freelen >= aglen) { 249 aglen = xfs_ag_block_count(mp, sm->sm_agno); 250 freelen = aglen; 251 usedlen = aglen; 252 } 253 254 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 255 freelen, usedlen); 256 257 /* 258 * Figure out how many blocks we'd need worst case to rebuild 259 * each type of btree. Note that we can only rebuild the 260 * bnobt/cntbt or inobt/finobt as pairs. 261 */ 262 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 263 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) 264 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 265 XFS_INODES_PER_HOLEMASK_BIT); 266 else 267 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 268 XFS_INODES_PER_CHUNK); 269 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 270 inobt_sz *= 2; 271 if (xfs_sb_version_hasreflink(&mp->m_sb)) 272 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 273 else 274 refcbt_sz = 0; 275 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 276 /* 277 * Guess how many blocks we need to rebuild the rmapbt. 278 * For non-reflink filesystems we can't have more records than 279 * used blocks. However, with reflink it's possible to have 280 * more than one rmap record per AG block. We don't know how 281 * many rmaps there could be in the AG, so we start off with 282 * what we hope is an generous over-estimation. 283 */ 284 if (xfs_sb_version_hasreflink(&mp->m_sb)) 285 rmapbt_sz = xfs_rmapbt_calc_size(mp, 286 (unsigned long long)aglen * 2); 287 else 288 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 289 } else { 290 rmapbt_sz = 0; 291 } 292 293 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 294 inobt_sz, rmapbt_sz, refcbt_sz); 295 296 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 297 } 298 299 /* Allocate a block in an AG. */ 300 int 301 xrep_alloc_ag_block( 302 struct xfs_scrub *sc, 303 const struct xfs_owner_info *oinfo, 304 xfs_fsblock_t *fsbno, 305 enum xfs_ag_resv_type resv) 306 { 307 struct xfs_alloc_arg args = {0}; 308 xfs_agblock_t bno; 309 int error; 310 311 switch (resv) { 312 case XFS_AG_RESV_AGFL: 313 case XFS_AG_RESV_RMAPBT: 314 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 315 if (error) 316 return error; 317 if (bno == NULLAGBLOCK) 318 return -ENOSPC; 319 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, 320 1, false); 321 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); 322 if (resv == XFS_AG_RESV_RMAPBT) 323 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); 324 return 0; 325 default: 326 break; 327 } 328 329 args.tp = sc->tp; 330 args.mp = sc->mp; 331 args.oinfo = *oinfo; 332 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); 333 args.minlen = 1; 334 args.maxlen = 1; 335 args.prod = 1; 336 args.type = XFS_ALLOCTYPE_THIS_AG; 337 args.resv = resv; 338 339 error = xfs_alloc_vextent(&args); 340 if (error) 341 return error; 342 if (args.fsbno == NULLFSBLOCK) 343 return -ENOSPC; 344 ASSERT(args.len == 1); 345 *fsbno = args.fsbno; 346 347 return 0; 348 } 349 350 /* Initialize a new AG btree root block with zero entries. */ 351 int 352 xrep_init_btblock( 353 struct xfs_scrub *sc, 354 xfs_fsblock_t fsb, 355 struct xfs_buf **bpp, 356 xfs_btnum_t btnum, 357 const struct xfs_buf_ops *ops) 358 { 359 struct xfs_trans *tp = sc->tp; 360 struct xfs_mount *mp = sc->mp; 361 struct xfs_buf *bp; 362 363 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 364 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 365 366 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); 367 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb), 368 XFS_FSB_TO_BB(mp, 1), 0); 369 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 370 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0); 371 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 372 xfs_trans_log_buf(tp, bp, 0, bp->b_length); 373 bp->b_ops = ops; 374 *bpp = bp; 375 376 return 0; 377 } 378 379 /* 380 * Reconstructing per-AG Btrees 381 * 382 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 383 * we scan secondary space metadata to derive the records that should be in 384 * the damaged btree, initialize a fresh btree root, and insert the records. 385 * Note that for rebuilding the rmapbt we scan all the primary data to 386 * generate the new records. 387 * 388 * However, that leaves the matter of removing all the metadata describing the 389 * old broken structure. For primary metadata we use the rmap data to collect 390 * every extent with a matching rmap owner (bitmap); we then iterate all other 391 * metadata structures with the same rmap owner to collect the extents that 392 * cannot be removed (sublist). We then subtract sublist from bitmap to 393 * derive the blocks that were used by the old btree. These blocks can be 394 * reaped. 395 * 396 * For rmapbt reconstructions we must use different tactics for extent 397 * collection. First we iterate all primary metadata (this excludes the old 398 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 399 * records are collected as bitmap. The bnobt records are collected as 400 * sublist. As with the other btrees we subtract sublist from bitmap, and the 401 * result (since the rmapbt lives in the free space) are the blocks from the 402 * old rmapbt. 403 * 404 * Disposal of Blocks from Old per-AG Btrees 405 * 406 * Now that we've constructed a new btree to replace the damaged one, we want 407 * to dispose of the blocks that (we think) the old btree was using. 408 * Previously, we used the rmapbt to collect the extents (bitmap) with the 409 * rmap owner corresponding to the tree we rebuilt, collected extents for any 410 * blocks with the same rmap owner that are owned by another data structure 411 * (sublist), and subtracted sublist from bitmap. In theory the extents 412 * remaining in bitmap are the old btree's blocks. 413 * 414 * Unfortunately, it's possible that the btree was crosslinked with other 415 * blocks on disk. The rmap data can tell us if there are multiple owners, so 416 * if the rmapbt says there is an owner of this block other than @oinfo, then 417 * the block is crosslinked. Remove the reverse mapping and continue. 418 * 419 * If there is one rmap record, we can free the block, which removes the 420 * reverse mapping but doesn't add the block to the free space. Our repair 421 * strategy is to hope the other metadata objects crosslinked on this block 422 * will be rebuilt (atop different blocks), thereby removing all the cross 423 * links. 424 * 425 * If there are no rmap records at all, we also free the block. If the btree 426 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 427 * supposed to be a rmap record and everything is ok. For other btrees there 428 * had to have been an rmap entry for the block to have ended up on @bitmap, 429 * so if it's gone now there's something wrong and the fs will shut down. 430 * 431 * Note: If there are multiple rmap records with only the same rmap owner as 432 * the btree we're trying to rebuild and the block is indeed owned by another 433 * data structure with the same rmap owner, then the block will be in sublist 434 * and therefore doesn't need disposal. If there are multiple rmap records 435 * with only the same rmap owner but the block is not owned by something with 436 * the same rmap owner, the block will be freed. 437 * 438 * The caller is responsible for locking the AG headers for the entire rebuild 439 * operation so that nothing else can sneak in and change the AG state while 440 * we're not looking. We also assume that the caller already invalidated any 441 * buffers associated with @bitmap. 442 */ 443 444 /* 445 * Invalidate buffers for per-AG btree blocks we're dumping. This function 446 * is not intended for use with file data repairs; we have bunmapi for that. 447 */ 448 int 449 xrep_invalidate_blocks( 450 struct xfs_scrub *sc, 451 struct xfs_bitmap *bitmap) 452 { 453 struct xfs_bitmap_range *bmr; 454 struct xfs_bitmap_range *n; 455 struct xfs_buf *bp; 456 xfs_fsblock_t fsbno; 457 458 /* 459 * For each block in each extent, see if there's an incore buffer for 460 * exactly that block; if so, invalidate it. The buffer cache only 461 * lets us look for one buffer at a time, so we have to look one block 462 * at a time. Avoid invalidating AG headers and post-EOFS blocks 463 * because we never own those; and if we can't TRYLOCK the buffer we 464 * assume it's owned by someone else. 465 */ 466 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 467 /* Skip AG headers and post-EOFS blocks */ 468 if (!xfs_verify_fsbno(sc->mp, fsbno)) 469 continue; 470 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 471 XFS_FSB_TO_DADDR(sc->mp, fsbno), 472 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 473 if (bp) { 474 xfs_trans_bjoin(sc->tp, bp); 475 xfs_trans_binval(sc->tp, bp); 476 } 477 } 478 479 return 0; 480 } 481 482 /* Ensure the freelist is the correct size. */ 483 int 484 xrep_fix_freelist( 485 struct xfs_scrub *sc, 486 bool can_shrink) 487 { 488 struct xfs_alloc_arg args = {0}; 489 490 args.mp = sc->mp; 491 args.tp = sc->tp; 492 args.agno = sc->sa.agno; 493 args.alignment = 1; 494 args.pag = sc->sa.pag; 495 496 return xfs_alloc_fix_freelist(&args, 497 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 498 } 499 500 /* 501 * Put a block back on the AGFL. 502 */ 503 STATIC int 504 xrep_put_freelist( 505 struct xfs_scrub *sc, 506 xfs_agblock_t agbno) 507 { 508 int error; 509 510 /* Make sure there's space on the freelist. */ 511 error = xrep_fix_freelist(sc, true); 512 if (error) 513 return error; 514 515 /* 516 * Since we're "freeing" a lost block onto the AGFL, we have to 517 * create an rmap for the block prior to merging it or else other 518 * parts will break. 519 */ 520 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, 521 &XFS_RMAP_OINFO_AG); 522 if (error) 523 return error; 524 525 /* Put the block on the AGFL. */ 526 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 527 agbno, 0); 528 if (error) 529 return error; 530 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, 531 XFS_EXTENT_BUSY_SKIP_DISCARD); 532 533 return 0; 534 } 535 536 /* Dispose of a single block. */ 537 STATIC int 538 xrep_reap_block( 539 struct xfs_scrub *sc, 540 xfs_fsblock_t fsbno, 541 const struct xfs_owner_info *oinfo, 542 enum xfs_ag_resv_type resv) 543 { 544 struct xfs_btree_cur *cur; 545 struct xfs_buf *agf_bp = NULL; 546 xfs_agnumber_t agno; 547 xfs_agblock_t agbno; 548 bool has_other_rmap; 549 int error; 550 551 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 552 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 553 554 /* 555 * If we are repairing per-inode metadata, we need to read in the AGF 556 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 557 * the AGF buffer that the setup functions already grabbed. 558 */ 559 if (sc->ip) { 560 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 561 if (error) 562 return error; 563 if (!agf_bp) 564 return -ENOMEM; 565 } else { 566 agf_bp = sc->sa.agf_bp; 567 } 568 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); 569 570 /* Can we find any other rmappings? */ 571 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 572 xfs_btree_del_cursor(cur, error); 573 if (error) 574 goto out_free; 575 576 /* 577 * If there are other rmappings, this block is cross linked and must 578 * not be freed. Remove the reverse mapping and move on. Otherwise, 579 * we were the only owner of the block, so free the extent, which will 580 * also remove the rmap. 581 * 582 * XXX: XFS doesn't support detecting the case where a single block 583 * metadata structure is crosslinked with a multi-block structure 584 * because the buffer cache doesn't detect aliasing problems, so we 585 * can't fix 100% of crosslinking problems (yet). The verifiers will 586 * blow on writeout, the filesystem will shut down, and the admin gets 587 * to run xfs_repair. 588 */ 589 if (has_other_rmap) 590 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); 591 else if (resv == XFS_AG_RESV_AGFL) 592 error = xrep_put_freelist(sc, agbno); 593 else 594 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 595 if (agf_bp != sc->sa.agf_bp) 596 xfs_trans_brelse(sc->tp, agf_bp); 597 if (error) 598 return error; 599 600 if (sc->ip) 601 return xfs_trans_roll_inode(&sc->tp, sc->ip); 602 return xrep_roll_ag_trans(sc); 603 604 out_free: 605 if (agf_bp != sc->sa.agf_bp) 606 xfs_trans_brelse(sc->tp, agf_bp); 607 return error; 608 } 609 610 /* Dispose of every block of every extent in the bitmap. */ 611 int 612 xrep_reap_extents( 613 struct xfs_scrub *sc, 614 struct xfs_bitmap *bitmap, 615 const struct xfs_owner_info *oinfo, 616 enum xfs_ag_resv_type type) 617 { 618 struct xfs_bitmap_range *bmr; 619 struct xfs_bitmap_range *n; 620 xfs_fsblock_t fsbno; 621 int error = 0; 622 623 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); 624 625 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 626 ASSERT(sc->ip != NULL || 627 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); 628 trace_xrep_dispose_btree_extent(sc->mp, 629 XFS_FSB_TO_AGNO(sc->mp, fsbno), 630 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 631 632 error = xrep_reap_block(sc, fsbno, oinfo, type); 633 if (error) 634 goto out; 635 } 636 637 out: 638 xfs_bitmap_destroy(bitmap); 639 return error; 640 } 641 642 /* 643 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 644 * 645 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 646 * the AG headers by using the rmap data to rummage through the AG looking for 647 * btree roots. This is not guaranteed to work if the AG is heavily damaged 648 * or the rmap data are corrupt. 649 * 650 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 651 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 652 * AGI is being rebuilt. It must maintain these locks until it's safe for 653 * other threads to change the btrees' shapes. The caller provides 654 * information about the btrees to look for by passing in an array of 655 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 656 * The (root, height) fields will be set on return if anything is found. The 657 * last element of the array should have a NULL buf_ops to mark the end of the 658 * array. 659 * 660 * For every rmapbt record matching any of the rmap owners in btree_info, 661 * read each block referenced by the rmap record. If the block is a btree 662 * block from this filesystem matching any of the magic numbers and has a 663 * level higher than what we've already seen, remember the block and the 664 * height of the tree required to have such a block. When the call completes, 665 * we return the highest block we've found for each btree description; those 666 * should be the roots. 667 */ 668 669 struct xrep_findroot { 670 struct xfs_scrub *sc; 671 struct xfs_buf *agfl_bp; 672 struct xfs_agf *agf; 673 struct xrep_find_ag_btree *btree_info; 674 }; 675 676 /* See if our block is in the AGFL. */ 677 STATIC int 678 xrep_findroot_agfl_walk( 679 struct xfs_mount *mp, 680 xfs_agblock_t bno, 681 void *priv) 682 { 683 xfs_agblock_t *agbno = priv; 684 685 return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0; 686 } 687 688 /* Does this block match the btree information passed in? */ 689 STATIC int 690 xrep_findroot_block( 691 struct xrep_findroot *ri, 692 struct xrep_find_ag_btree *fab, 693 uint64_t owner, 694 xfs_agblock_t agbno, 695 bool *done_with_block) 696 { 697 struct xfs_mount *mp = ri->sc->mp; 698 struct xfs_buf *bp; 699 struct xfs_btree_block *btblock; 700 xfs_daddr_t daddr; 701 int block_level; 702 int error = 0; 703 704 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); 705 706 /* 707 * Blocks in the AGFL have stale contents that might just happen to 708 * have a matching magic and uuid. We don't want to pull these blocks 709 * in as part of a tree root, so we have to filter out the AGFL stuff 710 * here. If the AGFL looks insane we'll just refuse to repair. 711 */ 712 if (owner == XFS_RMAP_OWN_AG) { 713 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 714 xrep_findroot_agfl_walk, &agbno); 715 if (error == XFS_BTREE_QUERY_RANGE_ABORT) 716 return 0; 717 if (error) 718 return error; 719 } 720 721 /* 722 * Read the buffer into memory so that we can see if it's a match for 723 * our btree type. We have no clue if it is beforehand, and we want to 724 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 725 * will cause needless disk reads in subsequent calls to this function) 726 * and logging metadata verifier failures. 727 * 728 * Therefore, pass in NULL buffer ops. If the buffer was already in 729 * memory from some other caller it will already have b_ops assigned. 730 * If it was in memory from a previous unsuccessful findroot_block 731 * call, the buffer won't have b_ops but it should be clean and ready 732 * for us to try to verify if the read call succeeds. The same applies 733 * if the buffer wasn't in memory at all. 734 * 735 * Note: If we never match a btree type with this buffer, it will be 736 * left in memory with NULL b_ops. This shouldn't be a problem unless 737 * the buffer gets written. 738 */ 739 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 740 mp->m_bsize, 0, &bp, NULL); 741 if (error) 742 return error; 743 744 /* Ensure the block magic matches the btree type we're looking for. */ 745 btblock = XFS_BUF_TO_BLOCK(bp); 746 if (be32_to_cpu(btblock->bb_magic) != fab->magic) 747 goto out; 748 749 /* 750 * If the buffer already has ops applied and they're not the ones for 751 * this btree type, we know this block doesn't match the btree and we 752 * can bail out. 753 * 754 * If the buffer ops match ours, someone else has already validated 755 * the block for us, so we can move on to checking if this is a root 756 * block candidate. 757 * 758 * If the buffer does not have ops, nobody has successfully validated 759 * the contents and the buffer cannot be dirty. If the magic, uuid, 760 * and structure match this btree type then we'll move on to checking 761 * if it's a root block candidate. If there is no match, bail out. 762 */ 763 if (bp->b_ops) { 764 if (bp->b_ops != fab->buf_ops) 765 goto out; 766 } else { 767 ASSERT(!xfs_trans_buf_is_dirty(bp)); 768 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 769 &mp->m_sb.sb_meta_uuid)) 770 goto out; 771 fab->buf_ops->verify_read(bp); 772 if (bp->b_error) { 773 bp->b_error = 0; 774 goto out; 775 } 776 777 /* 778 * Some read verifiers will (re)set b_ops, so we must be 779 * careful not to blow away any such assignment. 780 */ 781 if (!bp->b_ops) 782 bp->b_ops = fab->buf_ops; 783 } 784 785 /* 786 * This block passes the magic/uuid and verifier tests for this btree 787 * type. We don't need the caller to try the other tree types. 788 */ 789 *done_with_block = true; 790 791 /* 792 * Compare this btree block's level to the height of the current 793 * candidate root block. 794 * 795 * If the level matches the root we found previously, throw away both 796 * blocks because there can't be two candidate roots. 797 * 798 * If level is lower in the tree than the root we found previously, 799 * ignore this block. 800 */ 801 block_level = xfs_btree_get_level(btblock); 802 if (block_level + 1 == fab->height) { 803 fab->root = NULLAGBLOCK; 804 goto out; 805 } else if (block_level < fab->height) { 806 goto out; 807 } 808 809 /* 810 * This is the highest block in the tree that we've found so far. 811 * Update the btree height to reflect what we've learned from this 812 * block. 813 */ 814 fab->height = block_level + 1; 815 816 /* 817 * If this block doesn't have sibling pointers, then it's the new root 818 * block candidate. Otherwise, the root will be found farther up the 819 * tree. 820 */ 821 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 822 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 823 fab->root = agbno; 824 else 825 fab->root = NULLAGBLOCK; 826 827 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, 828 be32_to_cpu(btblock->bb_magic), fab->height - 1); 829 out: 830 xfs_trans_brelse(ri->sc->tp, bp); 831 return error; 832 } 833 834 /* 835 * Do any of the blocks in this rmap record match one of the btrees we're 836 * looking for? 837 */ 838 STATIC int 839 xrep_findroot_rmap( 840 struct xfs_btree_cur *cur, 841 struct xfs_rmap_irec *rec, 842 void *priv) 843 { 844 struct xrep_findroot *ri = priv; 845 struct xrep_find_ag_btree *fab; 846 xfs_agblock_t b; 847 bool done; 848 int error = 0; 849 850 /* Ignore anything that isn't AG metadata. */ 851 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 852 return 0; 853 854 /* Otherwise scan each block + btree type. */ 855 for (b = 0; b < rec->rm_blockcount; b++) { 856 done = false; 857 for (fab = ri->btree_info; fab->buf_ops; fab++) { 858 if (rec->rm_owner != fab->rmap_owner) 859 continue; 860 error = xrep_findroot_block(ri, fab, 861 rec->rm_owner, rec->rm_startblock + b, 862 &done); 863 if (error) 864 return error; 865 if (done) 866 break; 867 } 868 } 869 870 return 0; 871 } 872 873 /* Find the roots of the per-AG btrees described in btree_info. */ 874 int 875 xrep_find_ag_btree_roots( 876 struct xfs_scrub *sc, 877 struct xfs_buf *agf_bp, 878 struct xrep_find_ag_btree *btree_info, 879 struct xfs_buf *agfl_bp) 880 { 881 struct xfs_mount *mp = sc->mp; 882 struct xrep_findroot ri; 883 struct xrep_find_ag_btree *fab; 884 struct xfs_btree_cur *cur; 885 int error; 886 887 ASSERT(xfs_buf_islocked(agf_bp)); 888 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 889 890 ri.sc = sc; 891 ri.btree_info = btree_info; 892 ri.agf = XFS_BUF_TO_AGF(agf_bp); 893 ri.agfl_bp = agfl_bp; 894 for (fab = btree_info; fab->buf_ops; fab++) { 895 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 896 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 897 fab->root = NULLAGBLOCK; 898 fab->height = 0; 899 } 900 901 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 902 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 903 xfs_btree_del_cursor(cur, error); 904 905 return error; 906 } 907 908 /* Force a quotacheck the next time we mount. */ 909 void 910 xrep_force_quotacheck( 911 struct xfs_scrub *sc, 912 uint dqtype) 913 { 914 uint flag; 915 916 flag = xfs_quota_chkd_flag(dqtype); 917 if (!(flag & sc->mp->m_qflags)) 918 return; 919 920 sc->mp->m_qflags &= ~flag; 921 spin_lock(&sc->mp->m_sb_lock); 922 sc->mp->m_sb.sb_qflags &= ~flag; 923 spin_unlock(&sc->mp->m_sb_lock); 924 xfs_log_sb(sc->tp); 925 } 926 927 /* 928 * Attach dquots to this inode, or schedule quotacheck to fix them. 929 * 930 * This function ensures that the appropriate dquots are attached to an inode. 931 * We cannot allow the dquot code to allocate an on-disk dquot block here 932 * because we're already in transaction context with the inode locked. The 933 * on-disk dquot should already exist anyway. If the quota code signals 934 * corruption or missing quota information, schedule quotacheck, which will 935 * repair corruptions in the quota metadata. 936 */ 937 int 938 xrep_ino_dqattach( 939 struct xfs_scrub *sc) 940 { 941 int error; 942 943 error = xfs_qm_dqattach_locked(sc->ip, false); 944 switch (error) { 945 case -EFSBADCRC: 946 case -EFSCORRUPTED: 947 case -ENOENT: 948 xfs_err_ratelimited(sc->mp, 949 "inode %llu repair encountered quota error %d, quotacheck forced.", 950 (unsigned long long)sc->ip->i_ino, error); 951 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 952 xrep_force_quotacheck(sc, XFS_DQ_USER); 953 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 954 xrep_force_quotacheck(sc, XFS_DQ_GROUP); 955 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 956 xrep_force_quotacheck(sc, XFS_DQ_PROJ); 957 /* fall through */ 958 case -ESRCH: 959 error = 0; 960 break; 961 default: 962 break; 963 } 964 965 return error; 966 } 967