xref: /openbmc/linux/fs/xfs/scrub/repair.c (revision 4e0ae876)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_alloc.h"
21 #include "xfs_alloc_btree.h"
22 #include "xfs_ialloc.h"
23 #include "xfs_ialloc_btree.h"
24 #include "xfs_rmap.h"
25 #include "xfs_rmap_btree.h"
26 #include "xfs_refcount.h"
27 #include "xfs_refcount_btree.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_ag_resv.h"
30 #include "xfs_trans_space.h"
31 #include "xfs_quota.h"
32 #include "xfs_attr.h"
33 #include "xfs_reflink.h"
34 #include "scrub/xfs_scrub.h"
35 #include "scrub/scrub.h"
36 #include "scrub/common.h"
37 #include "scrub/trace.h"
38 #include "scrub/repair.h"
39 #include "scrub/bitmap.h"
40 
41 /*
42  * Attempt to repair some metadata, if the metadata is corrupt and userspace
43  * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
44  * and will set *fixed to true if it thinks it repaired anything.
45  */
46 int
47 xrep_attempt(
48 	struct xfs_inode	*ip,
49 	struct xfs_scrub	*sc,
50 	bool			*fixed)
51 {
52 	int			error = 0;
53 
54 	trace_xrep_attempt(ip, sc->sm, error);
55 
56 	xchk_ag_btcur_free(&sc->sa);
57 
58 	/* Repair whatever's broken. */
59 	ASSERT(sc->ops->repair);
60 	error = sc->ops->repair(sc);
61 	trace_xrep_done(ip, sc->sm, error);
62 	switch (error) {
63 	case 0:
64 		/*
65 		 * Repair succeeded.  Commit the fixes and perform a second
66 		 * scrub so that we can tell userspace if we fixed the problem.
67 		 */
68 		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
69 		*fixed = true;
70 		return -EAGAIN;
71 	case -EDEADLOCK:
72 	case -EAGAIN:
73 		/* Tell the caller to try again having grabbed all the locks. */
74 		if (!sc->try_harder) {
75 			sc->try_harder = true;
76 			return -EAGAIN;
77 		}
78 		/*
79 		 * We tried harder but still couldn't grab all the resources
80 		 * we needed to fix it.  The corruption has not been fixed,
81 		 * so report back to userspace.
82 		 */
83 		return -EFSCORRUPTED;
84 	default:
85 		return error;
86 	}
87 }
88 
89 /*
90  * Complain about unfixable problems in the filesystem.  We don't log
91  * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
92  * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
93  * administrator isn't running xfs_scrub in no-repairs mode.
94  *
95  * Use this helper function because _ratelimited silently declares a static
96  * structure to track rate limiting information.
97  */
98 void
99 xrep_failure(
100 	struct xfs_mount	*mp)
101 {
102 	xfs_alert_ratelimited(mp,
103 "Corruption not fixed during online repair.  Unmount and run xfs_repair.");
104 }
105 
106 /*
107  * Repair probe -- userspace uses this to probe if we're willing to repair a
108  * given mountpoint.
109  */
110 int
111 xrep_probe(
112 	struct xfs_scrub	*sc)
113 {
114 	int			error = 0;
115 
116 	if (xchk_should_terminate(sc, &error))
117 		return error;
118 
119 	return 0;
120 }
121 
122 /*
123  * Roll a transaction, keeping the AG headers locked and reinitializing
124  * the btree cursors.
125  */
126 int
127 xrep_roll_ag_trans(
128 	struct xfs_scrub	*sc)
129 {
130 	int			error;
131 
132 	/* Keep the AG header buffers locked so we can keep going. */
133 	if (sc->sa.agi_bp)
134 		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
135 	if (sc->sa.agf_bp)
136 		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
137 	if (sc->sa.agfl_bp)
138 		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
139 
140 	/* Roll the transaction. */
141 	error = xfs_trans_roll(&sc->tp);
142 	if (error)
143 		goto out_release;
144 
145 	/* Join AG headers to the new transaction. */
146 	if (sc->sa.agi_bp)
147 		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
148 	if (sc->sa.agf_bp)
149 		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
150 	if (sc->sa.agfl_bp)
151 		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
152 
153 	return 0;
154 
155 out_release:
156 	/*
157 	 * Rolling failed, so release the hold on the buffers.  The
158 	 * buffers will be released during teardown on our way out
159 	 * of the kernel.
160 	 */
161 	if (sc->sa.agi_bp)
162 		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
163 	if (sc->sa.agf_bp)
164 		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
165 	if (sc->sa.agfl_bp)
166 		xfs_trans_bhold_release(sc->tp, sc->sa.agfl_bp);
167 
168 	return error;
169 }
170 
171 /*
172  * Does the given AG have enough space to rebuild a btree?  Neither AG
173  * reservation can be critical, and we must have enough space (factoring
174  * in AG reservations) to construct a whole btree.
175  */
176 bool
177 xrep_ag_has_space(
178 	struct xfs_perag	*pag,
179 	xfs_extlen_t		nr_blocks,
180 	enum xfs_ag_resv_type	type)
181 {
182 	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
183 		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
184 		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
185 }
186 
187 /*
188  * Figure out how many blocks to reserve for an AG repair.  We calculate the
189  * worst case estimate for the number of blocks we'd need to rebuild one of
190  * any type of per-AG btree.
191  */
192 xfs_extlen_t
193 xrep_calc_ag_resblks(
194 	struct xfs_scrub		*sc)
195 {
196 	struct xfs_mount		*mp = sc->mp;
197 	struct xfs_scrub_metadata	*sm = sc->sm;
198 	struct xfs_perag		*pag;
199 	struct xfs_buf			*bp;
200 	xfs_agino_t			icount = NULLAGINO;
201 	xfs_extlen_t			aglen = NULLAGBLOCK;
202 	xfs_extlen_t			usedlen;
203 	xfs_extlen_t			freelen;
204 	xfs_extlen_t			bnobt_sz;
205 	xfs_extlen_t			inobt_sz;
206 	xfs_extlen_t			rmapbt_sz;
207 	xfs_extlen_t			refcbt_sz;
208 	int				error;
209 
210 	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
211 		return 0;
212 
213 	pag = xfs_perag_get(mp, sm->sm_agno);
214 	if (pag->pagi_init) {
215 		/* Use in-core icount if possible. */
216 		icount = pag->pagi_count;
217 	} else {
218 		/* Try to get the actual counters from disk. */
219 		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
220 		if (!error) {
221 			icount = pag->pagi_count;
222 			xfs_buf_relse(bp);
223 		}
224 	}
225 
226 	/* Now grab the block counters from the AGF. */
227 	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
228 	if (!error) {
229 		aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
230 		freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
231 		usedlen = aglen - freelen;
232 		xfs_buf_relse(bp);
233 	}
234 	xfs_perag_put(pag);
235 
236 	/* If the icount is impossible, make some worst-case assumptions. */
237 	if (icount == NULLAGINO ||
238 	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
239 		xfs_agino_t	first, last;
240 
241 		xfs_agino_range(mp, sm->sm_agno, &first, &last);
242 		icount = last - first + 1;
243 	}
244 
245 	/* If the block counts are impossible, make worst-case assumptions. */
246 	if (aglen == NULLAGBLOCK ||
247 	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
248 	    freelen >= aglen) {
249 		aglen = xfs_ag_block_count(mp, sm->sm_agno);
250 		freelen = aglen;
251 		usedlen = aglen;
252 	}
253 
254 	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
255 			freelen, usedlen);
256 
257 	/*
258 	 * Figure out how many blocks we'd need worst case to rebuild
259 	 * each type of btree.  Note that we can only rebuild the
260 	 * bnobt/cntbt or inobt/finobt as pairs.
261 	 */
262 	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
263 	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
264 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
265 				XFS_INODES_PER_HOLEMASK_BIT);
266 	else
267 		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
268 				XFS_INODES_PER_CHUNK);
269 	if (xfs_sb_version_hasfinobt(&mp->m_sb))
270 		inobt_sz *= 2;
271 	if (xfs_sb_version_hasreflink(&mp->m_sb))
272 		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
273 	else
274 		refcbt_sz = 0;
275 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
276 		/*
277 		 * Guess how many blocks we need to rebuild the rmapbt.
278 		 * For non-reflink filesystems we can't have more records than
279 		 * used blocks.  However, with reflink it's possible to have
280 		 * more than one rmap record per AG block.  We don't know how
281 		 * many rmaps there could be in the AG, so we start off with
282 		 * what we hope is an generous over-estimation.
283 		 */
284 		if (xfs_sb_version_hasreflink(&mp->m_sb))
285 			rmapbt_sz = xfs_rmapbt_calc_size(mp,
286 					(unsigned long long)aglen * 2);
287 		else
288 			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
289 	} else {
290 		rmapbt_sz = 0;
291 	}
292 
293 	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
294 			inobt_sz, rmapbt_sz, refcbt_sz);
295 
296 	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
297 }
298 
299 /* Allocate a block in an AG. */
300 int
301 xrep_alloc_ag_block(
302 	struct xfs_scrub		*sc,
303 	const struct xfs_owner_info	*oinfo,
304 	xfs_fsblock_t			*fsbno,
305 	enum xfs_ag_resv_type		resv)
306 {
307 	struct xfs_alloc_arg		args = {0};
308 	xfs_agblock_t			bno;
309 	int				error;
310 
311 	switch (resv) {
312 	case XFS_AG_RESV_AGFL:
313 	case XFS_AG_RESV_RMAPBT:
314 		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
315 		if (error)
316 			return error;
317 		if (bno == NULLAGBLOCK)
318 			return -ENOSPC;
319 		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
320 				1, false);
321 		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
322 		if (resv == XFS_AG_RESV_RMAPBT)
323 			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
324 		return 0;
325 	default:
326 		break;
327 	}
328 
329 	args.tp = sc->tp;
330 	args.mp = sc->mp;
331 	args.oinfo = *oinfo;
332 	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
333 	args.minlen = 1;
334 	args.maxlen = 1;
335 	args.prod = 1;
336 	args.type = XFS_ALLOCTYPE_THIS_AG;
337 	args.resv = resv;
338 
339 	error = xfs_alloc_vextent(&args);
340 	if (error)
341 		return error;
342 	if (args.fsbno == NULLFSBLOCK)
343 		return -ENOSPC;
344 	ASSERT(args.len == 1);
345 	*fsbno = args.fsbno;
346 
347 	return 0;
348 }
349 
350 /* Initialize a new AG btree root block with zero entries. */
351 int
352 xrep_init_btblock(
353 	struct xfs_scrub		*sc,
354 	xfs_fsblock_t			fsb,
355 	struct xfs_buf			**bpp,
356 	xfs_btnum_t			btnum,
357 	const struct xfs_buf_ops	*ops)
358 {
359 	struct xfs_trans		*tp = sc->tp;
360 	struct xfs_mount		*mp = sc->mp;
361 	struct xfs_buf			*bp;
362 
363 	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
364 			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
365 
366 	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
367 	bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
368 			XFS_FSB_TO_BB(mp, 1), 0);
369 	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
370 	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
371 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
372 	xfs_trans_log_buf(tp, bp, 0, bp->b_length);
373 	bp->b_ops = ops;
374 	*bpp = bp;
375 
376 	return 0;
377 }
378 
379 /*
380  * Reconstructing per-AG Btrees
381  *
382  * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
383  * we scan secondary space metadata to derive the records that should be in
384  * the damaged btree, initialize a fresh btree root, and insert the records.
385  * Note that for rebuilding the rmapbt we scan all the primary data to
386  * generate the new records.
387  *
388  * However, that leaves the matter of removing all the metadata describing the
389  * old broken structure.  For primary metadata we use the rmap data to collect
390  * every extent with a matching rmap owner (bitmap); we then iterate all other
391  * metadata structures with the same rmap owner to collect the extents that
392  * cannot be removed (sublist).  We then subtract sublist from bitmap to
393  * derive the blocks that were used by the old btree.  These blocks can be
394  * reaped.
395  *
396  * For rmapbt reconstructions we must use different tactics for extent
397  * collection.  First we iterate all primary metadata (this excludes the old
398  * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
399  * records are collected as bitmap.  The bnobt records are collected as
400  * sublist.  As with the other btrees we subtract sublist from bitmap, and the
401  * result (since the rmapbt lives in the free space) are the blocks from the
402  * old rmapbt.
403  *
404  * Disposal of Blocks from Old per-AG Btrees
405  *
406  * Now that we've constructed a new btree to replace the damaged one, we want
407  * to dispose of the blocks that (we think) the old btree was using.
408  * Previously, we used the rmapbt to collect the extents (bitmap) with the
409  * rmap owner corresponding to the tree we rebuilt, collected extents for any
410  * blocks with the same rmap owner that are owned by another data structure
411  * (sublist), and subtracted sublist from bitmap.  In theory the extents
412  * remaining in bitmap are the old btree's blocks.
413  *
414  * Unfortunately, it's possible that the btree was crosslinked with other
415  * blocks on disk.  The rmap data can tell us if there are multiple owners, so
416  * if the rmapbt says there is an owner of this block other than @oinfo, then
417  * the block is crosslinked.  Remove the reverse mapping and continue.
418  *
419  * If there is one rmap record, we can free the block, which removes the
420  * reverse mapping but doesn't add the block to the free space.  Our repair
421  * strategy is to hope the other metadata objects crosslinked on this block
422  * will be rebuilt (atop different blocks), thereby removing all the cross
423  * links.
424  *
425  * If there are no rmap records at all, we also free the block.  If the btree
426  * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
427  * supposed to be a rmap record and everything is ok.  For other btrees there
428  * had to have been an rmap entry for the block to have ended up on @bitmap,
429  * so if it's gone now there's something wrong and the fs will shut down.
430  *
431  * Note: If there are multiple rmap records with only the same rmap owner as
432  * the btree we're trying to rebuild and the block is indeed owned by another
433  * data structure with the same rmap owner, then the block will be in sublist
434  * and therefore doesn't need disposal.  If there are multiple rmap records
435  * with only the same rmap owner but the block is not owned by something with
436  * the same rmap owner, the block will be freed.
437  *
438  * The caller is responsible for locking the AG headers for the entire rebuild
439  * operation so that nothing else can sneak in and change the AG state while
440  * we're not looking.  We also assume that the caller already invalidated any
441  * buffers associated with @bitmap.
442  */
443 
444 /*
445  * Invalidate buffers for per-AG btree blocks we're dumping.  This function
446  * is not intended for use with file data repairs; we have bunmapi for that.
447  */
448 int
449 xrep_invalidate_blocks(
450 	struct xfs_scrub	*sc,
451 	struct xfs_bitmap	*bitmap)
452 {
453 	struct xfs_bitmap_range	*bmr;
454 	struct xfs_bitmap_range	*n;
455 	struct xfs_buf		*bp;
456 	xfs_fsblock_t		fsbno;
457 
458 	/*
459 	 * For each block in each extent, see if there's an incore buffer for
460 	 * exactly that block; if so, invalidate it.  The buffer cache only
461 	 * lets us look for one buffer at a time, so we have to look one block
462 	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
463 	 * because we never own those; and if we can't TRYLOCK the buffer we
464 	 * assume it's owned by someone else.
465 	 */
466 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
467 		/* Skip AG headers and post-EOFS blocks */
468 		if (!xfs_verify_fsbno(sc->mp, fsbno))
469 			continue;
470 		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
471 				XFS_FSB_TO_DADDR(sc->mp, fsbno),
472 				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
473 		if (bp) {
474 			xfs_trans_bjoin(sc->tp, bp);
475 			xfs_trans_binval(sc->tp, bp);
476 		}
477 	}
478 
479 	return 0;
480 }
481 
482 /* Ensure the freelist is the correct size. */
483 int
484 xrep_fix_freelist(
485 	struct xfs_scrub	*sc,
486 	bool			can_shrink)
487 {
488 	struct xfs_alloc_arg	args = {0};
489 
490 	args.mp = sc->mp;
491 	args.tp = sc->tp;
492 	args.agno = sc->sa.agno;
493 	args.alignment = 1;
494 	args.pag = sc->sa.pag;
495 
496 	return xfs_alloc_fix_freelist(&args,
497 			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
498 }
499 
500 /*
501  * Put a block back on the AGFL.
502  */
503 STATIC int
504 xrep_put_freelist(
505 	struct xfs_scrub	*sc,
506 	xfs_agblock_t		agbno)
507 {
508 	int			error;
509 
510 	/* Make sure there's space on the freelist. */
511 	error = xrep_fix_freelist(sc, true);
512 	if (error)
513 		return error;
514 
515 	/*
516 	 * Since we're "freeing" a lost block onto the AGFL, we have to
517 	 * create an rmap for the block prior to merging it or else other
518 	 * parts will break.
519 	 */
520 	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
521 			&XFS_RMAP_OINFO_AG);
522 	if (error)
523 		return error;
524 
525 	/* Put the block on the AGFL. */
526 	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
527 			agbno, 0);
528 	if (error)
529 		return error;
530 	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
531 			XFS_EXTENT_BUSY_SKIP_DISCARD);
532 
533 	return 0;
534 }
535 
536 /* Dispose of a single block. */
537 STATIC int
538 xrep_reap_block(
539 	struct xfs_scrub		*sc,
540 	xfs_fsblock_t			fsbno,
541 	const struct xfs_owner_info	*oinfo,
542 	enum xfs_ag_resv_type		resv)
543 {
544 	struct xfs_btree_cur		*cur;
545 	struct xfs_buf			*agf_bp = NULL;
546 	xfs_agnumber_t			agno;
547 	xfs_agblock_t			agbno;
548 	bool				has_other_rmap;
549 	int				error;
550 
551 	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
552 	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
553 
554 	/*
555 	 * If we are repairing per-inode metadata, we need to read in the AGF
556 	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
557 	 * the AGF buffer that the setup functions already grabbed.
558 	 */
559 	if (sc->ip) {
560 		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
561 		if (error)
562 			return error;
563 		if (!agf_bp)
564 			return -ENOMEM;
565 	} else {
566 		agf_bp = sc->sa.agf_bp;
567 	}
568 	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
569 
570 	/* Can we find any other rmappings? */
571 	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
572 	xfs_btree_del_cursor(cur, error);
573 	if (error)
574 		goto out_free;
575 
576 	/*
577 	 * If there are other rmappings, this block is cross linked and must
578 	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
579 	 * we were the only owner of the block, so free the extent, which will
580 	 * also remove the rmap.
581 	 *
582 	 * XXX: XFS doesn't support detecting the case where a single block
583 	 * metadata structure is crosslinked with a multi-block structure
584 	 * because the buffer cache doesn't detect aliasing problems, so we
585 	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
586 	 * blow on writeout, the filesystem will shut down, and the admin gets
587 	 * to run xfs_repair.
588 	 */
589 	if (has_other_rmap)
590 		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
591 	else if (resv == XFS_AG_RESV_AGFL)
592 		error = xrep_put_freelist(sc, agbno);
593 	else
594 		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
595 	if (agf_bp != sc->sa.agf_bp)
596 		xfs_trans_brelse(sc->tp, agf_bp);
597 	if (error)
598 		return error;
599 
600 	if (sc->ip)
601 		return xfs_trans_roll_inode(&sc->tp, sc->ip);
602 	return xrep_roll_ag_trans(sc);
603 
604 out_free:
605 	if (agf_bp != sc->sa.agf_bp)
606 		xfs_trans_brelse(sc->tp, agf_bp);
607 	return error;
608 }
609 
610 /* Dispose of every block of every extent in the bitmap. */
611 int
612 xrep_reap_extents(
613 	struct xfs_scrub		*sc,
614 	struct xfs_bitmap		*bitmap,
615 	const struct xfs_owner_info	*oinfo,
616 	enum xfs_ag_resv_type		type)
617 {
618 	struct xfs_bitmap_range		*bmr;
619 	struct xfs_bitmap_range		*n;
620 	xfs_fsblock_t			fsbno;
621 	int				error = 0;
622 
623 	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
624 
625 	for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
626 		ASSERT(sc->ip != NULL ||
627 		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
628 		trace_xrep_dispose_btree_extent(sc->mp,
629 				XFS_FSB_TO_AGNO(sc->mp, fsbno),
630 				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
631 
632 		error = xrep_reap_block(sc, fsbno, oinfo, type);
633 		if (error)
634 			goto out;
635 	}
636 
637 out:
638 	xfs_bitmap_destroy(bitmap);
639 	return error;
640 }
641 
642 /*
643  * Finding per-AG Btree Roots for AGF/AGI Reconstruction
644  *
645  * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
646  * the AG headers by using the rmap data to rummage through the AG looking for
647  * btree roots.  This is not guaranteed to work if the AG is heavily damaged
648  * or the rmap data are corrupt.
649  *
650  * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
651  * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
652  * AGI is being rebuilt.  It must maintain these locks until it's safe for
653  * other threads to change the btrees' shapes.  The caller provides
654  * information about the btrees to look for by passing in an array of
655  * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
656  * The (root, height) fields will be set on return if anything is found.  The
657  * last element of the array should have a NULL buf_ops to mark the end of the
658  * array.
659  *
660  * For every rmapbt record matching any of the rmap owners in btree_info,
661  * read each block referenced by the rmap record.  If the block is a btree
662  * block from this filesystem matching any of the magic numbers and has a
663  * level higher than what we've already seen, remember the block and the
664  * height of the tree required to have such a block.  When the call completes,
665  * we return the highest block we've found for each btree description; those
666  * should be the roots.
667  */
668 
669 struct xrep_findroot {
670 	struct xfs_scrub		*sc;
671 	struct xfs_buf			*agfl_bp;
672 	struct xfs_agf			*agf;
673 	struct xrep_find_ag_btree	*btree_info;
674 };
675 
676 /* See if our block is in the AGFL. */
677 STATIC int
678 xrep_findroot_agfl_walk(
679 	struct xfs_mount	*mp,
680 	xfs_agblock_t		bno,
681 	void			*priv)
682 {
683 	xfs_agblock_t		*agbno = priv;
684 
685 	return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
686 }
687 
688 /* Does this block match the btree information passed in? */
689 STATIC int
690 xrep_findroot_block(
691 	struct xrep_findroot		*ri,
692 	struct xrep_find_ag_btree	*fab,
693 	uint64_t			owner,
694 	xfs_agblock_t			agbno,
695 	bool				*done_with_block)
696 {
697 	struct xfs_mount		*mp = ri->sc->mp;
698 	struct xfs_buf			*bp;
699 	struct xfs_btree_block		*btblock;
700 	xfs_daddr_t			daddr;
701 	int				block_level;
702 	int				error = 0;
703 
704 	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
705 
706 	/*
707 	 * Blocks in the AGFL have stale contents that might just happen to
708 	 * have a matching magic and uuid.  We don't want to pull these blocks
709 	 * in as part of a tree root, so we have to filter out the AGFL stuff
710 	 * here.  If the AGFL looks insane we'll just refuse to repair.
711 	 */
712 	if (owner == XFS_RMAP_OWN_AG) {
713 		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
714 				xrep_findroot_agfl_walk, &agbno);
715 		if (error == XFS_BTREE_QUERY_RANGE_ABORT)
716 			return 0;
717 		if (error)
718 			return error;
719 	}
720 
721 	/*
722 	 * Read the buffer into memory so that we can see if it's a match for
723 	 * our btree type.  We have no clue if it is beforehand, and we want to
724 	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
725 	 * will cause needless disk reads in subsequent calls to this function)
726 	 * and logging metadata verifier failures.
727 	 *
728 	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
729 	 * memory from some other caller it will already have b_ops assigned.
730 	 * If it was in memory from a previous unsuccessful findroot_block
731 	 * call, the buffer won't have b_ops but it should be clean and ready
732 	 * for us to try to verify if the read call succeeds.  The same applies
733 	 * if the buffer wasn't in memory at all.
734 	 *
735 	 * Note: If we never match a btree type with this buffer, it will be
736 	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
737 	 * the buffer gets written.
738 	 */
739 	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
740 			mp->m_bsize, 0, &bp, NULL);
741 	if (error)
742 		return error;
743 
744 	/* Ensure the block magic matches the btree type we're looking for. */
745 	btblock = XFS_BUF_TO_BLOCK(bp);
746 	ASSERT(fab->buf_ops->magic[1] != 0);
747 	if (btblock->bb_magic != fab->buf_ops->magic[1])
748 		goto out;
749 
750 	/*
751 	 * If the buffer already has ops applied and they're not the ones for
752 	 * this btree type, we know this block doesn't match the btree and we
753 	 * can bail out.
754 	 *
755 	 * If the buffer ops match ours, someone else has already validated
756 	 * the block for us, so we can move on to checking if this is a root
757 	 * block candidate.
758 	 *
759 	 * If the buffer does not have ops, nobody has successfully validated
760 	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
761 	 * and structure match this btree type then we'll move on to checking
762 	 * if it's a root block candidate.  If there is no match, bail out.
763 	 */
764 	if (bp->b_ops) {
765 		if (bp->b_ops != fab->buf_ops)
766 			goto out;
767 	} else {
768 		ASSERT(!xfs_trans_buf_is_dirty(bp));
769 		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
770 				&mp->m_sb.sb_meta_uuid))
771 			goto out;
772 		/*
773 		 * Read verifiers can reference b_ops, so we set the pointer
774 		 * here.  If the verifier fails we'll reset the buffer state
775 		 * to what it was before we touched the buffer.
776 		 */
777 		bp->b_ops = fab->buf_ops;
778 		fab->buf_ops->verify_read(bp);
779 		if (bp->b_error) {
780 			bp->b_ops = NULL;
781 			bp->b_error = 0;
782 			goto out;
783 		}
784 
785 		/*
786 		 * Some read verifiers will (re)set b_ops, so we must be
787 		 * careful not to change b_ops after running the verifier.
788 		 */
789 	}
790 
791 	/*
792 	 * This block passes the magic/uuid and verifier tests for this btree
793 	 * type.  We don't need the caller to try the other tree types.
794 	 */
795 	*done_with_block = true;
796 
797 	/*
798 	 * Compare this btree block's level to the height of the current
799 	 * candidate root block.
800 	 *
801 	 * If the level matches the root we found previously, throw away both
802 	 * blocks because there can't be two candidate roots.
803 	 *
804 	 * If level is lower in the tree than the root we found previously,
805 	 * ignore this block.
806 	 */
807 	block_level = xfs_btree_get_level(btblock);
808 	if (block_level + 1 == fab->height) {
809 		fab->root = NULLAGBLOCK;
810 		goto out;
811 	} else if (block_level < fab->height) {
812 		goto out;
813 	}
814 
815 	/*
816 	 * This is the highest block in the tree that we've found so far.
817 	 * Update the btree height to reflect what we've learned from this
818 	 * block.
819 	 */
820 	fab->height = block_level + 1;
821 
822 	/*
823 	 * If this block doesn't have sibling pointers, then it's the new root
824 	 * block candidate.  Otherwise, the root will be found farther up the
825 	 * tree.
826 	 */
827 	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
828 	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
829 		fab->root = agbno;
830 	else
831 		fab->root = NULLAGBLOCK;
832 
833 	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
834 			be32_to_cpu(btblock->bb_magic), fab->height - 1);
835 out:
836 	xfs_trans_brelse(ri->sc->tp, bp);
837 	return error;
838 }
839 
840 /*
841  * Do any of the blocks in this rmap record match one of the btrees we're
842  * looking for?
843  */
844 STATIC int
845 xrep_findroot_rmap(
846 	struct xfs_btree_cur		*cur,
847 	struct xfs_rmap_irec		*rec,
848 	void				*priv)
849 {
850 	struct xrep_findroot		*ri = priv;
851 	struct xrep_find_ag_btree	*fab;
852 	xfs_agblock_t			b;
853 	bool				done;
854 	int				error = 0;
855 
856 	/* Ignore anything that isn't AG metadata. */
857 	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
858 		return 0;
859 
860 	/* Otherwise scan each block + btree type. */
861 	for (b = 0; b < rec->rm_blockcount; b++) {
862 		done = false;
863 		for (fab = ri->btree_info; fab->buf_ops; fab++) {
864 			if (rec->rm_owner != fab->rmap_owner)
865 				continue;
866 			error = xrep_findroot_block(ri, fab,
867 					rec->rm_owner, rec->rm_startblock + b,
868 					&done);
869 			if (error)
870 				return error;
871 			if (done)
872 				break;
873 		}
874 	}
875 
876 	return 0;
877 }
878 
879 /* Find the roots of the per-AG btrees described in btree_info. */
880 int
881 xrep_find_ag_btree_roots(
882 	struct xfs_scrub		*sc,
883 	struct xfs_buf			*agf_bp,
884 	struct xrep_find_ag_btree	*btree_info,
885 	struct xfs_buf			*agfl_bp)
886 {
887 	struct xfs_mount		*mp = sc->mp;
888 	struct xrep_findroot		ri;
889 	struct xrep_find_ag_btree	*fab;
890 	struct xfs_btree_cur		*cur;
891 	int				error;
892 
893 	ASSERT(xfs_buf_islocked(agf_bp));
894 	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
895 
896 	ri.sc = sc;
897 	ri.btree_info = btree_info;
898 	ri.agf = XFS_BUF_TO_AGF(agf_bp);
899 	ri.agfl_bp = agfl_bp;
900 	for (fab = btree_info; fab->buf_ops; fab++) {
901 		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
902 		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
903 		fab->root = NULLAGBLOCK;
904 		fab->height = 0;
905 	}
906 
907 	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
908 	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
909 	xfs_btree_del_cursor(cur, error);
910 
911 	return error;
912 }
913 
914 /* Force a quotacheck the next time we mount. */
915 void
916 xrep_force_quotacheck(
917 	struct xfs_scrub	*sc,
918 	uint			dqtype)
919 {
920 	uint			flag;
921 
922 	flag = xfs_quota_chkd_flag(dqtype);
923 	if (!(flag & sc->mp->m_qflags))
924 		return;
925 
926 	sc->mp->m_qflags &= ~flag;
927 	spin_lock(&sc->mp->m_sb_lock);
928 	sc->mp->m_sb.sb_qflags &= ~flag;
929 	spin_unlock(&sc->mp->m_sb_lock);
930 	xfs_log_sb(sc->tp);
931 }
932 
933 /*
934  * Attach dquots to this inode, or schedule quotacheck to fix them.
935  *
936  * This function ensures that the appropriate dquots are attached to an inode.
937  * We cannot allow the dquot code to allocate an on-disk dquot block here
938  * because we're already in transaction context with the inode locked.  The
939  * on-disk dquot should already exist anyway.  If the quota code signals
940  * corruption or missing quota information, schedule quotacheck, which will
941  * repair corruptions in the quota metadata.
942  */
943 int
944 xrep_ino_dqattach(
945 	struct xfs_scrub	*sc)
946 {
947 	int			error;
948 
949 	error = xfs_qm_dqattach_locked(sc->ip, false);
950 	switch (error) {
951 	case -EFSBADCRC:
952 	case -EFSCORRUPTED:
953 	case -ENOENT:
954 		xfs_err_ratelimited(sc->mp,
955 "inode %llu repair encountered quota error %d, quotacheck forced.",
956 				(unsigned long long)sc->ip->i_ino, error);
957 		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
958 			xrep_force_quotacheck(sc, XFS_DQ_USER);
959 		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
960 			xrep_force_quotacheck(sc, XFS_DQ_GROUP);
961 		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
962 			xrep_force_quotacheck(sc, XFS_DQ_PROJ);
963 		/* fall through */
964 	case -ESRCH:
965 		error = 0;
966 		break;
967 	default:
968 		break;
969 	}
970 
971 	return error;
972 }
973