1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2018 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag_resv.h" 26 #include "xfs_quota.h" 27 #include "scrub/scrub.h" 28 #include "scrub/common.h" 29 #include "scrub/trace.h" 30 #include "scrub/repair.h" 31 #include "scrub/bitmap.h" 32 33 /* 34 * Attempt to repair some metadata, if the metadata is corrupt and userspace 35 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 36 * and will set *fixed to true if it thinks it repaired anything. 37 */ 38 int 39 xrep_attempt( 40 struct xfs_inode *ip, 41 struct xfs_scrub *sc) 42 { 43 int error = 0; 44 45 trace_xrep_attempt(ip, sc->sm, error); 46 47 xchk_ag_btcur_free(&sc->sa); 48 49 /* Repair whatever's broken. */ 50 ASSERT(sc->ops->repair); 51 error = sc->ops->repair(sc); 52 trace_xrep_done(ip, sc->sm, error); 53 switch (error) { 54 case 0: 55 /* 56 * Repair succeeded. Commit the fixes and perform a second 57 * scrub so that we can tell userspace if we fixed the problem. 58 */ 59 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 60 sc->flags |= XREP_ALREADY_FIXED; 61 return -EAGAIN; 62 case -EDEADLOCK: 63 case -EAGAIN: 64 /* Tell the caller to try again having grabbed all the locks. */ 65 if (!(sc->flags & XCHK_TRY_HARDER)) { 66 sc->flags |= XCHK_TRY_HARDER; 67 return -EAGAIN; 68 } 69 /* 70 * We tried harder but still couldn't grab all the resources 71 * we needed to fix it. The corruption has not been fixed, 72 * so report back to userspace. 73 */ 74 return -EFSCORRUPTED; 75 default: 76 return error; 77 } 78 } 79 80 /* 81 * Complain about unfixable problems in the filesystem. We don't log 82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 84 * administrator isn't running xfs_scrub in no-repairs mode. 85 * 86 * Use this helper function because _ratelimited silently declares a static 87 * structure to track rate limiting information. 88 */ 89 void 90 xrep_failure( 91 struct xfs_mount *mp) 92 { 93 xfs_alert_ratelimited(mp, 94 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 95 } 96 97 /* 98 * Repair probe -- userspace uses this to probe if we're willing to repair a 99 * given mountpoint. 100 */ 101 int 102 xrep_probe( 103 struct xfs_scrub *sc) 104 { 105 int error = 0; 106 107 if (xchk_should_terminate(sc, &error)) 108 return error; 109 110 return 0; 111 } 112 113 /* 114 * Roll a transaction, keeping the AG headers locked and reinitializing 115 * the btree cursors. 116 */ 117 int 118 xrep_roll_ag_trans( 119 struct xfs_scrub *sc) 120 { 121 int error; 122 123 /* Keep the AG header buffers locked so we can keep going. */ 124 if (sc->sa.agi_bp) 125 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 126 if (sc->sa.agf_bp) 127 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 128 if (sc->sa.agfl_bp) 129 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp); 130 131 /* 132 * Roll the transaction. We still own the buffer and the buffer lock 133 * regardless of whether or not the roll succeeds. If the roll fails, 134 * the buffers will be released during teardown on our way out of the 135 * kernel. If it succeeds, we join them to the new transaction and 136 * move on. 137 */ 138 error = xfs_trans_roll(&sc->tp); 139 if (error) 140 return error; 141 142 /* Join AG headers to the new transaction. */ 143 if (sc->sa.agi_bp) 144 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 145 if (sc->sa.agf_bp) 146 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 147 if (sc->sa.agfl_bp) 148 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp); 149 150 return 0; 151 } 152 153 /* 154 * Does the given AG have enough space to rebuild a btree? Neither AG 155 * reservation can be critical, and we must have enough space (factoring 156 * in AG reservations) to construct a whole btree. 157 */ 158 bool 159 xrep_ag_has_space( 160 struct xfs_perag *pag, 161 xfs_extlen_t nr_blocks, 162 enum xfs_ag_resv_type type) 163 { 164 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 165 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 166 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 167 } 168 169 /* 170 * Figure out how many blocks to reserve for an AG repair. We calculate the 171 * worst case estimate for the number of blocks we'd need to rebuild one of 172 * any type of per-AG btree. 173 */ 174 xfs_extlen_t 175 xrep_calc_ag_resblks( 176 struct xfs_scrub *sc) 177 { 178 struct xfs_mount *mp = sc->mp; 179 struct xfs_scrub_metadata *sm = sc->sm; 180 struct xfs_perag *pag; 181 struct xfs_buf *bp; 182 xfs_agino_t icount = NULLAGINO; 183 xfs_extlen_t aglen = NULLAGBLOCK; 184 xfs_extlen_t usedlen; 185 xfs_extlen_t freelen; 186 xfs_extlen_t bnobt_sz; 187 xfs_extlen_t inobt_sz; 188 xfs_extlen_t rmapbt_sz; 189 xfs_extlen_t refcbt_sz; 190 int error; 191 192 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 193 return 0; 194 195 pag = xfs_perag_get(mp, sm->sm_agno); 196 if (pag->pagi_init) { 197 /* Use in-core icount if possible. */ 198 icount = pag->pagi_count; 199 } else { 200 /* Try to get the actual counters from disk. */ 201 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); 202 if (!error) { 203 icount = pag->pagi_count; 204 xfs_buf_relse(bp); 205 } 206 } 207 208 /* Now grab the block counters from the AGF. */ 209 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); 210 if (!error) { 211 struct xfs_agf *agf = bp->b_addr; 212 213 aglen = be32_to_cpu(agf->agf_length); 214 freelen = be32_to_cpu(agf->agf_freeblks); 215 usedlen = aglen - freelen; 216 xfs_buf_relse(bp); 217 } 218 xfs_perag_put(pag); 219 220 /* If the icount is impossible, make some worst-case assumptions. */ 221 if (icount == NULLAGINO || 222 !xfs_verify_agino(mp, sm->sm_agno, icount)) { 223 xfs_agino_t first, last; 224 225 xfs_agino_range(mp, sm->sm_agno, &first, &last); 226 icount = last - first + 1; 227 } 228 229 /* If the block counts are impossible, make worst-case assumptions. */ 230 if (aglen == NULLAGBLOCK || 231 aglen != xfs_ag_block_count(mp, sm->sm_agno) || 232 freelen >= aglen) { 233 aglen = xfs_ag_block_count(mp, sm->sm_agno); 234 freelen = aglen; 235 usedlen = aglen; 236 } 237 238 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 239 freelen, usedlen); 240 241 /* 242 * Figure out how many blocks we'd need worst case to rebuild 243 * each type of btree. Note that we can only rebuild the 244 * bnobt/cntbt or inobt/finobt as pairs. 245 */ 246 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 247 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) 248 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 249 XFS_INODES_PER_HOLEMASK_BIT); 250 else 251 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 252 XFS_INODES_PER_CHUNK); 253 if (xfs_sb_version_hasfinobt(&mp->m_sb)) 254 inobt_sz *= 2; 255 if (xfs_sb_version_hasreflink(&mp->m_sb)) 256 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 257 else 258 refcbt_sz = 0; 259 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 260 /* 261 * Guess how many blocks we need to rebuild the rmapbt. 262 * For non-reflink filesystems we can't have more records than 263 * used blocks. However, with reflink it's possible to have 264 * more than one rmap record per AG block. We don't know how 265 * many rmaps there could be in the AG, so we start off with 266 * what we hope is an generous over-estimation. 267 */ 268 if (xfs_sb_version_hasreflink(&mp->m_sb)) 269 rmapbt_sz = xfs_rmapbt_calc_size(mp, 270 (unsigned long long)aglen * 2); 271 else 272 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 273 } else { 274 rmapbt_sz = 0; 275 } 276 277 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 278 inobt_sz, rmapbt_sz, refcbt_sz); 279 280 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 281 } 282 283 /* Allocate a block in an AG. */ 284 int 285 xrep_alloc_ag_block( 286 struct xfs_scrub *sc, 287 const struct xfs_owner_info *oinfo, 288 xfs_fsblock_t *fsbno, 289 enum xfs_ag_resv_type resv) 290 { 291 struct xfs_alloc_arg args = {0}; 292 xfs_agblock_t bno; 293 int error; 294 295 switch (resv) { 296 case XFS_AG_RESV_AGFL: 297 case XFS_AG_RESV_RMAPBT: 298 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1); 299 if (error) 300 return error; 301 if (bno == NULLAGBLOCK) 302 return -ENOSPC; 303 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno, 304 1, false); 305 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno); 306 if (resv == XFS_AG_RESV_RMAPBT) 307 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno); 308 return 0; 309 default: 310 break; 311 } 312 313 args.tp = sc->tp; 314 args.mp = sc->mp; 315 args.oinfo = *oinfo; 316 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0); 317 args.minlen = 1; 318 args.maxlen = 1; 319 args.prod = 1; 320 args.type = XFS_ALLOCTYPE_THIS_AG; 321 args.resv = resv; 322 323 error = xfs_alloc_vextent(&args); 324 if (error) 325 return error; 326 if (args.fsbno == NULLFSBLOCK) 327 return -ENOSPC; 328 ASSERT(args.len == 1); 329 *fsbno = args.fsbno; 330 331 return 0; 332 } 333 334 /* Initialize a new AG btree root block with zero entries. */ 335 int 336 xrep_init_btblock( 337 struct xfs_scrub *sc, 338 xfs_fsblock_t fsb, 339 struct xfs_buf **bpp, 340 xfs_btnum_t btnum, 341 const struct xfs_buf_ops *ops) 342 { 343 struct xfs_trans *tp = sc->tp; 344 struct xfs_mount *mp = sc->mp; 345 struct xfs_buf *bp; 346 int error; 347 348 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb), 349 XFS_FSB_TO_AGBNO(mp, fsb), btnum); 350 351 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno); 352 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, 353 XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0, 354 &bp); 355 if (error) 356 return error; 357 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 358 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno); 359 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF); 360 xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1); 361 bp->b_ops = ops; 362 *bpp = bp; 363 364 return 0; 365 } 366 367 /* 368 * Reconstructing per-AG Btrees 369 * 370 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 371 * we scan secondary space metadata to derive the records that should be in 372 * the damaged btree, initialize a fresh btree root, and insert the records. 373 * Note that for rebuilding the rmapbt we scan all the primary data to 374 * generate the new records. 375 * 376 * However, that leaves the matter of removing all the metadata describing the 377 * old broken structure. For primary metadata we use the rmap data to collect 378 * every extent with a matching rmap owner (bitmap); we then iterate all other 379 * metadata structures with the same rmap owner to collect the extents that 380 * cannot be removed (sublist). We then subtract sublist from bitmap to 381 * derive the blocks that were used by the old btree. These blocks can be 382 * reaped. 383 * 384 * For rmapbt reconstructions we must use different tactics for extent 385 * collection. First we iterate all primary metadata (this excludes the old 386 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 387 * records are collected as bitmap. The bnobt records are collected as 388 * sublist. As with the other btrees we subtract sublist from bitmap, and the 389 * result (since the rmapbt lives in the free space) are the blocks from the 390 * old rmapbt. 391 * 392 * Disposal of Blocks from Old per-AG Btrees 393 * 394 * Now that we've constructed a new btree to replace the damaged one, we want 395 * to dispose of the blocks that (we think) the old btree was using. 396 * Previously, we used the rmapbt to collect the extents (bitmap) with the 397 * rmap owner corresponding to the tree we rebuilt, collected extents for any 398 * blocks with the same rmap owner that are owned by another data structure 399 * (sublist), and subtracted sublist from bitmap. In theory the extents 400 * remaining in bitmap are the old btree's blocks. 401 * 402 * Unfortunately, it's possible that the btree was crosslinked with other 403 * blocks on disk. The rmap data can tell us if there are multiple owners, so 404 * if the rmapbt says there is an owner of this block other than @oinfo, then 405 * the block is crosslinked. Remove the reverse mapping and continue. 406 * 407 * If there is one rmap record, we can free the block, which removes the 408 * reverse mapping but doesn't add the block to the free space. Our repair 409 * strategy is to hope the other metadata objects crosslinked on this block 410 * will be rebuilt (atop different blocks), thereby removing all the cross 411 * links. 412 * 413 * If there are no rmap records at all, we also free the block. If the btree 414 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't 415 * supposed to be a rmap record and everything is ok. For other btrees there 416 * had to have been an rmap entry for the block to have ended up on @bitmap, 417 * so if it's gone now there's something wrong and the fs will shut down. 418 * 419 * Note: If there are multiple rmap records with only the same rmap owner as 420 * the btree we're trying to rebuild and the block is indeed owned by another 421 * data structure with the same rmap owner, then the block will be in sublist 422 * and therefore doesn't need disposal. If there are multiple rmap records 423 * with only the same rmap owner but the block is not owned by something with 424 * the same rmap owner, the block will be freed. 425 * 426 * The caller is responsible for locking the AG headers for the entire rebuild 427 * operation so that nothing else can sneak in and change the AG state while 428 * we're not looking. We also assume that the caller already invalidated any 429 * buffers associated with @bitmap. 430 */ 431 432 /* 433 * Invalidate buffers for per-AG btree blocks we're dumping. This function 434 * is not intended for use with file data repairs; we have bunmapi for that. 435 */ 436 int 437 xrep_invalidate_blocks( 438 struct xfs_scrub *sc, 439 struct xbitmap *bitmap) 440 { 441 struct xbitmap_range *bmr; 442 struct xbitmap_range *n; 443 struct xfs_buf *bp; 444 xfs_fsblock_t fsbno; 445 446 /* 447 * For each block in each extent, see if there's an incore buffer for 448 * exactly that block; if so, invalidate it. The buffer cache only 449 * lets us look for one buffer at a time, so we have to look one block 450 * at a time. Avoid invalidating AG headers and post-EOFS blocks 451 * because we never own those; and if we can't TRYLOCK the buffer we 452 * assume it's owned by someone else. 453 */ 454 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 455 /* Skip AG headers and post-EOFS blocks */ 456 if (!xfs_verify_fsbno(sc->mp, fsbno)) 457 continue; 458 bp = xfs_buf_incore(sc->mp->m_ddev_targp, 459 XFS_FSB_TO_DADDR(sc->mp, fsbno), 460 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK); 461 if (bp) { 462 xfs_trans_bjoin(sc->tp, bp); 463 xfs_trans_binval(sc->tp, bp); 464 } 465 } 466 467 return 0; 468 } 469 470 /* Ensure the freelist is the correct size. */ 471 int 472 xrep_fix_freelist( 473 struct xfs_scrub *sc, 474 bool can_shrink) 475 { 476 struct xfs_alloc_arg args = {0}; 477 478 args.mp = sc->mp; 479 args.tp = sc->tp; 480 args.agno = sc->sa.agno; 481 args.alignment = 1; 482 args.pag = sc->sa.pag; 483 484 return xfs_alloc_fix_freelist(&args, 485 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK); 486 } 487 488 /* 489 * Put a block back on the AGFL. 490 */ 491 STATIC int 492 xrep_put_freelist( 493 struct xfs_scrub *sc, 494 xfs_agblock_t agbno) 495 { 496 int error; 497 498 /* Make sure there's space on the freelist. */ 499 error = xrep_fix_freelist(sc, true); 500 if (error) 501 return error; 502 503 /* 504 * Since we're "freeing" a lost block onto the AGFL, we have to 505 * create an rmap for the block prior to merging it or else other 506 * parts will break. 507 */ 508 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1, 509 &XFS_RMAP_OINFO_AG); 510 if (error) 511 return error; 512 513 /* Put the block on the AGFL. */ 514 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp, 515 agbno, 0); 516 if (error) 517 return error; 518 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1, 519 XFS_EXTENT_BUSY_SKIP_DISCARD); 520 521 return 0; 522 } 523 524 /* Dispose of a single block. */ 525 STATIC int 526 xrep_reap_block( 527 struct xfs_scrub *sc, 528 xfs_fsblock_t fsbno, 529 const struct xfs_owner_info *oinfo, 530 enum xfs_ag_resv_type resv) 531 { 532 struct xfs_btree_cur *cur; 533 struct xfs_buf *agf_bp = NULL; 534 xfs_agnumber_t agno; 535 xfs_agblock_t agbno; 536 bool has_other_rmap; 537 int error; 538 539 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno); 540 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno); 541 542 /* 543 * If we are repairing per-inode metadata, we need to read in the AGF 544 * buffer. Otherwise, we're repairing a per-AG structure, so reuse 545 * the AGF buffer that the setup functions already grabbed. 546 */ 547 if (sc->ip) { 548 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp); 549 if (error) 550 return error; 551 } else { 552 agf_bp = sc->sa.agf_bp; 553 } 554 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno); 555 556 /* Can we find any other rmappings? */ 557 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap); 558 xfs_btree_del_cursor(cur, error); 559 if (error) 560 goto out_free; 561 562 /* 563 * If there are other rmappings, this block is cross linked and must 564 * not be freed. Remove the reverse mapping and move on. Otherwise, 565 * we were the only owner of the block, so free the extent, which will 566 * also remove the rmap. 567 * 568 * XXX: XFS doesn't support detecting the case where a single block 569 * metadata structure is crosslinked with a multi-block structure 570 * because the buffer cache doesn't detect aliasing problems, so we 571 * can't fix 100% of crosslinking problems (yet). The verifiers will 572 * blow on writeout, the filesystem will shut down, and the admin gets 573 * to run xfs_repair. 574 */ 575 if (has_other_rmap) 576 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo); 577 else if (resv == XFS_AG_RESV_AGFL) 578 error = xrep_put_freelist(sc, agbno); 579 else 580 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv); 581 if (agf_bp != sc->sa.agf_bp) 582 xfs_trans_brelse(sc->tp, agf_bp); 583 if (error) 584 return error; 585 586 if (sc->ip) 587 return xfs_trans_roll_inode(&sc->tp, sc->ip); 588 return xrep_roll_ag_trans(sc); 589 590 out_free: 591 if (agf_bp != sc->sa.agf_bp) 592 xfs_trans_brelse(sc->tp, agf_bp); 593 return error; 594 } 595 596 /* Dispose of every block of every extent in the bitmap. */ 597 int 598 xrep_reap_extents( 599 struct xfs_scrub *sc, 600 struct xbitmap *bitmap, 601 const struct xfs_owner_info *oinfo, 602 enum xfs_ag_resv_type type) 603 { 604 struct xbitmap_range *bmr; 605 struct xbitmap_range *n; 606 xfs_fsblock_t fsbno; 607 int error = 0; 608 609 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb)); 610 611 for_each_xbitmap_block(fsbno, bmr, n, bitmap) { 612 ASSERT(sc->ip != NULL || 613 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno); 614 trace_xrep_dispose_btree_extent(sc->mp, 615 XFS_FSB_TO_AGNO(sc->mp, fsbno), 616 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1); 617 618 error = xrep_reap_block(sc, fsbno, oinfo, type); 619 if (error) 620 break; 621 } 622 623 return error; 624 } 625 626 /* 627 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 628 * 629 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 630 * the AG headers by using the rmap data to rummage through the AG looking for 631 * btree roots. This is not guaranteed to work if the AG is heavily damaged 632 * or the rmap data are corrupt. 633 * 634 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 635 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 636 * AGI is being rebuilt. It must maintain these locks until it's safe for 637 * other threads to change the btrees' shapes. The caller provides 638 * information about the btrees to look for by passing in an array of 639 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 640 * The (root, height) fields will be set on return if anything is found. The 641 * last element of the array should have a NULL buf_ops to mark the end of the 642 * array. 643 * 644 * For every rmapbt record matching any of the rmap owners in btree_info, 645 * read each block referenced by the rmap record. If the block is a btree 646 * block from this filesystem matching any of the magic numbers and has a 647 * level higher than what we've already seen, remember the block and the 648 * height of the tree required to have such a block. When the call completes, 649 * we return the highest block we've found for each btree description; those 650 * should be the roots. 651 */ 652 653 struct xrep_findroot { 654 struct xfs_scrub *sc; 655 struct xfs_buf *agfl_bp; 656 struct xfs_agf *agf; 657 struct xrep_find_ag_btree *btree_info; 658 }; 659 660 /* See if our block is in the AGFL. */ 661 STATIC int 662 xrep_findroot_agfl_walk( 663 struct xfs_mount *mp, 664 xfs_agblock_t bno, 665 void *priv) 666 { 667 xfs_agblock_t *agbno = priv; 668 669 return (*agbno == bno) ? -ECANCELED : 0; 670 } 671 672 /* Does this block match the btree information passed in? */ 673 STATIC int 674 xrep_findroot_block( 675 struct xrep_findroot *ri, 676 struct xrep_find_ag_btree *fab, 677 uint64_t owner, 678 xfs_agblock_t agbno, 679 bool *done_with_block) 680 { 681 struct xfs_mount *mp = ri->sc->mp; 682 struct xfs_buf *bp; 683 struct xfs_btree_block *btblock; 684 xfs_daddr_t daddr; 685 int block_level; 686 int error = 0; 687 688 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno); 689 690 /* 691 * Blocks in the AGFL have stale contents that might just happen to 692 * have a matching magic and uuid. We don't want to pull these blocks 693 * in as part of a tree root, so we have to filter out the AGFL stuff 694 * here. If the AGFL looks insane we'll just refuse to repair. 695 */ 696 if (owner == XFS_RMAP_OWN_AG) { 697 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 698 xrep_findroot_agfl_walk, &agbno); 699 if (error == -ECANCELED) 700 return 0; 701 if (error) 702 return error; 703 } 704 705 /* 706 * Read the buffer into memory so that we can see if it's a match for 707 * our btree type. We have no clue if it is beforehand, and we want to 708 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 709 * will cause needless disk reads in subsequent calls to this function) 710 * and logging metadata verifier failures. 711 * 712 * Therefore, pass in NULL buffer ops. If the buffer was already in 713 * memory from some other caller it will already have b_ops assigned. 714 * If it was in memory from a previous unsuccessful findroot_block 715 * call, the buffer won't have b_ops but it should be clean and ready 716 * for us to try to verify if the read call succeeds. The same applies 717 * if the buffer wasn't in memory at all. 718 * 719 * Note: If we never match a btree type with this buffer, it will be 720 * left in memory with NULL b_ops. This shouldn't be a problem unless 721 * the buffer gets written. 722 */ 723 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 724 mp->m_bsize, 0, &bp, NULL); 725 if (error) 726 return error; 727 728 /* Ensure the block magic matches the btree type we're looking for. */ 729 btblock = XFS_BUF_TO_BLOCK(bp); 730 ASSERT(fab->buf_ops->magic[1] != 0); 731 if (btblock->bb_magic != fab->buf_ops->magic[1]) 732 goto out; 733 734 /* 735 * If the buffer already has ops applied and they're not the ones for 736 * this btree type, we know this block doesn't match the btree and we 737 * can bail out. 738 * 739 * If the buffer ops match ours, someone else has already validated 740 * the block for us, so we can move on to checking if this is a root 741 * block candidate. 742 * 743 * If the buffer does not have ops, nobody has successfully validated 744 * the contents and the buffer cannot be dirty. If the magic, uuid, 745 * and structure match this btree type then we'll move on to checking 746 * if it's a root block candidate. If there is no match, bail out. 747 */ 748 if (bp->b_ops) { 749 if (bp->b_ops != fab->buf_ops) 750 goto out; 751 } else { 752 ASSERT(!xfs_trans_buf_is_dirty(bp)); 753 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 754 &mp->m_sb.sb_meta_uuid)) 755 goto out; 756 /* 757 * Read verifiers can reference b_ops, so we set the pointer 758 * here. If the verifier fails we'll reset the buffer state 759 * to what it was before we touched the buffer. 760 */ 761 bp->b_ops = fab->buf_ops; 762 fab->buf_ops->verify_read(bp); 763 if (bp->b_error) { 764 bp->b_ops = NULL; 765 bp->b_error = 0; 766 goto out; 767 } 768 769 /* 770 * Some read verifiers will (re)set b_ops, so we must be 771 * careful not to change b_ops after running the verifier. 772 */ 773 } 774 775 /* 776 * This block passes the magic/uuid and verifier tests for this btree 777 * type. We don't need the caller to try the other tree types. 778 */ 779 *done_with_block = true; 780 781 /* 782 * Compare this btree block's level to the height of the current 783 * candidate root block. 784 * 785 * If the level matches the root we found previously, throw away both 786 * blocks because there can't be two candidate roots. 787 * 788 * If level is lower in the tree than the root we found previously, 789 * ignore this block. 790 */ 791 block_level = xfs_btree_get_level(btblock); 792 if (block_level + 1 == fab->height) { 793 fab->root = NULLAGBLOCK; 794 goto out; 795 } else if (block_level < fab->height) { 796 goto out; 797 } 798 799 /* 800 * This is the highest block in the tree that we've found so far. 801 * Update the btree height to reflect what we've learned from this 802 * block. 803 */ 804 fab->height = block_level + 1; 805 806 /* 807 * If this block doesn't have sibling pointers, then it's the new root 808 * block candidate. Otherwise, the root will be found farther up the 809 * tree. 810 */ 811 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 812 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 813 fab->root = agbno; 814 else 815 fab->root = NULLAGBLOCK; 816 817 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno, 818 be32_to_cpu(btblock->bb_magic), fab->height - 1); 819 out: 820 xfs_trans_brelse(ri->sc->tp, bp); 821 return error; 822 } 823 824 /* 825 * Do any of the blocks in this rmap record match one of the btrees we're 826 * looking for? 827 */ 828 STATIC int 829 xrep_findroot_rmap( 830 struct xfs_btree_cur *cur, 831 struct xfs_rmap_irec *rec, 832 void *priv) 833 { 834 struct xrep_findroot *ri = priv; 835 struct xrep_find_ag_btree *fab; 836 xfs_agblock_t b; 837 bool done; 838 int error = 0; 839 840 /* Ignore anything that isn't AG metadata. */ 841 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 842 return 0; 843 844 /* Otherwise scan each block + btree type. */ 845 for (b = 0; b < rec->rm_blockcount; b++) { 846 done = false; 847 for (fab = ri->btree_info; fab->buf_ops; fab++) { 848 if (rec->rm_owner != fab->rmap_owner) 849 continue; 850 error = xrep_findroot_block(ri, fab, 851 rec->rm_owner, rec->rm_startblock + b, 852 &done); 853 if (error) 854 return error; 855 if (done) 856 break; 857 } 858 } 859 860 return 0; 861 } 862 863 /* Find the roots of the per-AG btrees described in btree_info. */ 864 int 865 xrep_find_ag_btree_roots( 866 struct xfs_scrub *sc, 867 struct xfs_buf *agf_bp, 868 struct xrep_find_ag_btree *btree_info, 869 struct xfs_buf *agfl_bp) 870 { 871 struct xfs_mount *mp = sc->mp; 872 struct xrep_findroot ri; 873 struct xrep_find_ag_btree *fab; 874 struct xfs_btree_cur *cur; 875 int error; 876 877 ASSERT(xfs_buf_islocked(agf_bp)); 878 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 879 880 ri.sc = sc; 881 ri.btree_info = btree_info; 882 ri.agf = agf_bp->b_addr; 883 ri.agfl_bp = agfl_bp; 884 for (fab = btree_info; fab->buf_ops; fab++) { 885 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 886 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 887 fab->root = NULLAGBLOCK; 888 fab->height = 0; 889 } 890 891 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); 892 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 893 xfs_btree_del_cursor(cur, error); 894 895 return error; 896 } 897 898 /* Force a quotacheck the next time we mount. */ 899 void 900 xrep_force_quotacheck( 901 struct xfs_scrub *sc, 902 uint dqtype) 903 { 904 uint flag; 905 906 flag = xfs_quota_chkd_flag(dqtype); 907 if (!(flag & sc->mp->m_qflags)) 908 return; 909 910 sc->mp->m_qflags &= ~flag; 911 spin_lock(&sc->mp->m_sb_lock); 912 sc->mp->m_sb.sb_qflags &= ~flag; 913 spin_unlock(&sc->mp->m_sb_lock); 914 xfs_log_sb(sc->tp); 915 } 916 917 /* 918 * Attach dquots to this inode, or schedule quotacheck to fix them. 919 * 920 * This function ensures that the appropriate dquots are attached to an inode. 921 * We cannot allow the dquot code to allocate an on-disk dquot block here 922 * because we're already in transaction context with the inode locked. The 923 * on-disk dquot should already exist anyway. If the quota code signals 924 * corruption or missing quota information, schedule quotacheck, which will 925 * repair corruptions in the quota metadata. 926 */ 927 int 928 xrep_ino_dqattach( 929 struct xfs_scrub *sc) 930 { 931 int error; 932 933 error = xfs_qm_dqattach_locked(sc->ip, false); 934 switch (error) { 935 case -EFSBADCRC: 936 case -EFSCORRUPTED: 937 case -ENOENT: 938 xfs_err_ratelimited(sc->mp, 939 "inode %llu repair encountered quota error %d, quotacheck forced.", 940 (unsigned long long)sc->ip->i_ino, error); 941 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 942 xrep_force_quotacheck(sc, XFS_DQ_USER); 943 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 944 xrep_force_quotacheck(sc, XFS_DQ_GROUP); 945 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 946 xrep_force_quotacheck(sc, XFS_DQ_PROJ); 947 /* fall through */ 948 case -ESRCH: 949 error = 0; 950 break; 951 default: 952 break; 953 } 954 955 return error; 956 } 957