xref: /openbmc/linux/fs/xfs/scrub/repair.c (revision 8bd1369b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_alloc.h"
21 #include "xfs_alloc_btree.h"
22 #include "xfs_ialloc.h"
23 #include "xfs_ialloc_btree.h"
24 #include "xfs_rmap.h"
25 #include "xfs_rmap_btree.h"
26 #include "xfs_refcount.h"
27 #include "xfs_refcount_btree.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_ag_resv.h"
30 #include "xfs_trans_space.h"
31 #include "xfs_quota.h"
32 #include "scrub/xfs_scrub.h"
33 #include "scrub/scrub.h"
34 #include "scrub/common.h"
35 #include "scrub/trace.h"
36 #include "scrub/repair.h"
37 
38 /*
39  * Attempt to repair some metadata, if the metadata is corrupt and userspace
40  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
41  * and will set *fixed to true if it thinks it repaired anything.
42  */
43 int
44 xfs_repair_attempt(
45 	struct xfs_inode		*ip,
46 	struct xfs_scrub_context	*sc,
47 	bool				*fixed)
48 {
49 	int				error = 0;
50 
51 	trace_xfs_repair_attempt(ip, sc->sm, error);
52 
53 	xfs_scrub_ag_btcur_free(&sc->sa);
54 
55 	/* Repair whatever's broken. */
56 	ASSERT(sc->ops->repair);
57 	error = sc->ops->repair(sc);
58 	trace_xfs_repair_done(ip, sc->sm, error);
59 	switch (error) {
60 	case 0:
61 		/*
62 		 * Repair succeeded.  Commit the fixes and perform a second
63 		 * scrub so that we can tell userspace if we fixed the problem.
64 		 */
65 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
66 		*fixed = true;
67 		return -EAGAIN;
68 	case -EDEADLOCK:
69 	case -EAGAIN:
70 		/* Tell the caller to try again having grabbed all the locks. */
71 		if (!sc->try_harder) {
72 			sc->try_harder = true;
73 			return -EAGAIN;
74 		}
75 		/*
76 		 * We tried harder but still couldn't grab all the resources
77 		 * we needed to fix it.  The corruption has not been fixed,
78 		 * so report back to userspace.
79 		 */
80 		return -EFSCORRUPTED;
81 	default:
82 		return error;
83 	}
84 }
85 
86 /*
87  * Complain about unfixable problems in the filesystem.  We don't log
88  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
89  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
90  * administrator isn't running xfs_scrub in no-repairs mode.
91  *
92  * Use this helper function because _ratelimited silently declares a static
93  * structure to track rate limiting information.
94  */
95 void
96 xfs_repair_failure(
97 	struct xfs_mount		*mp)
98 {
99 	xfs_alert_ratelimited(mp,
100 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
101 }
102 
103 /*
104  * Repair probe -- userspace uses this to probe if we're willing to repair a
105  * given mountpoint.
106  */
107 int
108 xfs_repair_probe(
109 	struct xfs_scrub_context	*sc)
110 {
111 	int				error = 0;
112 
113 	if (xfs_scrub_should_terminate(sc, &error))
114 		return error;
115 
116 	return 0;
117 }
118 
119 /*
120  * Roll a transaction, keeping the AG headers locked and reinitializing
121  * the btree cursors.
122  */
123 int
124 xfs_repair_roll_ag_trans(
125 	struct xfs_scrub_context	*sc)
126 {
127 	int				error;
128 
129 	/* Keep the AG header buffers locked so we can keep going. */
130 	xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
131 	xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
132 	xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
133 
134 	/* Roll the transaction. */
135 	error = xfs_trans_roll(&sc->tp);
136 	if (error)
137 		goto out_release;
138 
139 	/* Join AG headers to the new transaction. */
140 	xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
141 	xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
142 	xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
143 
144 	return 0;
145 
146 out_release:
147 	/*
148 	 * Rolling failed, so release the hold on the buffers.  The
149 	 * buffers will be released during teardown on our way out
150 	 * of the kernel.
151 	 */
152 	xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
153 	xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
154 	xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
155 
156 	return error;
157 }
158 
159 /*
160  * Does the given AG have enough space to rebuild a btree?  Neither AG
161  * reservation can be critical, and we must have enough space (factoring
162  * in AG reservations) to construct a whole btree.
163  */
164 bool
165 xfs_repair_ag_has_space(
166 	struct xfs_perag		*pag,
167 	xfs_extlen_t			nr_blocks,
168 	enum xfs_ag_resv_type		type)
169 {
170 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
171 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
172 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
173 }
174 
175 /*
176  * Figure out how many blocks to reserve for an AG repair.  We calculate the
177  * worst case estimate for the number of blocks we'd need to rebuild one of
178  * any type of per-AG btree.
179  */
180 xfs_extlen_t
181 xfs_repair_calc_ag_resblks(
182 	struct xfs_scrub_context	*sc)
183 {
184 	struct xfs_mount		*mp = sc->mp;
185 	struct xfs_scrub_metadata	*sm = sc->sm;
186 	struct xfs_perag		*pag;
187 	struct xfs_buf			*bp;
188 	xfs_agino_t			icount = 0;
189 	xfs_extlen_t			aglen = 0;
190 	xfs_extlen_t			usedlen;
191 	xfs_extlen_t			freelen;
192 	xfs_extlen_t			bnobt_sz;
193 	xfs_extlen_t			inobt_sz;
194 	xfs_extlen_t			rmapbt_sz;
195 	xfs_extlen_t			refcbt_sz;
196 	int				error;
197 
198 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
199 		return 0;
200 
201 	/* Use in-core counters if possible. */
202 	pag = xfs_perag_get(mp, sm->sm_agno);
203 	if (pag->pagi_init)
204 		icount = pag->pagi_count;
205 
206 	/*
207 	 * Otherwise try to get the actual counters from disk; if not, make
208 	 * some worst case assumptions.
209 	 */
210 	if (icount == 0) {
211 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
212 		if (error) {
213 			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
214 		} else {
215 			icount = pag->pagi_count;
216 			xfs_buf_relse(bp);
217 		}
218 	}
219 
220 	/* Now grab the block counters from the AGF. */
221 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
222 	if (error) {
223 		aglen = mp->m_sb.sb_agblocks;
224 		freelen = aglen;
225 		usedlen = aglen;
226 	} else {
227 		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
228 		freelen = pag->pagf_freeblks;
229 		usedlen = aglen - freelen;
230 		xfs_buf_relse(bp);
231 	}
232 	xfs_perag_put(pag);
233 
234 	trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
235 			freelen, usedlen);
236 
237 	/*
238 	 * Figure out how many blocks we'd need worst case to rebuild
239 	 * each type of btree.  Note that we can only rebuild the
240 	 * bnobt/cntbt or inobt/finobt as pairs.
241 	 */
242 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
243 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
244 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
245 				XFS_INODES_PER_HOLEMASK_BIT);
246 	else
247 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
248 				XFS_INODES_PER_CHUNK);
249 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
250 		inobt_sz *= 2;
251 	if (xfs_sb_version_hasreflink(&mp->m_sb))
252 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
253 	else
254 		refcbt_sz = 0;
255 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
256 		/*
257 		 * Guess how many blocks we need to rebuild the rmapbt.
258 		 * For non-reflink filesystems we can't have more records than
259 		 * used blocks.  However, with reflink it's possible to have
260 		 * more than one rmap record per AG block.  We don't know how
261 		 * many rmaps there could be in the AG, so we start off with
262 		 * what we hope is an generous over-estimation.
263 		 */
264 		if (xfs_sb_version_hasreflink(&mp->m_sb))
265 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
266 					(unsigned long long)aglen * 2);
267 		else
268 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
269 	} else {
270 		rmapbt_sz = 0;
271 	}
272 
273 	trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
274 			inobt_sz, rmapbt_sz, refcbt_sz);
275 
276 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
277 }
278 
279 /* Allocate a block in an AG. */
280 int
281 xfs_repair_alloc_ag_block(
282 	struct xfs_scrub_context	*sc,
283 	struct xfs_owner_info		*oinfo,
284 	xfs_fsblock_t			*fsbno,
285 	enum xfs_ag_resv_type		resv)
286 {
287 	struct xfs_alloc_arg		args = {0};
288 	xfs_agblock_t			bno;
289 	int				error;
290 
291 	switch (resv) {
292 	case XFS_AG_RESV_AGFL:
293 	case XFS_AG_RESV_RMAPBT:
294 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
295 		if (error)
296 			return error;
297 		if (bno == NULLAGBLOCK)
298 			return -ENOSPC;
299 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
300 				1, false);
301 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
302 		if (resv == XFS_AG_RESV_RMAPBT)
303 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
304 		return 0;
305 	default:
306 		break;
307 	}
308 
309 	args.tp = sc->tp;
310 	args.mp = sc->mp;
311 	args.oinfo = *oinfo;
312 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
313 	args.minlen = 1;
314 	args.maxlen = 1;
315 	args.prod = 1;
316 	args.type = XFS_ALLOCTYPE_THIS_AG;
317 	args.resv = resv;
318 
319 	error = xfs_alloc_vextent(&args);
320 	if (error)
321 		return error;
322 	if (args.fsbno == NULLFSBLOCK)
323 		return -ENOSPC;
324 	ASSERT(args.len == 1);
325 	*fsbno = args.fsbno;
326 
327 	return 0;
328 }
329 
330 /* Initialize a new AG btree root block with zero entries. */
331 int
332 xfs_repair_init_btblock(
333 	struct xfs_scrub_context	*sc,
334 	xfs_fsblock_t			fsb,
335 	struct xfs_buf			**bpp,
336 	xfs_btnum_t			btnum,
337 	const struct xfs_buf_ops	*ops)
338 {
339 	struct xfs_trans		*tp = sc->tp;
340 	struct xfs_mount		*mp = sc->mp;
341 	struct xfs_buf			*bp;
342 
343 	trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
344 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
345 
346 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
347 	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
348 			XFS_FSB_TO_BB(mp, 1), 0);
349 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
350 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
351 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
352 	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
353 	bp->b_ops = ops;
354 	*bpp = bp;
355 
356 	return 0;
357 }
358 
359 /*
360  * Reconstructing per-AG Btrees
361  *
362  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
363  * we scan secondary space metadata to derive the records that should be in
364  * the damaged btree, initialize a fresh btree root, and insert the records.
365  * Note that for rebuilding the rmapbt we scan all the primary data to
366  * generate the new records.
367  *
368  * However, that leaves the matter of removing all the metadata describing the
369  * old broken structure.  For primary metadata we use the rmap data to collect
370  * every extent with a matching rmap owner (exlist); we then iterate all other
371  * metadata structures with the same rmap owner to collect the extents that
372  * cannot be removed (sublist).  We then subtract sublist from exlist to
373  * derive the blocks that were used by the old btree.  These blocks can be
374  * reaped.
375  *
376  * For rmapbt reconstructions we must use different tactics for extent
377  * collection.  First we iterate all primary metadata (this excludes the old
378  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
379  * records are collected as exlist.  The bnobt records are collected as
380  * sublist.  As with the other btrees we subtract sublist from exlist, and the
381  * result (since the rmapbt lives in the free space) are the blocks from the
382  * old rmapbt.
383  */
384 
385 /* Collect a dead btree extent for later disposal. */
386 int
387 xfs_repair_collect_btree_extent(
388 	struct xfs_scrub_context	*sc,
389 	struct xfs_repair_extent_list	*exlist,
390 	xfs_fsblock_t			fsbno,
391 	xfs_extlen_t			len)
392 {
393 	struct xfs_repair_extent	*rex;
394 
395 	trace_xfs_repair_collect_btree_extent(sc->mp,
396 			XFS_FSB_TO_AGNO(sc->mp, fsbno),
397 			XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
398 
399 	rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
400 	if (!rex)
401 		return -ENOMEM;
402 
403 	INIT_LIST_HEAD(&rex->list);
404 	rex->fsbno = fsbno;
405 	rex->len = len;
406 	list_add_tail(&rex->list, &exlist->list);
407 
408 	return 0;
409 }
410 
411 /*
412  * An error happened during the rebuild so the transaction will be cancelled.
413  * The fs will shut down, and the administrator has to unmount and run repair.
414  * Therefore, free all the memory associated with the list so we can die.
415  */
416 void
417 xfs_repair_cancel_btree_extents(
418 	struct xfs_scrub_context	*sc,
419 	struct xfs_repair_extent_list	*exlist)
420 {
421 	struct xfs_repair_extent	*rex;
422 	struct xfs_repair_extent	*n;
423 
424 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
425 		list_del(&rex->list);
426 		kmem_free(rex);
427 	}
428 }
429 
430 /* Compare two btree extents. */
431 static int
432 xfs_repair_btree_extent_cmp(
433 	void				*priv,
434 	struct list_head		*a,
435 	struct list_head		*b)
436 {
437 	struct xfs_repair_extent	*ap;
438 	struct xfs_repair_extent	*bp;
439 
440 	ap = container_of(a, struct xfs_repair_extent, list);
441 	bp = container_of(b, struct xfs_repair_extent, list);
442 
443 	if (ap->fsbno > bp->fsbno)
444 		return 1;
445 	if (ap->fsbno < bp->fsbno)
446 		return -1;
447 	return 0;
448 }
449 
450 /*
451  * Remove all the blocks mentioned in @sublist from the extents in @exlist.
452  *
453  * The intent is that callers will iterate the rmapbt for all of its records
454  * for a given owner to generate @exlist; and iterate all the blocks of the
455  * metadata structures that are not being rebuilt and have the same rmapbt
456  * owner to generate @sublist.  This routine subtracts all the extents
457  * mentioned in sublist from all the extents linked in @exlist, which leaves
458  * @exlist as the list of blocks that are not accounted for, which we assume
459  * are the dead blocks of the old metadata structure.  The blocks mentioned in
460  * @exlist can be reaped.
461  */
462 #define LEFT_ALIGNED	(1 << 0)
463 #define RIGHT_ALIGNED	(1 << 1)
464 int
465 xfs_repair_subtract_extents(
466 	struct xfs_scrub_context	*sc,
467 	struct xfs_repair_extent_list	*exlist,
468 	struct xfs_repair_extent_list	*sublist)
469 {
470 	struct list_head		*lp;
471 	struct xfs_repair_extent	*ex;
472 	struct xfs_repair_extent	*newex;
473 	struct xfs_repair_extent	*subex;
474 	xfs_fsblock_t			sub_fsb;
475 	xfs_extlen_t			sub_len;
476 	int				state;
477 	int				error = 0;
478 
479 	if (list_empty(&exlist->list) || list_empty(&sublist->list))
480 		return 0;
481 	ASSERT(!list_empty(&sublist->list));
482 
483 	list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
484 	list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);
485 
486 	/*
487 	 * Now that we've sorted both lists, we iterate exlist once, rolling
488 	 * forward through sublist and/or exlist as necessary until we find an
489 	 * overlap or reach the end of either list.  We do not reset lp to the
490 	 * head of exlist nor do we reset subex to the head of sublist.  The
491 	 * list traversal is similar to merge sort, but we're deleting
492 	 * instead.  In this manner we avoid O(n^2) operations.
493 	 */
494 	subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
495 			list);
496 	lp = exlist->list.next;
497 	while (lp != &exlist->list) {
498 		ex = list_entry(lp, struct xfs_repair_extent, list);
499 
500 		/*
501 		 * Advance subex and/or ex until we find a pair that
502 		 * intersect or we run out of extents.
503 		 */
504 		while (subex->fsbno + subex->len <= ex->fsbno) {
505 			if (list_is_last(&subex->list, &sublist->list))
506 				goto out;
507 			subex = list_next_entry(subex, list);
508 		}
509 		if (subex->fsbno >= ex->fsbno + ex->len) {
510 			lp = lp->next;
511 			continue;
512 		}
513 
514 		/* trim subex to fit the extent we have */
515 		sub_fsb = subex->fsbno;
516 		sub_len = subex->len;
517 		if (subex->fsbno < ex->fsbno) {
518 			sub_len -= ex->fsbno - subex->fsbno;
519 			sub_fsb = ex->fsbno;
520 		}
521 		if (sub_len > ex->len)
522 			sub_len = ex->len;
523 
524 		state = 0;
525 		if (sub_fsb == ex->fsbno)
526 			state |= LEFT_ALIGNED;
527 		if (sub_fsb + sub_len == ex->fsbno + ex->len)
528 			state |= RIGHT_ALIGNED;
529 		switch (state) {
530 		case LEFT_ALIGNED:
531 			/* Coincides with only the left. */
532 			ex->fsbno += sub_len;
533 			ex->len -= sub_len;
534 			break;
535 		case RIGHT_ALIGNED:
536 			/* Coincides with only the right. */
537 			ex->len -= sub_len;
538 			lp = lp->next;
539 			break;
540 		case LEFT_ALIGNED | RIGHT_ALIGNED:
541 			/* Total overlap, just delete ex. */
542 			lp = lp->next;
543 			list_del(&ex->list);
544 			kmem_free(ex);
545 			break;
546 		case 0:
547 			/*
548 			 * Deleting from the middle: add the new right extent
549 			 * and then shrink the left extent.
550 			 */
551 			newex = kmem_alloc(sizeof(struct xfs_repair_extent),
552 					KM_MAYFAIL);
553 			if (!newex) {
554 				error = -ENOMEM;
555 				goto out;
556 			}
557 			INIT_LIST_HEAD(&newex->list);
558 			newex->fsbno = sub_fsb + sub_len;
559 			newex->len = ex->fsbno + ex->len - newex->fsbno;
560 			list_add(&newex->list, &ex->list);
561 			ex->len = sub_fsb - ex->fsbno;
562 			lp = lp->next;
563 			break;
564 		default:
565 			ASSERT(0);
566 			break;
567 		}
568 	}
569 
570 out:
571 	return error;
572 }
573 #undef LEFT_ALIGNED
574 #undef RIGHT_ALIGNED
575 
576 /*
577  * Disposal of Blocks from Old per-AG Btrees
578  *
579  * Now that we've constructed a new btree to replace the damaged one, we want
580  * to dispose of the blocks that (we think) the old btree was using.
581  * Previously, we used the rmapbt to collect the extents (exlist) with the
582  * rmap owner corresponding to the tree we rebuilt, collected extents for any
583  * blocks with the same rmap owner that are owned by another data structure
584  * (sublist), and subtracted sublist from exlist.  In theory the extents
585  * remaining in exlist are the old btree's blocks.
586  *
587  * Unfortunately, it's possible that the btree was crosslinked with other
588  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
589  * if the rmapbt says there is an owner of this block other than @oinfo, then
590  * the block is crosslinked.  Remove the reverse mapping and continue.
591  *
592  * If there is one rmap record, we can free the block, which removes the
593  * reverse mapping but doesn't add the block to the free space.  Our repair
594  * strategy is to hope the other metadata objects crosslinked on this block
595  * will be rebuilt (atop different blocks), thereby removing all the cross
596  * links.
597  *
598  * If there are no rmap records at all, we also free the block.  If the btree
599  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
600  * supposed to be a rmap record and everything is ok.  For other btrees there
601  * had to have been an rmap entry for the block to have ended up on @exlist,
602  * so if it's gone now there's something wrong and the fs will shut down.
603  *
604  * Note: If there are multiple rmap records with only the same rmap owner as
605  * the btree we're trying to rebuild and the block is indeed owned by another
606  * data structure with the same rmap owner, then the block will be in sublist
607  * and therefore doesn't need disposal.  If there are multiple rmap records
608  * with only the same rmap owner but the block is not owned by something with
609  * the same rmap owner, the block will be freed.
610  *
611  * The caller is responsible for locking the AG headers for the entire rebuild
612  * operation so that nothing else can sneak in and change the AG state while
613  * we're not looking.  We also assume that the caller already invalidated any
614  * buffers associated with @exlist.
615  */
616 
617 /*
618  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
619  * is not intended for use with file data repairs; we have bunmapi for that.
620  */
621 int
622 xfs_repair_invalidate_blocks(
623 	struct xfs_scrub_context	*sc,
624 	struct xfs_repair_extent_list	*exlist)
625 {
626 	struct xfs_repair_extent	*rex;
627 	struct xfs_repair_extent	*n;
628 	struct xfs_buf			*bp;
629 	xfs_fsblock_t			fsbno;
630 	xfs_agblock_t			i;
631 
632 	/*
633 	 * For each block in each extent, see if there's an incore buffer for
634 	 * exactly that block; if so, invalidate it.  The buffer cache only
635 	 * lets us look for one buffer at a time, so we have to look one block
636 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
637 	 * because we never own those; and if we can't TRYLOCK the buffer we
638 	 * assume it's owned by someone else.
639 	 */
640 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
641 		for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
642 			/* Skip AG headers and post-EOFS blocks */
643 			if (!xfs_verify_fsbno(sc->mp, fsbno))
644 				continue;
645 			bp = xfs_buf_incore(sc->mp->m_ddev_targp,
646 					XFS_FSB_TO_DADDR(sc->mp, fsbno),
647 					XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
648 			if (bp) {
649 				xfs_trans_bjoin(sc->tp, bp);
650 				xfs_trans_binval(sc->tp, bp);
651 			}
652 		}
653 	}
654 
655 	return 0;
656 }
657 
658 /* Ensure the freelist is the correct size. */
659 int
660 xfs_repair_fix_freelist(
661 	struct xfs_scrub_context	*sc,
662 	bool				can_shrink)
663 {
664 	struct xfs_alloc_arg		args = {0};
665 
666 	args.mp = sc->mp;
667 	args.tp = sc->tp;
668 	args.agno = sc->sa.agno;
669 	args.alignment = 1;
670 	args.pag = sc->sa.pag;
671 
672 	return xfs_alloc_fix_freelist(&args,
673 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
674 }
675 
676 /*
677  * Put a block back on the AGFL.
678  */
679 STATIC int
680 xfs_repair_put_freelist(
681 	struct xfs_scrub_context	*sc,
682 	xfs_agblock_t			agbno)
683 {
684 	struct xfs_owner_info		oinfo;
685 	int				error;
686 
687 	/* Make sure there's space on the freelist. */
688 	error = xfs_repair_fix_freelist(sc, true);
689 	if (error)
690 		return error;
691 
692 	/*
693 	 * Since we're "freeing" a lost block onto the AGFL, we have to
694 	 * create an rmap for the block prior to merging it or else other
695 	 * parts will break.
696 	 */
697 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
698 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
699 			&oinfo);
700 	if (error)
701 		return error;
702 
703 	/* Put the block on the AGFL. */
704 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
705 			agbno, 0);
706 	if (error)
707 		return error;
708 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
709 			XFS_EXTENT_BUSY_SKIP_DISCARD);
710 
711 	return 0;
712 }
713 
714 /* Dispose of a single metadata block. */
715 STATIC int
716 xfs_repair_dispose_btree_block(
717 	struct xfs_scrub_context	*sc,
718 	xfs_fsblock_t			fsbno,
719 	struct xfs_owner_info		*oinfo,
720 	enum xfs_ag_resv_type		resv)
721 {
722 	struct xfs_btree_cur		*cur;
723 	struct xfs_buf			*agf_bp = NULL;
724 	xfs_agnumber_t			agno;
725 	xfs_agblock_t			agbno;
726 	bool				has_other_rmap;
727 	int				error;
728 
729 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
730 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
731 
732 	/*
733 	 * If we are repairing per-inode metadata, we need to read in the AGF
734 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
735 	 * the AGF buffer that the setup functions already grabbed.
736 	 */
737 	if (sc->ip) {
738 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
739 		if (error)
740 			return error;
741 		if (!agf_bp)
742 			return -ENOMEM;
743 	} else {
744 		agf_bp = sc->sa.agf_bp;
745 	}
746 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
747 
748 	/* Can we find any other rmappings? */
749 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
750 	if (error)
751 		goto out_cur;
752 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
753 
754 	/*
755 	 * If there are other rmappings, this block is cross linked and must
756 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
757 	 * we were the only owner of the block, so free the extent, which will
758 	 * also remove the rmap.
759 	 *
760 	 * XXX: XFS doesn't support detecting the case where a single block
761 	 * metadata structure is crosslinked with a multi-block structure
762 	 * because the buffer cache doesn't detect aliasing problems, so we
763 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
764 	 * blow on writeout, the filesystem will shut down, and the admin gets
765 	 * to run xfs_repair.
766 	 */
767 	if (has_other_rmap)
768 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
769 	else if (resv == XFS_AG_RESV_AGFL)
770 		error = xfs_repair_put_freelist(sc, agbno);
771 	else
772 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
773 	if (agf_bp != sc->sa.agf_bp)
774 		xfs_trans_brelse(sc->tp, agf_bp);
775 	if (error)
776 		return error;
777 
778 	if (sc->ip)
779 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
780 	return xfs_repair_roll_ag_trans(sc);
781 
782 out_cur:
783 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
784 	if (agf_bp != sc->sa.agf_bp)
785 		xfs_trans_brelse(sc->tp, agf_bp);
786 	return error;
787 }
788 
789 /* Dispose of btree blocks from an old per-AG btree. */
790 int
791 xfs_repair_reap_btree_extents(
792 	struct xfs_scrub_context	*sc,
793 	struct xfs_repair_extent_list	*exlist,
794 	struct xfs_owner_info		*oinfo,
795 	enum xfs_ag_resv_type		type)
796 {
797 	struct xfs_repair_extent	*rex;
798 	struct xfs_repair_extent	*n;
799 	int				error = 0;
800 
801 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
802 
803 	/* Dispose of every block from the old btree. */
804 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
805 		ASSERT(sc->ip != NULL ||
806 		       XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);
807 
808 		trace_xfs_repair_dispose_btree_extent(sc->mp,
809 				XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
810 				XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);
811 
812 		for (; rex->len > 0; rex->len--, rex->fsbno++) {
813 			error = xfs_repair_dispose_btree_block(sc, rex->fsbno,
814 					oinfo, type);
815 			if (error)
816 				goto out;
817 		}
818 		list_del(&rex->list);
819 		kmem_free(rex);
820 	}
821 
822 out:
823 	xfs_repair_cancel_btree_extents(sc, exlist);
824 	return error;
825 }
826 
827 /*
828  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
829  *
830  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
831  * the AG headers by using the rmap data to rummage through the AG looking for
832  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
833  * or the rmap data are corrupt.
834  *
835  * Callers of xfs_repair_find_ag_btree_roots must lock the AGF and AGFL
836  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
837  * AGI is being rebuilt.  It must maintain these locks until it's safe for
838  * other threads to change the btrees' shapes.  The caller provides
839  * information about the btrees to look for by passing in an array of
840  * xfs_repair_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
841  * The (root, height) fields will be set on return if anything is found.  The
842  * last element of the array should have a NULL buf_ops to mark the end of the
843  * array.
844  *
845  * For every rmapbt record matching any of the rmap owners in btree_info,
846  * read each block referenced by the rmap record.  If the block is a btree
847  * block from this filesystem matching any of the magic numbers and has a
848  * level higher than what we've already seen, remember the block and the
849  * height of the tree required to have such a block.  When the call completes,
850  * we return the highest block we've found for each btree description; those
851  * should be the roots.
852  */
853 
854 struct xfs_repair_findroot {
855 	struct xfs_scrub_context	*sc;
856 	struct xfs_buf			*agfl_bp;
857 	struct xfs_agf			*agf;
858 	struct xfs_repair_find_ag_btree	*btree_info;
859 };
860 
861 /* See if our block is in the AGFL. */
862 STATIC int
863 xfs_repair_findroot_agfl_walk(
864 	struct xfs_mount		*mp,
865 	xfs_agblock_t			bno,
866 	void				*priv)
867 {
868 	xfs_agblock_t			*agbno = priv;
869 
870 	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
871 }
872 
873 /* Does this block match the btree information passed in? */
874 STATIC int
875 xfs_repair_findroot_block(
876 	struct xfs_repair_findroot	*ri,
877 	struct xfs_repair_find_ag_btree	*fab,
878 	uint64_t			owner,
879 	xfs_agblock_t			agbno,
880 	bool				*found_it)
881 {
882 	struct xfs_mount		*mp = ri->sc->mp;
883 	struct xfs_buf			*bp;
884 	struct xfs_btree_block		*btblock;
885 	xfs_daddr_t			daddr;
886 	int				error;
887 
888 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
889 
890 	/*
891 	 * Blocks in the AGFL have stale contents that might just happen to
892 	 * have a matching magic and uuid.  We don't want to pull these blocks
893 	 * in as part of a tree root, so we have to filter out the AGFL stuff
894 	 * here.  If the AGFL looks insane we'll just refuse to repair.
895 	 */
896 	if (owner == XFS_RMAP_OWN_AG) {
897 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
898 				xfs_repair_findroot_agfl_walk, &agbno);
899 		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
900 			return 0;
901 		if (error)
902 			return error;
903 	}
904 
905 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
906 			mp->m_bsize, 0, &bp, NULL);
907 	if (error)
908 		return error;
909 
910 	/*
911 	 * Does this look like a block matching our fs and higher than any
912 	 * other block we've found so far?  If so, reattach buffer verifiers
913 	 * so the AIL won't complain if the buffer is also dirty.
914 	 */
915 	btblock = XFS_BUF_TO_BLOCK(bp);
916 	if (be32_to_cpu(btblock->bb_magic) != fab->magic)
917 		goto out;
918 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
919 	    !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
920 		goto out;
921 	bp->b_ops = fab->buf_ops;
922 
923 	/* Ignore this block if it's lower in the tree than we've seen. */
924 	if (fab->root != NULLAGBLOCK &&
925 	    xfs_btree_get_level(btblock) < fab->height)
926 		goto out;
927 
928 	/* Make sure we pass the verifiers. */
929 	bp->b_ops->verify_read(bp);
930 	if (bp->b_error)
931 		goto out;
932 	fab->root = agbno;
933 	fab->height = xfs_btree_get_level(btblock) + 1;
934 	*found_it = true;
935 
936 	trace_xfs_repair_findroot_block(mp, ri->sc->sa.agno, agbno,
937 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
938 out:
939 	xfs_trans_brelse(ri->sc->tp, bp);
940 	return error;
941 }
942 
943 /*
944  * Do any of the blocks in this rmap record match one of the btrees we're
945  * looking for?
946  */
947 STATIC int
948 xfs_repair_findroot_rmap(
949 	struct xfs_btree_cur		*cur,
950 	struct xfs_rmap_irec		*rec,
951 	void				*priv)
952 {
953 	struct xfs_repair_findroot	*ri = priv;
954 	struct xfs_repair_find_ag_btree	*fab;
955 	xfs_agblock_t			b;
956 	bool				found_it;
957 	int				error = 0;
958 
959 	/* Ignore anything that isn't AG metadata. */
960 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
961 		return 0;
962 
963 	/* Otherwise scan each block + btree type. */
964 	for (b = 0; b < rec->rm_blockcount; b++) {
965 		found_it = false;
966 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
967 			if (rec->rm_owner != fab->rmap_owner)
968 				continue;
969 			error = xfs_repair_findroot_block(ri, fab,
970 					rec->rm_owner, rec->rm_startblock + b,
971 					&found_it);
972 			if (error)
973 				return error;
974 			if (found_it)
975 				break;
976 		}
977 	}
978 
979 	return 0;
980 }
981 
982 /* Find the roots of the per-AG btrees described in btree_info. */
983 int
984 xfs_repair_find_ag_btree_roots(
985 	struct xfs_scrub_context	*sc,
986 	struct xfs_buf			*agf_bp,
987 	struct xfs_repair_find_ag_btree	*btree_info,
988 	struct xfs_buf			*agfl_bp)
989 {
990 	struct xfs_mount		*mp = sc->mp;
991 	struct xfs_repair_findroot	ri;
992 	struct xfs_repair_find_ag_btree	*fab;
993 	struct xfs_btree_cur		*cur;
994 	int				error;
995 
996 	ASSERT(xfs_buf_islocked(agf_bp));
997 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
998 
999 	ri.sc = sc;
1000 	ri.btree_info = btree_info;
1001 	ri.agf = XFS_BUF_TO_AGF(agf_bp);
1002 	ri.agfl_bp = agfl_bp;
1003 	for (fab = btree_info; fab->buf_ops; fab++) {
1004 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
1005 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
1006 		fab->root = NULLAGBLOCK;
1007 		fab->height = 0;
1008 	}
1009 
1010 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
1011 	error = xfs_rmap_query_all(cur, xfs_repair_findroot_rmap, &ri);
1012 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
1013 
1014 	return error;
1015 }
1016 
1017 /* Force a quotacheck the next time we mount. */
1018 void
1019 xfs_repair_force_quotacheck(
1020 	struct xfs_scrub_context	*sc,
1021 	uint				dqtype)
1022 {
1023 	uint				flag;
1024 
1025 	flag = xfs_quota_chkd_flag(dqtype);
1026 	if (!(flag & sc->mp->m_qflags))
1027 		return;
1028 
1029 	sc->mp->m_qflags &= ~flag;
1030 	spin_lock(&sc->mp->m_sb_lock);
1031 	sc->mp->m_sb.sb_qflags &= ~flag;
1032 	spin_unlock(&sc->mp->m_sb_lock);
1033 	xfs_log_sb(sc->tp);
1034 }
1035 
1036 /*
1037  * Attach dquots to this inode, or schedule quotacheck to fix them.
1038  *
1039  * This function ensures that the appropriate dquots are attached to an inode.
1040  * We cannot allow the dquot code to allocate an on-disk dquot block here
1041  * because we're already in transaction context with the inode locked.  The
1042  * on-disk dquot should already exist anyway.  If the quota code signals
1043  * corruption or missing quota information, schedule quotacheck, which will
1044  * repair corruptions in the quota metadata.
1045  */
1046 int
1047 xfs_repair_ino_dqattach(
1048 	struct xfs_scrub_context	*sc)
1049 {
1050 	int				error;
1051 
1052 	error = xfs_qm_dqattach_locked(sc->ip, false);
1053 	switch (error) {
1054 	case -EFSBADCRC:
1055 	case -EFSCORRUPTED:
1056 	case -ENOENT:
1057 		xfs_err_ratelimited(sc->mp,
1058 "inode %llu repair encountered quota error %d, quotacheck forced.",
1059 				(unsigned long long)sc->ip->i_ino, error);
1060 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
1061 			xfs_repair_force_quotacheck(sc, XFS_DQ_USER);
1062 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
1063 			xfs_repair_force_quotacheck(sc, XFS_DQ_GROUP);
1064 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
1065 			xfs_repair_force_quotacheck(sc, XFS_DQ_PROJ);
1066 		/* fall through */
1067 	case -ESRCH:
1068 		error = 0;
1069 		break;
1070 	default:
1071 		break;
1072 	}
1073 
1074 	return error;
1075 }
1076