xref: /openbmc/linux/fs/xfs/scrub/repair.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * Copyright (C) 2018 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_btree.h"
28 #include "xfs_bit.h"
29 #include "xfs_log_format.h"
30 #include "xfs_trans.h"
31 #include "xfs_sb.h"
32 #include "xfs_inode.h"
33 #include "xfs_icache.h"
34 #include "xfs_alloc.h"
35 #include "xfs_alloc_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_ialloc_btree.h"
38 #include "xfs_rmap.h"
39 #include "xfs_rmap_btree.h"
40 #include "xfs_refcount.h"
41 #include "xfs_refcount_btree.h"
42 #include "xfs_extent_busy.h"
43 #include "xfs_ag_resv.h"
44 #include "xfs_trans_space.h"
45 #include "xfs_quota.h"
46 #include "scrub/xfs_scrub.h"
47 #include "scrub/scrub.h"
48 #include "scrub/common.h"
49 #include "scrub/trace.h"
50 #include "scrub/repair.h"
51 
52 /*
53  * Attempt to repair some metadata, if the metadata is corrupt and userspace
54  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
55  * and will set *fixed to true if it thinks it repaired anything.
56  */
57 int
58 xfs_repair_attempt(
59 	struct xfs_inode		*ip,
60 	struct xfs_scrub_context	*sc,
61 	bool				*fixed)
62 {
63 	int				error = 0;
64 
65 	trace_xfs_repair_attempt(ip, sc->sm, error);
66 
67 	xfs_scrub_ag_btcur_free(&sc->sa);
68 
69 	/* Repair whatever's broken. */
70 	ASSERT(sc->ops->repair);
71 	error = sc->ops->repair(sc);
72 	trace_xfs_repair_done(ip, sc->sm, error);
73 	switch (error) {
74 	case 0:
75 		/*
76 		 * Repair succeeded.  Commit the fixes and perform a second
77 		 * scrub so that we can tell userspace if we fixed the problem.
78 		 */
79 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
80 		*fixed = true;
81 		return -EAGAIN;
82 	case -EDEADLOCK:
83 	case -EAGAIN:
84 		/* Tell the caller to try again having grabbed all the locks. */
85 		if (!sc->try_harder) {
86 			sc->try_harder = true;
87 			return -EAGAIN;
88 		}
89 		/*
90 		 * We tried harder but still couldn't grab all the resources
91 		 * we needed to fix it.  The corruption has not been fixed,
92 		 * so report back to userspace.
93 		 */
94 		return -EFSCORRUPTED;
95 	default:
96 		return error;
97 	}
98 }
99 
100 /*
101  * Complain about unfixable problems in the filesystem.  We don't log
102  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
103  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
104  * administrator isn't running xfs_scrub in no-repairs mode.
105  *
106  * Use this helper function because _ratelimited silently declares a static
107  * structure to track rate limiting information.
108  */
109 void
110 xfs_repair_failure(
111 	struct xfs_mount		*mp)
112 {
113 	xfs_alert_ratelimited(mp,
114 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
115 }
116 
117 /*
118  * Repair probe -- userspace uses this to probe if we're willing to repair a
119  * given mountpoint.
120  */
121 int
122 xfs_repair_probe(
123 	struct xfs_scrub_context	*sc)
124 {
125 	int				error = 0;
126 
127 	if (xfs_scrub_should_terminate(sc, &error))
128 		return error;
129 
130 	return 0;
131 }
132 
133 /*
134  * Roll a transaction, keeping the AG headers locked and reinitializing
135  * the btree cursors.
136  */
137 int
138 xfs_repair_roll_ag_trans(
139 	struct xfs_scrub_context	*sc)
140 {
141 	int				error;
142 
143 	/* Keep the AG header buffers locked so we can keep going. */
144 	xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
145 	xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
146 	xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
147 
148 	/* Roll the transaction. */
149 	error = xfs_trans_roll(&sc->tp);
150 	if (error)
151 		goto out_release;
152 
153 	/* Join AG headers to the new transaction. */
154 	xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
155 	xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
156 	xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
157 
158 	return 0;
159 
160 out_release:
161 	/*
162 	 * Rolling failed, so release the hold on the buffers.  The
163 	 * buffers will be released during teardown on our way out
164 	 * of the kernel.
165 	 */
166 	xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
167 	xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
168 	xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
169 
170 	return error;
171 }
172 
173 /*
174  * Does the given AG have enough space to rebuild a btree?  Neither AG
175  * reservation can be critical, and we must have enough space (factoring
176  * in AG reservations) to construct a whole btree.
177  */
178 bool
179 xfs_repair_ag_has_space(
180 	struct xfs_perag		*pag,
181 	xfs_extlen_t			nr_blocks,
182 	enum xfs_ag_resv_type		type)
183 {
184 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
185 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
186 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
187 }
188 
189 /*
190  * Figure out how many blocks to reserve for an AG repair.  We calculate the
191  * worst case estimate for the number of blocks we'd need to rebuild one of
192  * any type of per-AG btree.
193  */
194 xfs_extlen_t
195 xfs_repair_calc_ag_resblks(
196 	struct xfs_scrub_context	*sc)
197 {
198 	struct xfs_mount		*mp = sc->mp;
199 	struct xfs_scrub_metadata	*sm = sc->sm;
200 	struct xfs_perag		*pag;
201 	struct xfs_buf			*bp;
202 	xfs_agino_t			icount = 0;
203 	xfs_extlen_t			aglen = 0;
204 	xfs_extlen_t			usedlen;
205 	xfs_extlen_t			freelen;
206 	xfs_extlen_t			bnobt_sz;
207 	xfs_extlen_t			inobt_sz;
208 	xfs_extlen_t			rmapbt_sz;
209 	xfs_extlen_t			refcbt_sz;
210 	int				error;
211 
212 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
213 		return 0;
214 
215 	/* Use in-core counters if possible. */
216 	pag = xfs_perag_get(mp, sm->sm_agno);
217 	if (pag->pagi_init)
218 		icount = pag->pagi_count;
219 
220 	/*
221 	 * Otherwise try to get the actual counters from disk; if not, make
222 	 * some worst case assumptions.
223 	 */
224 	if (icount == 0) {
225 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
226 		if (error) {
227 			icount = mp->m_sb.sb_agblocks / mp->m_sb.sb_inopblock;
228 		} else {
229 			icount = pag->pagi_count;
230 			xfs_buf_relse(bp);
231 		}
232 	}
233 
234 	/* Now grab the block counters from the AGF. */
235 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
236 	if (error) {
237 		aglen = mp->m_sb.sb_agblocks;
238 		freelen = aglen;
239 		usedlen = aglen;
240 	} else {
241 		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
242 		freelen = pag->pagf_freeblks;
243 		usedlen = aglen - freelen;
244 		xfs_buf_relse(bp);
245 	}
246 	xfs_perag_put(pag);
247 
248 	trace_xfs_repair_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
249 			freelen, usedlen);
250 
251 	/*
252 	 * Figure out how many blocks we'd need worst case to rebuild
253 	 * each type of btree.  Note that we can only rebuild the
254 	 * bnobt/cntbt or inobt/finobt as pairs.
255 	 */
256 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
257 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
258 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
259 				XFS_INODES_PER_HOLEMASK_BIT);
260 	else
261 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
262 				XFS_INODES_PER_CHUNK);
263 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
264 		inobt_sz *= 2;
265 	if (xfs_sb_version_hasreflink(&mp->m_sb))
266 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
267 	else
268 		refcbt_sz = 0;
269 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
270 		/*
271 		 * Guess how many blocks we need to rebuild the rmapbt.
272 		 * For non-reflink filesystems we can't have more records than
273 		 * used blocks.  However, with reflink it's possible to have
274 		 * more than one rmap record per AG block.  We don't know how
275 		 * many rmaps there could be in the AG, so we start off with
276 		 * what we hope is an generous over-estimation.
277 		 */
278 		if (xfs_sb_version_hasreflink(&mp->m_sb))
279 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
280 					(unsigned long long)aglen * 2);
281 		else
282 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
283 	} else {
284 		rmapbt_sz = 0;
285 	}
286 
287 	trace_xfs_repair_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
288 			inobt_sz, rmapbt_sz, refcbt_sz);
289 
290 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
291 }
292 
293 /* Allocate a block in an AG. */
294 int
295 xfs_repair_alloc_ag_block(
296 	struct xfs_scrub_context	*sc,
297 	struct xfs_owner_info		*oinfo,
298 	xfs_fsblock_t			*fsbno,
299 	enum xfs_ag_resv_type		resv)
300 {
301 	struct xfs_alloc_arg		args = {0};
302 	xfs_agblock_t			bno;
303 	int				error;
304 
305 	switch (resv) {
306 	case XFS_AG_RESV_AGFL:
307 	case XFS_AG_RESV_RMAPBT:
308 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
309 		if (error)
310 			return error;
311 		if (bno == NULLAGBLOCK)
312 			return -ENOSPC;
313 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
314 				1, false);
315 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
316 		if (resv == XFS_AG_RESV_RMAPBT)
317 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
318 		return 0;
319 	default:
320 		break;
321 	}
322 
323 	args.tp = sc->tp;
324 	args.mp = sc->mp;
325 	args.oinfo = *oinfo;
326 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
327 	args.minlen = 1;
328 	args.maxlen = 1;
329 	args.prod = 1;
330 	args.type = XFS_ALLOCTYPE_THIS_AG;
331 	args.resv = resv;
332 
333 	error = xfs_alloc_vextent(&args);
334 	if (error)
335 		return error;
336 	if (args.fsbno == NULLFSBLOCK)
337 		return -ENOSPC;
338 	ASSERT(args.len == 1);
339 	*fsbno = args.fsbno;
340 
341 	return 0;
342 }
343 
344 /* Initialize a new AG btree root block with zero entries. */
345 int
346 xfs_repair_init_btblock(
347 	struct xfs_scrub_context	*sc,
348 	xfs_fsblock_t			fsb,
349 	struct xfs_buf			**bpp,
350 	xfs_btnum_t			btnum,
351 	const struct xfs_buf_ops	*ops)
352 {
353 	struct xfs_trans		*tp = sc->tp;
354 	struct xfs_mount		*mp = sc->mp;
355 	struct xfs_buf			*bp;
356 
357 	trace_xfs_repair_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
358 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
359 
360 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
361 	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
362 			XFS_FSB_TO_BB(mp, 1), 0);
363 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
364 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
365 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
366 	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
367 	bp->b_ops = ops;
368 	*bpp = bp;
369 
370 	return 0;
371 }
372 
373 /*
374  * Reconstructing per-AG Btrees
375  *
376  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
377  * we scan secondary space metadata to derive the records that should be in
378  * the damaged btree, initialize a fresh btree root, and insert the records.
379  * Note that for rebuilding the rmapbt we scan all the primary data to
380  * generate the new records.
381  *
382  * However, that leaves the matter of removing all the metadata describing the
383  * old broken structure.  For primary metadata we use the rmap data to collect
384  * every extent with a matching rmap owner (exlist); we then iterate all other
385  * metadata structures with the same rmap owner to collect the extents that
386  * cannot be removed (sublist).  We then subtract sublist from exlist to
387  * derive the blocks that were used by the old btree.  These blocks can be
388  * reaped.
389  *
390  * For rmapbt reconstructions we must use different tactics for extent
391  * collection.  First we iterate all primary metadata (this excludes the old
392  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
393  * records are collected as exlist.  The bnobt records are collected as
394  * sublist.  As with the other btrees we subtract sublist from exlist, and the
395  * result (since the rmapbt lives in the free space) are the blocks from the
396  * old rmapbt.
397  */
398 
399 /* Collect a dead btree extent for later disposal. */
400 int
401 xfs_repair_collect_btree_extent(
402 	struct xfs_scrub_context	*sc,
403 	struct xfs_repair_extent_list	*exlist,
404 	xfs_fsblock_t			fsbno,
405 	xfs_extlen_t			len)
406 {
407 	struct xfs_repair_extent	*rex;
408 
409 	trace_xfs_repair_collect_btree_extent(sc->mp,
410 			XFS_FSB_TO_AGNO(sc->mp, fsbno),
411 			XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
412 
413 	rex = kmem_alloc(sizeof(struct xfs_repair_extent), KM_MAYFAIL);
414 	if (!rex)
415 		return -ENOMEM;
416 
417 	INIT_LIST_HEAD(&rex->list);
418 	rex->fsbno = fsbno;
419 	rex->len = len;
420 	list_add_tail(&rex->list, &exlist->list);
421 
422 	return 0;
423 }
424 
425 /*
426  * An error happened during the rebuild so the transaction will be cancelled.
427  * The fs will shut down, and the administrator has to unmount and run repair.
428  * Therefore, free all the memory associated with the list so we can die.
429  */
430 void
431 xfs_repair_cancel_btree_extents(
432 	struct xfs_scrub_context	*sc,
433 	struct xfs_repair_extent_list	*exlist)
434 {
435 	struct xfs_repair_extent	*rex;
436 	struct xfs_repair_extent	*n;
437 
438 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
439 		list_del(&rex->list);
440 		kmem_free(rex);
441 	}
442 }
443 
444 /* Compare two btree extents. */
445 static int
446 xfs_repair_btree_extent_cmp(
447 	void				*priv,
448 	struct list_head		*a,
449 	struct list_head		*b)
450 {
451 	struct xfs_repair_extent	*ap;
452 	struct xfs_repair_extent	*bp;
453 
454 	ap = container_of(a, struct xfs_repair_extent, list);
455 	bp = container_of(b, struct xfs_repair_extent, list);
456 
457 	if (ap->fsbno > bp->fsbno)
458 		return 1;
459 	if (ap->fsbno < bp->fsbno)
460 		return -1;
461 	return 0;
462 }
463 
464 /*
465  * Remove all the blocks mentioned in @sublist from the extents in @exlist.
466  *
467  * The intent is that callers will iterate the rmapbt for all of its records
468  * for a given owner to generate @exlist; and iterate all the blocks of the
469  * metadata structures that are not being rebuilt and have the same rmapbt
470  * owner to generate @sublist.  This routine subtracts all the extents
471  * mentioned in sublist from all the extents linked in @exlist, which leaves
472  * @exlist as the list of blocks that are not accounted for, which we assume
473  * are the dead blocks of the old metadata structure.  The blocks mentioned in
474  * @exlist can be reaped.
475  */
476 #define LEFT_ALIGNED	(1 << 0)
477 #define RIGHT_ALIGNED	(1 << 1)
478 int
479 xfs_repair_subtract_extents(
480 	struct xfs_scrub_context	*sc,
481 	struct xfs_repair_extent_list	*exlist,
482 	struct xfs_repair_extent_list	*sublist)
483 {
484 	struct list_head		*lp;
485 	struct xfs_repair_extent	*ex;
486 	struct xfs_repair_extent	*newex;
487 	struct xfs_repair_extent	*subex;
488 	xfs_fsblock_t			sub_fsb;
489 	xfs_extlen_t			sub_len;
490 	int				state;
491 	int				error = 0;
492 
493 	if (list_empty(&exlist->list) || list_empty(&sublist->list))
494 		return 0;
495 	ASSERT(!list_empty(&sublist->list));
496 
497 	list_sort(NULL, &exlist->list, xfs_repair_btree_extent_cmp);
498 	list_sort(NULL, &sublist->list, xfs_repair_btree_extent_cmp);
499 
500 	/*
501 	 * Now that we've sorted both lists, we iterate exlist once, rolling
502 	 * forward through sublist and/or exlist as necessary until we find an
503 	 * overlap or reach the end of either list.  We do not reset lp to the
504 	 * head of exlist nor do we reset subex to the head of sublist.  The
505 	 * list traversal is similar to merge sort, but we're deleting
506 	 * instead.  In this manner we avoid O(n^2) operations.
507 	 */
508 	subex = list_first_entry(&sublist->list, struct xfs_repair_extent,
509 			list);
510 	lp = exlist->list.next;
511 	while (lp != &exlist->list) {
512 		ex = list_entry(lp, struct xfs_repair_extent, list);
513 
514 		/*
515 		 * Advance subex and/or ex until we find a pair that
516 		 * intersect or we run out of extents.
517 		 */
518 		while (subex->fsbno + subex->len <= ex->fsbno) {
519 			if (list_is_last(&subex->list, &sublist->list))
520 				goto out;
521 			subex = list_next_entry(subex, list);
522 		}
523 		if (subex->fsbno >= ex->fsbno + ex->len) {
524 			lp = lp->next;
525 			continue;
526 		}
527 
528 		/* trim subex to fit the extent we have */
529 		sub_fsb = subex->fsbno;
530 		sub_len = subex->len;
531 		if (subex->fsbno < ex->fsbno) {
532 			sub_len -= ex->fsbno - subex->fsbno;
533 			sub_fsb = ex->fsbno;
534 		}
535 		if (sub_len > ex->len)
536 			sub_len = ex->len;
537 
538 		state = 0;
539 		if (sub_fsb == ex->fsbno)
540 			state |= LEFT_ALIGNED;
541 		if (sub_fsb + sub_len == ex->fsbno + ex->len)
542 			state |= RIGHT_ALIGNED;
543 		switch (state) {
544 		case LEFT_ALIGNED:
545 			/* Coincides with only the left. */
546 			ex->fsbno += sub_len;
547 			ex->len -= sub_len;
548 			break;
549 		case RIGHT_ALIGNED:
550 			/* Coincides with only the right. */
551 			ex->len -= sub_len;
552 			lp = lp->next;
553 			break;
554 		case LEFT_ALIGNED | RIGHT_ALIGNED:
555 			/* Total overlap, just delete ex. */
556 			lp = lp->next;
557 			list_del(&ex->list);
558 			kmem_free(ex);
559 			break;
560 		case 0:
561 			/*
562 			 * Deleting from the middle: add the new right extent
563 			 * and then shrink the left extent.
564 			 */
565 			newex = kmem_alloc(sizeof(struct xfs_repair_extent),
566 					KM_MAYFAIL);
567 			if (!newex) {
568 				error = -ENOMEM;
569 				goto out;
570 			}
571 			INIT_LIST_HEAD(&newex->list);
572 			newex->fsbno = sub_fsb + sub_len;
573 			newex->len = ex->fsbno + ex->len - newex->fsbno;
574 			list_add(&newex->list, &ex->list);
575 			ex->len = sub_fsb - ex->fsbno;
576 			lp = lp->next;
577 			break;
578 		default:
579 			ASSERT(0);
580 			break;
581 		}
582 	}
583 
584 out:
585 	return error;
586 }
587 #undef LEFT_ALIGNED
588 #undef RIGHT_ALIGNED
589 
590 /*
591  * Disposal of Blocks from Old per-AG Btrees
592  *
593  * Now that we've constructed a new btree to replace the damaged one, we want
594  * to dispose of the blocks that (we think) the old btree was using.
595  * Previously, we used the rmapbt to collect the extents (exlist) with the
596  * rmap owner corresponding to the tree we rebuilt, collected extents for any
597  * blocks with the same rmap owner that are owned by another data structure
598  * (sublist), and subtracted sublist from exlist.  In theory the extents
599  * remaining in exlist are the old btree's blocks.
600  *
601  * Unfortunately, it's possible that the btree was crosslinked with other
602  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
603  * if the rmapbt says there is an owner of this block other than @oinfo, then
604  * the block is crosslinked.  Remove the reverse mapping and continue.
605  *
606  * If there is one rmap record, we can free the block, which removes the
607  * reverse mapping but doesn't add the block to the free space.  Our repair
608  * strategy is to hope the other metadata objects crosslinked on this block
609  * will be rebuilt (atop different blocks), thereby removing all the cross
610  * links.
611  *
612  * If there are no rmap records at all, we also free the block.  If the btree
613  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
614  * supposed to be a rmap record and everything is ok.  For other btrees there
615  * had to have been an rmap entry for the block to have ended up on @exlist,
616  * so if it's gone now there's something wrong and the fs will shut down.
617  *
618  * Note: If there are multiple rmap records with only the same rmap owner as
619  * the btree we're trying to rebuild and the block is indeed owned by another
620  * data structure with the same rmap owner, then the block will be in sublist
621  * and therefore doesn't need disposal.  If there are multiple rmap records
622  * with only the same rmap owner but the block is not owned by something with
623  * the same rmap owner, the block will be freed.
624  *
625  * The caller is responsible for locking the AG headers for the entire rebuild
626  * operation so that nothing else can sneak in and change the AG state while
627  * we're not looking.  We also assume that the caller already invalidated any
628  * buffers associated with @exlist.
629  */
630 
631 /*
632  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
633  * is not intended for use with file data repairs; we have bunmapi for that.
634  */
635 int
636 xfs_repair_invalidate_blocks(
637 	struct xfs_scrub_context	*sc,
638 	struct xfs_repair_extent_list	*exlist)
639 {
640 	struct xfs_repair_extent	*rex;
641 	struct xfs_repair_extent	*n;
642 	struct xfs_buf			*bp;
643 	xfs_fsblock_t			fsbno;
644 	xfs_agblock_t			i;
645 
646 	/*
647 	 * For each block in each extent, see if there's an incore buffer for
648 	 * exactly that block; if so, invalidate it.  The buffer cache only
649 	 * lets us look for one buffer at a time, so we have to look one block
650 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
651 	 * because we never own those; and if we can't TRYLOCK the buffer we
652 	 * assume it's owned by someone else.
653 	 */
654 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
655 		for (fsbno = rex->fsbno, i = rex->len; i > 0; fsbno++, i--) {
656 			/* Skip AG headers and post-EOFS blocks */
657 			if (!xfs_verify_fsbno(sc->mp, fsbno))
658 				continue;
659 			bp = xfs_buf_incore(sc->mp->m_ddev_targp,
660 					XFS_FSB_TO_DADDR(sc->mp, fsbno),
661 					XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
662 			if (bp) {
663 				xfs_trans_bjoin(sc->tp, bp);
664 				xfs_trans_binval(sc->tp, bp);
665 			}
666 		}
667 	}
668 
669 	return 0;
670 }
671 
672 /* Ensure the freelist is the correct size. */
673 int
674 xfs_repair_fix_freelist(
675 	struct xfs_scrub_context	*sc,
676 	bool				can_shrink)
677 {
678 	struct xfs_alloc_arg		args = {0};
679 
680 	args.mp = sc->mp;
681 	args.tp = sc->tp;
682 	args.agno = sc->sa.agno;
683 	args.alignment = 1;
684 	args.pag = sc->sa.pag;
685 
686 	return xfs_alloc_fix_freelist(&args,
687 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
688 }
689 
690 /*
691  * Put a block back on the AGFL.
692  */
693 STATIC int
694 xfs_repair_put_freelist(
695 	struct xfs_scrub_context	*sc,
696 	xfs_agblock_t			agbno)
697 {
698 	struct xfs_owner_info		oinfo;
699 	int				error;
700 
701 	/* Make sure there's space on the freelist. */
702 	error = xfs_repair_fix_freelist(sc, true);
703 	if (error)
704 		return error;
705 
706 	/*
707 	 * Since we're "freeing" a lost block onto the AGFL, we have to
708 	 * create an rmap for the block prior to merging it or else other
709 	 * parts will break.
710 	 */
711 	xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_AG);
712 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
713 			&oinfo);
714 	if (error)
715 		return error;
716 
717 	/* Put the block on the AGFL. */
718 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
719 			agbno, 0);
720 	if (error)
721 		return error;
722 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
723 			XFS_EXTENT_BUSY_SKIP_DISCARD);
724 
725 	return 0;
726 }
727 
728 /* Dispose of a single metadata block. */
729 STATIC int
730 xfs_repair_dispose_btree_block(
731 	struct xfs_scrub_context	*sc,
732 	xfs_fsblock_t			fsbno,
733 	struct xfs_owner_info		*oinfo,
734 	enum xfs_ag_resv_type		resv)
735 {
736 	struct xfs_btree_cur		*cur;
737 	struct xfs_buf			*agf_bp = NULL;
738 	xfs_agnumber_t			agno;
739 	xfs_agblock_t			agbno;
740 	bool				has_other_rmap;
741 	int				error;
742 
743 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
744 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
745 
746 	/*
747 	 * If we are repairing per-inode metadata, we need to read in the AGF
748 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
749 	 * the AGF buffer that the setup functions already grabbed.
750 	 */
751 	if (sc->ip) {
752 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
753 		if (error)
754 			return error;
755 		if (!agf_bp)
756 			return -ENOMEM;
757 	} else {
758 		agf_bp = sc->sa.agf_bp;
759 	}
760 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
761 
762 	/* Can we find any other rmappings? */
763 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
764 	if (error)
765 		goto out_cur;
766 	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
767 
768 	/*
769 	 * If there are other rmappings, this block is cross linked and must
770 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
771 	 * we were the only owner of the block, so free the extent, which will
772 	 * also remove the rmap.
773 	 *
774 	 * XXX: XFS doesn't support detecting the case where a single block
775 	 * metadata structure is crosslinked with a multi-block structure
776 	 * because the buffer cache doesn't detect aliasing problems, so we
777 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
778 	 * blow on writeout, the filesystem will shut down, and the admin gets
779 	 * to run xfs_repair.
780 	 */
781 	if (has_other_rmap)
782 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
783 	else if (resv == XFS_AG_RESV_AGFL)
784 		error = xfs_repair_put_freelist(sc, agbno);
785 	else
786 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
787 	if (agf_bp != sc->sa.agf_bp)
788 		xfs_trans_brelse(sc->tp, agf_bp);
789 	if (error)
790 		return error;
791 
792 	if (sc->ip)
793 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
794 	return xfs_repair_roll_ag_trans(sc);
795 
796 out_cur:
797 	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
798 	if (agf_bp != sc->sa.agf_bp)
799 		xfs_trans_brelse(sc->tp, agf_bp);
800 	return error;
801 }
802 
803 /* Dispose of btree blocks from an old per-AG btree. */
804 int
805 xfs_repair_reap_btree_extents(
806 	struct xfs_scrub_context	*sc,
807 	struct xfs_repair_extent_list	*exlist,
808 	struct xfs_owner_info		*oinfo,
809 	enum xfs_ag_resv_type		type)
810 {
811 	struct xfs_repair_extent	*rex;
812 	struct xfs_repair_extent	*n;
813 	int				error = 0;
814 
815 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
816 
817 	/* Dispose of every block from the old btree. */
818 	for_each_xfs_repair_extent_safe(rex, n, exlist) {
819 		ASSERT(sc->ip != NULL ||
820 		       XFS_FSB_TO_AGNO(sc->mp, rex->fsbno) == sc->sa.agno);
821 
822 		trace_xfs_repair_dispose_btree_extent(sc->mp,
823 				XFS_FSB_TO_AGNO(sc->mp, rex->fsbno),
824 				XFS_FSB_TO_AGBNO(sc->mp, rex->fsbno), rex->len);
825 
826 		for (; rex->len > 0; rex->len--, rex->fsbno++) {
827 			error = xfs_repair_dispose_btree_block(sc, rex->fsbno,
828 					oinfo, type);
829 			if (error)
830 				goto out;
831 		}
832 		list_del(&rex->list);
833 		kmem_free(rex);
834 	}
835 
836 out:
837 	xfs_repair_cancel_btree_extents(sc, exlist);
838 	return error;
839 }
840 
841 /*
842  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
843  *
844  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
845  * the AG headers by using the rmap data to rummage through the AG looking for
846  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
847  * or the rmap data are corrupt.
848  *
849  * Callers of xfs_repair_find_ag_btree_roots must lock the AGF and AGFL
850  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
851  * AGI is being rebuilt.  It must maintain these locks until it's safe for
852  * other threads to change the btrees' shapes.  The caller provides
853  * information about the btrees to look for by passing in an array of
854  * xfs_repair_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
855  * The (root, height) fields will be set on return if anything is found.  The
856  * last element of the array should have a NULL buf_ops to mark the end of the
857  * array.
858  *
859  * For every rmapbt record matching any of the rmap owners in btree_info,
860  * read each block referenced by the rmap record.  If the block is a btree
861  * block from this filesystem matching any of the magic numbers and has a
862  * level higher than what we've already seen, remember the block and the
863  * height of the tree required to have such a block.  When the call completes,
864  * we return the highest block we've found for each btree description; those
865  * should be the roots.
866  */
867 
868 struct xfs_repair_findroot {
869 	struct xfs_scrub_context	*sc;
870 	struct xfs_buf			*agfl_bp;
871 	struct xfs_agf			*agf;
872 	struct xfs_repair_find_ag_btree	*btree_info;
873 };
874 
875 /* See if our block is in the AGFL. */
876 STATIC int
877 xfs_repair_findroot_agfl_walk(
878 	struct xfs_mount		*mp,
879 	xfs_agblock_t			bno,
880 	void				*priv)
881 {
882 	xfs_agblock_t			*agbno = priv;
883 
884 	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
885 }
886 
887 /* Does this block match the btree information passed in? */
888 STATIC int
889 xfs_repair_findroot_block(
890 	struct xfs_repair_findroot	*ri,
891 	struct xfs_repair_find_ag_btree	*fab,
892 	uint64_t			owner,
893 	xfs_agblock_t			agbno,
894 	bool				*found_it)
895 {
896 	struct xfs_mount		*mp = ri->sc->mp;
897 	struct xfs_buf			*bp;
898 	struct xfs_btree_block		*btblock;
899 	xfs_daddr_t			daddr;
900 	int				error;
901 
902 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
903 
904 	/*
905 	 * Blocks in the AGFL have stale contents that might just happen to
906 	 * have a matching magic and uuid.  We don't want to pull these blocks
907 	 * in as part of a tree root, so we have to filter out the AGFL stuff
908 	 * here.  If the AGFL looks insane we'll just refuse to repair.
909 	 */
910 	if (owner == XFS_RMAP_OWN_AG) {
911 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
912 				xfs_repair_findroot_agfl_walk, &agbno);
913 		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
914 			return 0;
915 		if (error)
916 			return error;
917 	}
918 
919 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
920 			mp->m_bsize, 0, &bp, NULL);
921 	if (error)
922 		return error;
923 
924 	/*
925 	 * Does this look like a block matching our fs and higher than any
926 	 * other block we've found so far?  If so, reattach buffer verifiers
927 	 * so the AIL won't complain if the buffer is also dirty.
928 	 */
929 	btblock = XFS_BUF_TO_BLOCK(bp);
930 	if (be32_to_cpu(btblock->bb_magic) != fab->magic)
931 		goto out;
932 	if (xfs_sb_version_hascrc(&mp->m_sb) &&
933 	    !uuid_equal(&btblock->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
934 		goto out;
935 	bp->b_ops = fab->buf_ops;
936 
937 	/* Ignore this block if it's lower in the tree than we've seen. */
938 	if (fab->root != NULLAGBLOCK &&
939 	    xfs_btree_get_level(btblock) < fab->height)
940 		goto out;
941 
942 	/* Make sure we pass the verifiers. */
943 	bp->b_ops->verify_read(bp);
944 	if (bp->b_error)
945 		goto out;
946 	fab->root = agbno;
947 	fab->height = xfs_btree_get_level(btblock) + 1;
948 	*found_it = true;
949 
950 	trace_xfs_repair_findroot_block(mp, ri->sc->sa.agno, agbno,
951 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
952 out:
953 	xfs_trans_brelse(ri->sc->tp, bp);
954 	return error;
955 }
956 
957 /*
958  * Do any of the blocks in this rmap record match one of the btrees we're
959  * looking for?
960  */
961 STATIC int
962 xfs_repair_findroot_rmap(
963 	struct xfs_btree_cur		*cur,
964 	struct xfs_rmap_irec		*rec,
965 	void				*priv)
966 {
967 	struct xfs_repair_findroot	*ri = priv;
968 	struct xfs_repair_find_ag_btree	*fab;
969 	xfs_agblock_t			b;
970 	bool				found_it;
971 	int				error = 0;
972 
973 	/* Ignore anything that isn't AG metadata. */
974 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
975 		return 0;
976 
977 	/* Otherwise scan each block + btree type. */
978 	for (b = 0; b < rec->rm_blockcount; b++) {
979 		found_it = false;
980 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
981 			if (rec->rm_owner != fab->rmap_owner)
982 				continue;
983 			error = xfs_repair_findroot_block(ri, fab,
984 					rec->rm_owner, rec->rm_startblock + b,
985 					&found_it);
986 			if (error)
987 				return error;
988 			if (found_it)
989 				break;
990 		}
991 	}
992 
993 	return 0;
994 }
995 
996 /* Find the roots of the per-AG btrees described in btree_info. */
997 int
998 xfs_repair_find_ag_btree_roots(
999 	struct xfs_scrub_context	*sc,
1000 	struct xfs_buf			*agf_bp,
1001 	struct xfs_repair_find_ag_btree	*btree_info,
1002 	struct xfs_buf			*agfl_bp)
1003 {
1004 	struct xfs_mount		*mp = sc->mp;
1005 	struct xfs_repair_findroot	ri;
1006 	struct xfs_repair_find_ag_btree	*fab;
1007 	struct xfs_btree_cur		*cur;
1008 	int				error;
1009 
1010 	ASSERT(xfs_buf_islocked(agf_bp));
1011 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
1012 
1013 	ri.sc = sc;
1014 	ri.btree_info = btree_info;
1015 	ri.agf = XFS_BUF_TO_AGF(agf_bp);
1016 	ri.agfl_bp = agfl_bp;
1017 	for (fab = btree_info; fab->buf_ops; fab++) {
1018 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
1019 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
1020 		fab->root = NULLAGBLOCK;
1021 		fab->height = 0;
1022 	}
1023 
1024 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
1025 	error = xfs_rmap_query_all(cur, xfs_repair_findroot_rmap, &ri);
1026 	xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
1027 
1028 	return error;
1029 }
1030 
1031 /* Force a quotacheck the next time we mount. */
1032 void
1033 xfs_repair_force_quotacheck(
1034 	struct xfs_scrub_context	*sc,
1035 	uint				dqtype)
1036 {
1037 	uint				flag;
1038 
1039 	flag = xfs_quota_chkd_flag(dqtype);
1040 	if (!(flag & sc->mp->m_qflags))
1041 		return;
1042 
1043 	sc->mp->m_qflags &= ~flag;
1044 	spin_lock(&sc->mp->m_sb_lock);
1045 	sc->mp->m_sb.sb_qflags &= ~flag;
1046 	spin_unlock(&sc->mp->m_sb_lock);
1047 	xfs_log_sb(sc->tp);
1048 }
1049 
1050 /*
1051  * Attach dquots to this inode, or schedule quotacheck to fix them.
1052  *
1053  * This function ensures that the appropriate dquots are attached to an inode.
1054  * We cannot allow the dquot code to allocate an on-disk dquot block here
1055  * because we're already in transaction context with the inode locked.  The
1056  * on-disk dquot should already exist anyway.  If the quota code signals
1057  * corruption or missing quota information, schedule quotacheck, which will
1058  * repair corruptions in the quota metadata.
1059  */
1060 int
1061 xfs_repair_ino_dqattach(
1062 	struct xfs_scrub_context	*sc)
1063 {
1064 	int				error;
1065 
1066 	error = xfs_qm_dqattach_locked(sc->ip, false);
1067 	switch (error) {
1068 	case -EFSBADCRC:
1069 	case -EFSCORRUPTED:
1070 	case -ENOENT:
1071 		xfs_err_ratelimited(sc->mp,
1072 "inode %llu repair encountered quota error %d, quotacheck forced.",
1073 				(unsigned long long)sc->ip->i_ino, error);
1074 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
1075 			xfs_repair_force_quotacheck(sc, XFS_DQ_USER);
1076 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
1077 			xfs_repair_force_quotacheck(sc, XFS_DQ_GROUP);
1078 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
1079 			xfs_repair_force_quotacheck(sc, XFS_DQ_PROJ);
1080 		/* fall through */
1081 	case -ESRCH:
1082 		error = 0;
1083 		break;
1084 	default:
1085 		break;
1086 	}
1087 
1088 	return error;
1089 }
1090