1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_defer.h" 13 #include "xfs_btree.h" 14 #include "xfs_bit.h" 15 #include "xfs_log_format.h" 16 #include "xfs_trans.h" 17 #include "xfs_sb.h" 18 #include "xfs_inode.h" 19 #include "xfs_icache.h" 20 #include "xfs_alloc.h" 21 #include "xfs_alloc_btree.h" 22 #include "xfs_ialloc.h" 23 #include "xfs_ialloc_btree.h" 24 #include "xfs_rmap.h" 25 #include "xfs_rmap_btree.h" 26 #include "xfs_refcount.h" 27 #include "xfs_refcount_btree.h" 28 #include "xfs_extent_busy.h" 29 #include "xfs_ag_resv.h" 30 #include "xfs_trans_space.h" 31 #include "xfs_quota.h" 32 #include "scrub/xfs_scrub.h" 33 #include "scrub/scrub.h" 34 #include "scrub/common.h" 35 #include "scrub/trace.h" 36 #include "scrub/repair.h" 37 #include "scrub/bitmap.h" 38 39 /* 40 * Attempt to repair some metadata, if the metadata is corrupt and userspace 41 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 42 * and will set *fixed to true if it thinks it repaired anything. 43 */ 44 int 45 xrep_attempt( 46 struct xfs_inode *ip, 47 struct xfs_scrub *sc, 48 bool *fixed) 49 { 50 int error = 0; 51 52 trace_xrep_attempt(ip, sc->sm, error); 53 54 xchk_ag_btcur_free(&sc->sa); 55 56 /* Repair whatever's broken. */ 57 ASSERT(sc->ops->repair); 58 error = sc->ops->repair(sc); 59 trace_xrep_done(ip, sc->sm, error); 60 switch (error) { 61 case 0: 62 /* 63 * Repair succeeded. Commit the fixes and perform a second 64 * scrub so that we can tell userspace if we fixed the problem. 65 */ 66 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 67 *fixed = true; 68 return -EAGAIN; 69 case -EDEADLOCK: 70 case -EAGAIN: 71 /* Tell the caller to try again having grabbed all the locks. */ 72 if (!sc->try_harder) { 73 sc->try_harder = true; 74 return -EAGAIN; 75 } 76 /* 77 * We tried harder but still couldn't grab all the resources 78 * we needed to fix it. The corruption has not been fixed, 79 * so report back to userspace. 80 */ 81 return -EFSCORRUPTED; 82 default: 83 return error; 84 } 85 } 86 87 /* 88 * Complain about unfixable problems in the filesystem. We don't log 89 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 90 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 91 * administrator isn't running xfs_scrub in no-repairs mode. 92 * 93 * Use this helper function because _ratelimited silently declares a static 94 * structure to track rate limiting information. 95 */ 96 void 97 xrep_failure( 98 struct xfs_mount *mp) 99 { 100 xfs_alert_ratelimited(mp, 101 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 102 } 103 104 /* 105 * Repair probe -- userspace uses this to probe if we're willing to repair a 106 * given mountpoint. 107 */ 108 int 109 xrep_probe( 110 struct xfs_scrub *sc) 111 { 112 int error = 0; 113 114 if (xchk_should_terminate(sc, &error)) 115 return error; 116 117 return 0; 118 } 119 120 /* 121 * Roll a transaction, keeping the AG headers locked and reinitializing 122 * the btree cursors. 123 */ 124 int 125 xrep_roll_ag_trans( 126 struct xfs_scrub *sc) 127 { 128 int error; 129 130 /* Keep the AG header buffers locked so we can keep going. */ 131 if (sc->sa.agi_bp) 132 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 133 if (sc->sa.agf_bp) 134 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 135 if (sc->sa.agfl_bp) 136 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 137 138 /* Roll the transaction. */ 139 error = xfs_trans_roll(&sc->tp); 140 if (error) 141 goto out_release; 142 143 /* Join AG headers to the new transaction. */ 144 if (sc->sa.agi_bp) 145 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 146 if (sc->sa.agf_bp) 147 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 148 if (sc->sa.agfl_bp) 149 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 150 151 return 0; 152 153 out_release: 154 /* 155 * Rolling failed, so release the hold on the buffers. The 156 * buffers will be released during teardown on our way out 157 * of the kernel. 158 */ 159 if (sc->sa.agi_bp) 160 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 161 if (sc->sa.agf_bp) 162 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 163 if (sc->sa.agfl_bp) 164 xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp); 165 166 return error; 167 } 168 169 /* 170 * Does the given AG have enough space to rebuild a btree? Neither AG 171 * reservation can be critical, and we must have enough space (factoring 172 * in AG reservations) to construct a whole btree. 173 */ 174 bool 175 xrep_ag_has_space( 176 struct xfs_perag *pag, 177 xfs_extlen_t nr_blocks, 178 enum xfs_ag_resv_type type) 179 { 180 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 181 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 182 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 183 } 184 185 /* 186 * Figure out how many blocks to reserve for an AG repair. We calculate the 187 * worst case estimate for the number of blocks we'd need to rebuild one of 188 * any type of per-AG btree. 189 */ 190 xfs_extlen_t 191 xrep_calc_ag_resblks( 192 struct xfs_scrub *sc) 193 { 194 struct xfs_mount *mp = sc->mp; 195 struct xfs_scrub_metadata *sm = sc->sm; 196 struct xfs_perag *pag; 197 struct xfs_buf *bp; 198 xfs_agino_t icount = NULLAGINO; 199 xfs_extlen_t aglen = NULLAGBLOCK; 200 xfs_extlen_t usedlen; 201 xfs_extlen_t freelen; 202 xfs_extlen_t bnobt_sz; 203 xfs_extlen_t inobt_sz; 204 xfs_extlen_t rmapbt_sz; 205 xfs_extlen_t refcbt_sz; 206 int error; 207 208 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 209 return 0; 210 211 pag = xfs_perag_get(mp, sm->sm_agno); 212 if (pag->pagi_init) { 213 /* Use in-core icount if possible. */ 214 icount = pag->pagi_count; 215 } else { 216 /* Try to get the actual counters from disk. */ 217 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 218 if (!error) { 219 icount = pag->pagi_count; 220 xfs_buf_relse(bp); 221 } 222 } 223 224 /* Now grab the block counters from the AGF. */ 225 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 226 if (!error) { 227 aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length); 228 freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks); 229 usedlen = aglen - freelen; 230 xfs_buf_relse(bp); 231 } 232 xfs_perag_put(pag); 233 234 /* If the icount is impossible, make some worst-case assumptions. */ 235 if (icount == NULLAGINO || 236 !xfs_verify_agino(mp, sm->sm_agno, icount)) { 237 xfs_agino_t first, last; 238 239 xfs_agino_range(mp, sm->sm_agno, &first, &last); 240 icount = last - first + 1; 241 } 242 243 /* If the block counts are impossible, make worst-case assumptions. */ 244 if (aglen == NULLAGBLOCK || 245 aglen != xfs_ag_block_count(mp, sm->sm_agno) || 246 freelen >= aglen) { 247 aglen = xfs_ag_block_count(mp, sm->sm_agno); 248 freelen = aglen; 249 usedlen = aglen; 250 } 251 252 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 253 freelen, usedlen); 254 255 /* 256 * Figure out how many blocks we'd need worst case to rebuild 257 * each type of btree. Note that we can only rebuild the 258 * bnobt/cntbt or inobt/finobt as pairs. 259 */ 260 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 261 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) 262 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 263 XFS_INODES_PER_HOLEMASK_BIT); 264 else 265 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 266 XFS_INODES_PER_CHUNK); 267 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 268 inobt_sz *= 2; 269 if (xfs_sb_version_hasreflink(&mp->m_sb)) 270 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 271 else 272 refcbt_sz = 0; 273 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 274 /* 275 * Guess how many blocks we need to rebuild the rmapbt. 276 * For non-reflink filesystems we can't have more records than 277 * used blocks. However, with reflink it's possible to have 278 * more than one rmap record per AG block. We don't know how 279 * many rmaps there could be in the AG, so we start off with 280 * what we hope is an generous over-estimation. 281 */ 282 if (xfs_sb_version_hasreflink(&mp->m_sb)) 283 rmapbt_sz = xfs_rmapbt_calc_size(mp, 284 (unsigned long long)aglen * 2); 285 else 286 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 287 } else { 288 rmapbt_sz = 0; 289 } 290 291 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 292 inobt_sz, rmapbt_sz, refcbt_sz); 293 294 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 295 } 296 297 /* Allocate a block in an AG. */ 298 int 299 xrep_alloc_ag_block( 300 struct xfs_scrub *sc, 301 struct xfs_owner_info *oinfo, 302 xfs_fsblock_t *fsbno, 303 enum xfs_ag_resv_type resv) 304 { 305 struct xfs_alloc_arg args = {0}; 306 xfs_agblock_t bno; 307 int error; 308 309 switch (resv) { 310 case XFS_AG_RESV_AGFL: 311 case XFS_AG_RESV_RMAPBT: 312 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 313 if (error) 314 return error; 315 if (bno == NULLAGBLOCK) 316 return -ENOSPC; 317 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, 318 1, false); 319 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); 320 if (resv == XFS_AG_RESV_RMAPBT) 321 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); 322 return 0; 323 default: 324 break; 325 } 326 327 args.tp = sc->tp; 328 args.mp = sc->mp; 329 args.oinfo = *oinfo; 330 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); 331 args.minlen = 1; 332 args.maxlen = 1; 333 args.prod = 1; 334 args.type = XFS_ALLOCTYPE_THIS_AG; 335 args.resv = resv; 336 337 error = xfs_alloc_vextent(&args); 338 if (error) 339 return error; 340 if (args.fsbno == NULLFSBLOCK) 341 return -ENOSPC; 342 ASSERT(args.len == 1); 343 *fsbno = args.fsbno; 344 345 return 0; 346 } 347 348 /* Initialize a new AG btree root block with zero entries. */ 349 int 350 xrep_init_btblock( 351 struct xfs_scrub *sc, 352 xfs_fsblock_t fsb, 353 struct xfs_buf **bpp, 354 xfs_btnum_t btnum, 355 const struct xfs_buf_ops *ops) 356 { 357 struct xfs_trans *tp = sc->tp; 358 struct xfs_mount *mp = sc->mp; 359 struct xfs_buf *bp; 360 361 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 362 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 363 364 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); 365 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb), 366 XFS_FSB_TO_BB(mp, 1), 0); 367 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 368 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0); 369 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 370 xfs_trans_log_buf(tp, bp, 0, bp->b_length); 371 bp->b_ops = ops; 372 *bpp = bp; 373 374 return 0; 375 } 376 377 /* 378 * Reconstructing per-AG Btrees 379 * 380 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 381 * we scan secondary space metadata to derive the records that should be in 382 * the damaged btree, initialize a fresh btree root, and insert the records. 383 * Note that for rebuilding the rmapbt we scan all the primary data to 384 * generate the new records. 385 * 386 * However, that leaves the matter of removing all the metadata describing the 387 * old broken structure. For primary metadata we use the rmap data to collect 388 * every extent with a matching rmap owner (bitmap); we then iterate all other 389 * metadata structures with the same rmap owner to collect the extents that 390 * cannot be removed (sublist). We then subtract sublist from bitmap to 391 * derive the blocks that were used by the old btree. These blocks can be 392 * reaped. 393 * 394 * For rmapbt reconstructions we must use different tactics for extent 395 * collection. First we iterate all primary metadata (this excludes the old 396 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 397 * records are collected as bitmap. The bnobt records are collected as 398 * sublist. As with the other btrees we subtract sublist from bitmap, and the 399 * result (since the rmapbt lives in the free space) are the blocks from the 400 * old rmapbt. 401 * 402 * Disposal of Blocks from Old per-AG Btrees 403 * 404 * Now that we've constructed a new btree to replace the damaged one, we want 405 * to dispose of the blocks that (we think) the old btree was using. 406 * Previously, we used the rmapbt to collect the extents (bitmap) with the 407 * rmap owner corresponding to the tree we rebuilt, collected extents for any 408 * blocks with the same rmap owner that are owned by another data structure 409 * (sublist), and subtracted sublist from bitmap. In theory the extents 410 * remaining in bitmap are the old btree's blocks. 411 * 412 * Unfortunately, it's possible that the btree was crosslinked with other 413 * blocks on disk. The rmap data can tell us if there are multiple owners, so 414 * if the rmapbt says there is an owner of this block other than @oinfo, then 415 * the block is crosslinked. Remove the reverse mapping and continue. 416 * 417 * If there is one rmap record, we can free the block, which removes the 418 * reverse mapping but doesn't add the block to the free space. Our repair 419 * strategy is to hope the other metadata objects crosslinked on this block 420 * will be rebuilt (atop different blocks), thereby removing all the cross 421 * links. 422 * 423 * If there are no rmap records at all, we also free the block. If the btree 424 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 425 * supposed to be a rmap record and everything is ok. For other btrees there 426 * had to have been an rmap entry for the block to have ended up on @bitmap, 427 * so if it's gone now there's something wrong and the fs will shut down. 428 * 429 * Note: If there are multiple rmap records with only the same rmap owner as 430 * the btree we're trying to rebuild and the block is indeed owned by another 431 * data structure with the same rmap owner, then the block will be in sublist 432 * and therefore doesn't need disposal. If there are multiple rmap records 433 * with only the same rmap owner but the block is not owned by something with 434 * the same rmap owner, the block will be freed. 435 * 436 * The caller is responsible for locking the AG headers for the entire rebuild 437 * operation so that nothing else can sneak in and change the AG state while 438 * we're not looking. We also assume that the caller already invalidated any 439 * buffers associated with @bitmap. 440 */ 441 442 /* 443 * Invalidate buffers for per-AG btree blocks we're dumping. This function 444 * is not intended for use with file data repairs; we have bunmapi for that. 445 */ 446 int 447 xrep_invalidate_blocks( 448 struct xfs_scrub *sc, 449 struct xfs_bitmap *bitmap) 450 { 451 struct xfs_bitmap_range *bmr; 452 struct xfs_bitmap_range *n; 453 struct xfs_buf *bp; 454 xfs_fsblock_t fsbno; 455 456 /* 457 * For each block in each extent, see if there's an incore buffer for 458 * exactly that block; if so, invalidate it. The buffer cache only 459 * lets us look for one buffer at a time, so we have to look one block 460 * at a time. Avoid invalidating AG headers and post-EOFS blocks 461 * because we never own those; and if we can't TRYLOCK the buffer we 462 * assume it's owned by someone else. 463 */ 464 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 465 /* Skip AG headers and post-EOFS blocks */ 466 if (!xfs_verify_fsbno(sc->mp, fsbno)) 467 continue; 468 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 469 XFS_FSB_TO_DADDR(sc->mp, fsbno), 470 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 471 if (bp) { 472 xfs_trans_bjoin(sc->tp, bp); 473 xfs_trans_binval(sc->tp, bp); 474 } 475 } 476 477 return 0; 478 } 479 480 /* Ensure the freelist is the correct size. */ 481 int 482 xrep_fix_freelist( 483 struct xfs_scrub *sc, 484 bool can_shrink) 485 { 486 struct xfs_alloc_arg args = {0}; 487 488 args.mp = sc->mp; 489 args.tp = sc->tp; 490 args.agno = sc->sa.agno; 491 args.alignment = 1; 492 args.pag = sc->sa.pag; 493 494 return xfs_alloc_fix_freelist(&args, 495 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 496 } 497 498 /* 499 * Put a block back on the AGFL. 500 */ 501 STATIC int 502 xrep_put_freelist( 503 struct xfs_scrub *sc, 504 xfs_agblock_t agbno) 505 { 506 struct xfs_owner_info oinfo; 507 int error; 508 509 /* Make sure there's space on the freelist. */ 510 error = xrep_fix_freelist(sc, true); 511 if (error) 512 return error; 513 514 /* 515 * Since we're "freeing" a lost block onto the AGFL, we have to 516 * create an rmap for the block prior to merging it or else other 517 * parts will break. 518 */ 519 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG); 520 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, 521 &oinfo); 522 if (error) 523 return error; 524 525 /* Put the block on the AGFL. */ 526 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 527 agbno, 0); 528 if (error) 529 return error; 530 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, 531 XFS_EXTENT_BUSY_SKIP_DISCARD); 532 533 return 0; 534 } 535 536 /* Dispose of a single block. */ 537 STATIC int 538 xrep_reap_block( 539 struct xfs_scrub *sc, 540 xfs_fsblock_t fsbno, 541 struct xfs_owner_info *oinfo, 542 enum xfs_ag_resv_type resv) 543 { 544 struct xfs_btree_cur *cur; 545 struct xfs_buf *agf_bp = NULL; 546 xfs_agnumber_t agno; 547 xfs_agblock_t agbno; 548 bool has_other_rmap; 549 int error; 550 551 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 552 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 553 554 /* 555 * If we are repairing per-inode metadata, we need to read in the AGF 556 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 557 * the AGF buffer that the setup functions already grabbed. 558 */ 559 if (sc->ip) { 560 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 561 if (error) 562 return error; 563 if (!agf_bp) 564 return -ENOMEM; 565 } else { 566 agf_bp = sc->sa.agf_bp; 567 } 568 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); 569 570 /* Can we find any other rmappings? */ 571 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 572 xfs_btree_del_cursor(cur, error); 573 if (error) 574 goto out_free; 575 576 /* 577 * If there are other rmappings, this block is cross linked and must 578 * not be freed. Remove the reverse mapping and move on. Otherwise, 579 * we were the only owner of the block, so free the extent, which will 580 * also remove the rmap. 581 * 582 * XXX: XFS doesn't support detecting the case where a single block 583 * metadata structure is crosslinked with a multi-block structure 584 * because the buffer cache doesn't detect aliasing problems, so we 585 * can't fix 100% of crosslinking problems (yet). The verifiers will 586 * blow on writeout, the filesystem will shut down, and the admin gets 587 * to run xfs_repair. 588 */ 589 if (has_other_rmap) 590 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); 591 else if (resv == XFS_AG_RESV_AGFL) 592 error = xrep_put_freelist(sc, agbno); 593 else 594 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 595 if (agf_bp != sc->sa.agf_bp) 596 xfs_trans_brelse(sc->tp, agf_bp); 597 if (error) 598 return error; 599 600 if (sc->ip) 601 return xfs_trans_roll_inode(&sc->tp, sc->ip); 602 return xrep_roll_ag_trans(sc); 603 604 out_free: 605 if (agf_bp != sc->sa.agf_bp) 606 xfs_trans_brelse(sc->tp, agf_bp); 607 return error; 608 } 609 610 /* Dispose of every block of every extent in the bitmap. */ 611 int 612 xrep_reap_extents( 613 struct xfs_scrub *sc, 614 struct xfs_bitmap *bitmap, 615 struct xfs_owner_info *oinfo, 616 enum xfs_ag_resv_type type) 617 { 618 struct xfs_bitmap_range *bmr; 619 struct xfs_bitmap_range *n; 620 xfs_fsblock_t fsbno; 621 int error = 0; 622 623 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); 624 625 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) { 626 ASSERT(sc->ip != NULL || 627 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); 628 trace_xrep_dispose_btree_extent(sc->mp, 629 XFS_FSB_TO_AGNO(sc->mp, fsbno), 630 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 631 632 error = xrep_reap_block(sc, fsbno, oinfo, type); 633 if (error) 634 goto out; 635 } 636 637 out: 638 xfs_bitmap_destroy(bitmap); 639 return error; 640 } 641 642 /* 643 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 644 * 645 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 646 * the AG headers by using the rmap data to rummage through the AG looking for 647 * btree roots. This is not guaranteed to work if the AG is heavily damaged 648 * or the rmap data are corrupt. 649 * 650 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 651 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 652 * AGI is being rebuilt. It must maintain these locks until it's safe for 653 * other threads to change the btrees' shapes. The caller provides 654 * information about the btrees to look for by passing in an array of 655 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 656 * The (root, height) fields will be set on return if anything is found. The 657 * last element of the array should have a NULL buf_ops to mark the end of the 658 * array. 659 * 660 * For every rmapbt record matching any of the rmap owners in btree_info, 661 * read each block referenced by the rmap record. If the block is a btree 662 * block from this filesystem matching any of the magic numbers and has a 663 * level higher than what we've already seen, remember the block and the 664 * height of the tree required to have such a block. When the call completes, 665 * we return the highest block we've found for each btree description; those 666 * should be the roots. 667 */ 668 669 struct xrep_findroot { 670 struct xfs_scrub *sc; 671 struct xfs_buf *agfl_bp; 672 struct xfs_agf *agf; 673 struct xrep_find_ag_btree *btree_info; 674 }; 675 676 /* See if our block is in the AGFL. */ 677 STATIC int 678 xrep_findroot_agfl_walk( 679 struct xfs_mount *mp, 680 xfs_agblock_t bno, 681 void *priv) 682 { 683 xfs_agblock_t *agbno = priv; 684 685 return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0; 686 } 687 688 /* Does this block match the btree information passed in? */ 689 STATIC int 690 xrep_findroot_block( 691 struct xrep_findroot *ri, 692 struct xrep_find_ag_btree *fab, 693 uint64_t owner, 694 xfs_agblock_t agbno, 695 bool *found_it) 696 { 697 struct xfs_mount *mp = ri->sc->mp; 698 struct xfs_buf *bp; 699 struct xfs_btree_block *btblock; 700 xfs_daddr_t daddr; 701 int error; 702 703 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); 704 705 /* 706 * Blocks in the AGFL have stale contents that might just happen to 707 * have a matching magic and uuid. We don't want to pull these blocks 708 * in as part of a tree root, so we have to filter out the AGFL stuff 709 * here. If the AGFL looks insane we'll just refuse to repair. 710 */ 711 if (owner == XFS_RMAP_OWN_AG) { 712 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 713 xrep_findroot_agfl_walk, &agbno); 714 if (error == XFS_BTREE_QUERY_RANGE_ABORT) 715 return 0; 716 if (error) 717 return error; 718 } 719 720 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 721 mp->m_bsize, 0, &bp, NULL); 722 if (error) 723 return error; 724 725 /* 726 * Does this look like a block matching our fs and higher than any 727 * other block we've found so far? If so, reattach buffer verifiers 728 * so the AIL won't complain if the buffer is also dirty. 729 */ 730 btblock = XFS_BUF_TO_BLOCK(bp); 731 if (be32_to_cpu(btblock->bb_magic) != fab->magic) 732 goto out; 733 if (xfs_sb_version_hascrc(&mp->m_sb) && 734 !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 735 goto out; 736 bp->b_ops = fab->buf_ops; 737 738 /* Ignore this block if it's lower in the tree than we've seen. */ 739 if (fab->root != NULLAGBLOCK && 740 xfs_btree_get_level(btblock) < fab->height) 741 goto out; 742 743 /* Make sure we pass the verifiers. */ 744 bp->b_ops->verify_read(bp); 745 if (bp->b_error) 746 goto out; 747 fab->root = agbno; 748 fab->height = xfs_btree_get_level(btblock) + 1; 749 *found_it = true; 750 751 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, 752 be32_to_cpu(btblock->bb_magic), fab->height - 1); 753 out: 754 xfs_trans_brelse(ri->sc->tp, bp); 755 return error; 756 } 757 758 /* 759 * Do any of the blocks in this rmap record match one of the btrees we're 760 * looking for? 761 */ 762 STATIC int 763 xrep_findroot_rmap( 764 struct xfs_btree_cur *cur, 765 struct xfs_rmap_irec *rec, 766 void *priv) 767 { 768 struct xrep_findroot *ri = priv; 769 struct xrep_find_ag_btree *fab; 770 xfs_agblock_t b; 771 bool found_it; 772 int error = 0; 773 774 /* Ignore anything that isn't AG metadata. */ 775 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 776 return 0; 777 778 /* Otherwise scan each block + btree type. */ 779 for (b = 0; b < rec->rm_blockcount; b++) { 780 found_it = false; 781 for (fab = ri->btree_info; fab->buf_ops; fab++) { 782 if (rec->rm_owner != fab->rmap_owner) 783 continue; 784 error = xrep_findroot_block(ri, fab, 785 rec->rm_owner, rec->rm_startblock + b, 786 &found_it); 787 if (error) 788 return error; 789 if (found_it) 790 break; 791 } 792 } 793 794 return 0; 795 } 796 797 /* Find the roots of the per-AG btrees described in btree_info. */ 798 int 799 xrep_find_ag_btree_roots( 800 struct xfs_scrub *sc, 801 struct xfs_buf *agf_bp, 802 struct xrep_find_ag_btree *btree_info, 803 struct xfs_buf *agfl_bp) 804 { 805 struct xfs_mount *mp = sc->mp; 806 struct xrep_findroot ri; 807 struct xrep_find_ag_btree *fab; 808 struct xfs_btree_cur *cur; 809 int error; 810 811 ASSERT(xfs_buf_islocked(agf_bp)); 812 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 813 814 ri.sc = sc; 815 ri.btree_info = btree_info; 816 ri.agf = XFS_BUF_TO_AGF(agf_bp); 817 ri.agfl_bp = agfl_bp; 818 for (fab = btree_info; fab->buf_ops; fab++) { 819 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 820 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 821 fab->root = NULLAGBLOCK; 822 fab->height = 0; 823 } 824 825 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 826 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 827 xfs_btree_del_cursor(cur, error); 828 829 return error; 830 } 831 832 /* Force a quotacheck the next time we mount. */ 833 void 834 xrep_force_quotacheck( 835 struct xfs_scrub *sc, 836 uint dqtype) 837 { 838 uint flag; 839 840 flag = xfs_quota_chkd_flag(dqtype); 841 if (!(flag & sc->mp->m_qflags)) 842 return; 843 844 sc->mp->m_qflags &= ~flag; 845 spin_lock(&sc->mp->m_sb_lock); 846 sc->mp->m_sb.sb_qflags &= ~flag; 847 spin_unlock(&sc->mp->m_sb_lock); 848 xfs_log_sb(sc->tp); 849 } 850 851 /* 852 * Attach dquots to this inode, or schedule quotacheck to fix them. 853 * 854 * This function ensures that the appropriate dquots are attached to an inode. 855 * We cannot allow the dquot code to allocate an on-disk dquot block here 856 * because we're already in transaction context with the inode locked. The 857 * on-disk dquot should already exist anyway. If the quota code signals 858 * corruption or missing quota information, schedule quotacheck, which will 859 * repair corruptions in the quota metadata. 860 */ 861 int 862 xrep_ino_dqattach( 863 struct xfs_scrub *sc) 864 { 865 int error; 866 867 error = xfs_qm_dqattach_locked(sc->ip, false); 868 switch (error) { 869 case -EFSBADCRC: 870 case -EFSCORRUPTED: 871 case -ENOENT: 872 xfs_err_ratelimited(sc->mp, 873 "inode %llu repair encountered quota error %d, quotacheck forced.", 874 (unsigned long long)sc->ip->i_ino, error); 875 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 876 xrep_force_quotacheck(sc, XFS_DQ_USER); 877 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 878 xrep_force_quotacheck(sc, XFS_DQ_GROUP); 879 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 880 xrep_force_quotacheck(sc, XFS_DQ_PROJ); 881 /* fall through */ 882 case -ESRCH: 883 error = 0; 884 break; 885 default: 886 break; 887 } 888 889 return error; 890 } 891