1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode.h" 16 #include "xfs_icache.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_refcount_btree.h" 22 #include "xfs_rmap.h" 23 #include "xfs_rmap_btree.h" 24 #include "xfs_log.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_da_format.h" 27 #include "xfs_da_btree.h" 28 #include "xfs_attr.h" 29 #include "xfs_reflink.h" 30 #include "xfs_ag.h" 31 #include "scrub/scrub.h" 32 #include "scrub/common.h" 33 #include "scrub/trace.h" 34 #include "scrub/repair.h" 35 #include "scrub/health.h" 36 37 /* Common code for the metadata scrubbers. */ 38 39 /* 40 * Handling operational errors. 41 * 42 * The *_process_error() family of functions are used to process error return 43 * codes from functions called as part of a scrub operation. 44 * 45 * If there's no error, we return true to tell the caller that it's ok 46 * to move on to the next check in its list. 47 * 48 * For non-verifier errors (e.g. ENOMEM) we return false to tell the 49 * caller that something bad happened, and we preserve *error so that 50 * the caller can return the *error up the stack to userspace. 51 * 52 * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting 53 * OFLAG_CORRUPT in sm_flags and the *error is cleared. In other words, 54 * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT, 55 * not via return codes. We return false to tell the caller that 56 * something bad happened. Since the error has been cleared, the caller 57 * will (presumably) return that zero and scrubbing will move on to 58 * whatever's next. 59 * 60 * ftrace can be used to record the precise metadata location and the 61 * approximate code location of the failed operation. 62 */ 63 64 /* Check for operational errors. */ 65 static bool 66 __xchk_process_error( 67 struct xfs_scrub *sc, 68 xfs_agnumber_t agno, 69 xfs_agblock_t bno, 70 int *error, 71 __u32 errflag, 72 void *ret_ip) 73 { 74 switch (*error) { 75 case 0: 76 return true; 77 case -EDEADLOCK: 78 /* Used to restart an op with deadlock avoidance. */ 79 trace_xchk_deadlock_retry( 80 sc->ip ? sc->ip : XFS_I(file_inode(sc->file)), 81 sc->sm, *error); 82 break; 83 case -EFSBADCRC: 84 case -EFSCORRUPTED: 85 /* Note the badness but don't abort. */ 86 sc->sm->sm_flags |= errflag; 87 *error = 0; 88 fallthrough; 89 default: 90 trace_xchk_op_error(sc, agno, bno, *error, 91 ret_ip); 92 break; 93 } 94 return false; 95 } 96 97 bool 98 xchk_process_error( 99 struct xfs_scrub *sc, 100 xfs_agnumber_t agno, 101 xfs_agblock_t bno, 102 int *error) 103 { 104 return __xchk_process_error(sc, agno, bno, error, 105 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 106 } 107 108 bool 109 xchk_xref_process_error( 110 struct xfs_scrub *sc, 111 xfs_agnumber_t agno, 112 xfs_agblock_t bno, 113 int *error) 114 { 115 return __xchk_process_error(sc, agno, bno, error, 116 XFS_SCRUB_OFLAG_XFAIL, __return_address); 117 } 118 119 /* Check for operational errors for a file offset. */ 120 static bool 121 __xchk_fblock_process_error( 122 struct xfs_scrub *sc, 123 int whichfork, 124 xfs_fileoff_t offset, 125 int *error, 126 __u32 errflag, 127 void *ret_ip) 128 { 129 switch (*error) { 130 case 0: 131 return true; 132 case -EDEADLOCK: 133 /* Used to restart an op with deadlock avoidance. */ 134 trace_xchk_deadlock_retry(sc->ip, sc->sm, *error); 135 break; 136 case -EFSBADCRC: 137 case -EFSCORRUPTED: 138 /* Note the badness but don't abort. */ 139 sc->sm->sm_flags |= errflag; 140 *error = 0; 141 fallthrough; 142 default: 143 trace_xchk_file_op_error(sc, whichfork, offset, *error, 144 ret_ip); 145 break; 146 } 147 return false; 148 } 149 150 bool 151 xchk_fblock_process_error( 152 struct xfs_scrub *sc, 153 int whichfork, 154 xfs_fileoff_t offset, 155 int *error) 156 { 157 return __xchk_fblock_process_error(sc, whichfork, offset, error, 158 XFS_SCRUB_OFLAG_CORRUPT, __return_address); 159 } 160 161 bool 162 xchk_fblock_xref_process_error( 163 struct xfs_scrub *sc, 164 int whichfork, 165 xfs_fileoff_t offset, 166 int *error) 167 { 168 return __xchk_fblock_process_error(sc, whichfork, offset, error, 169 XFS_SCRUB_OFLAG_XFAIL, __return_address); 170 } 171 172 /* 173 * Handling scrub corruption/optimization/warning checks. 174 * 175 * The *_set_{corrupt,preen,warning}() family of functions are used to 176 * record the presence of metadata that is incorrect (corrupt), could be 177 * optimized somehow (preen), or should be flagged for administrative 178 * review but is not incorrect (warn). 179 * 180 * ftrace can be used to record the precise metadata location and 181 * approximate code location of the failed check. 182 */ 183 184 /* Record a block which could be optimized. */ 185 void 186 xchk_block_set_preen( 187 struct xfs_scrub *sc, 188 struct xfs_buf *bp) 189 { 190 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 191 trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address); 192 } 193 194 /* 195 * Record an inode which could be optimized. The trace data will 196 * include the block given by bp if bp is given; otherwise it will use 197 * the block location of the inode record itself. 198 */ 199 void 200 xchk_ino_set_preen( 201 struct xfs_scrub *sc, 202 xfs_ino_t ino) 203 { 204 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN; 205 trace_xchk_ino_preen(sc, ino, __return_address); 206 } 207 208 /* Record something being wrong with the filesystem primary superblock. */ 209 void 210 xchk_set_corrupt( 211 struct xfs_scrub *sc) 212 { 213 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 214 trace_xchk_fs_error(sc, 0, __return_address); 215 } 216 217 /* Record a corrupt block. */ 218 void 219 xchk_block_set_corrupt( 220 struct xfs_scrub *sc, 221 struct xfs_buf *bp) 222 { 223 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 224 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 225 } 226 227 /* Record a corruption while cross-referencing. */ 228 void 229 xchk_block_xref_set_corrupt( 230 struct xfs_scrub *sc, 231 struct xfs_buf *bp) 232 { 233 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 234 trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address); 235 } 236 237 /* 238 * Record a corrupt inode. The trace data will include the block given 239 * by bp if bp is given; otherwise it will use the block location of the 240 * inode record itself. 241 */ 242 void 243 xchk_ino_set_corrupt( 244 struct xfs_scrub *sc, 245 xfs_ino_t ino) 246 { 247 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 248 trace_xchk_ino_error(sc, ino, __return_address); 249 } 250 251 /* Record a corruption while cross-referencing with an inode. */ 252 void 253 xchk_ino_xref_set_corrupt( 254 struct xfs_scrub *sc, 255 xfs_ino_t ino) 256 { 257 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 258 trace_xchk_ino_error(sc, ino, __return_address); 259 } 260 261 /* Record corruption in a block indexed by a file fork. */ 262 void 263 xchk_fblock_set_corrupt( 264 struct xfs_scrub *sc, 265 int whichfork, 266 xfs_fileoff_t offset) 267 { 268 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 269 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 270 } 271 272 /* Record a corruption while cross-referencing a fork block. */ 273 void 274 xchk_fblock_xref_set_corrupt( 275 struct xfs_scrub *sc, 276 int whichfork, 277 xfs_fileoff_t offset) 278 { 279 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT; 280 trace_xchk_fblock_error(sc, whichfork, offset, __return_address); 281 } 282 283 /* 284 * Warn about inodes that need administrative review but is not 285 * incorrect. 286 */ 287 void 288 xchk_ino_set_warning( 289 struct xfs_scrub *sc, 290 xfs_ino_t ino) 291 { 292 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 293 trace_xchk_ino_warning(sc, ino, __return_address); 294 } 295 296 /* Warn about a block indexed by a file fork that needs review. */ 297 void 298 xchk_fblock_set_warning( 299 struct xfs_scrub *sc, 300 int whichfork, 301 xfs_fileoff_t offset) 302 { 303 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING; 304 trace_xchk_fblock_warning(sc, whichfork, offset, __return_address); 305 } 306 307 /* Signal an incomplete scrub. */ 308 void 309 xchk_set_incomplete( 310 struct xfs_scrub *sc) 311 { 312 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE; 313 trace_xchk_incomplete(sc, __return_address); 314 } 315 316 /* 317 * rmap scrubbing -- compute the number of blocks with a given owner, 318 * at least according to the reverse mapping data. 319 */ 320 321 struct xchk_rmap_ownedby_info { 322 const struct xfs_owner_info *oinfo; 323 xfs_filblks_t *blocks; 324 }; 325 326 STATIC int 327 xchk_count_rmap_ownedby_irec( 328 struct xfs_btree_cur *cur, 329 const struct xfs_rmap_irec *rec, 330 void *priv) 331 { 332 struct xchk_rmap_ownedby_info *sroi = priv; 333 bool irec_attr; 334 bool oinfo_attr; 335 336 irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK; 337 oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK; 338 339 if (rec->rm_owner != sroi->oinfo->oi_owner) 340 return 0; 341 342 if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr) 343 (*sroi->blocks) += rec->rm_blockcount; 344 345 return 0; 346 } 347 348 /* 349 * Calculate the number of blocks the rmap thinks are owned by something. 350 * The caller should pass us an rmapbt cursor. 351 */ 352 int 353 xchk_count_rmap_ownedby_ag( 354 struct xfs_scrub *sc, 355 struct xfs_btree_cur *cur, 356 const struct xfs_owner_info *oinfo, 357 xfs_filblks_t *blocks) 358 { 359 struct xchk_rmap_ownedby_info sroi = { 360 .oinfo = oinfo, 361 .blocks = blocks, 362 }; 363 364 *blocks = 0; 365 return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec, 366 &sroi); 367 } 368 369 /* 370 * AG scrubbing 371 * 372 * These helpers facilitate locking an allocation group's header 373 * buffers, setting up cursors for all btrees that are present, and 374 * cleaning everything up once we're through. 375 */ 376 377 /* Decide if we want to return an AG header read failure. */ 378 static inline bool 379 want_ag_read_header_failure( 380 struct xfs_scrub *sc, 381 unsigned int type) 382 { 383 /* Return all AG header read failures when scanning btrees. */ 384 if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF && 385 sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL && 386 sc->sm->sm_type != XFS_SCRUB_TYPE_AGI) 387 return true; 388 /* 389 * If we're scanning a given type of AG header, we only want to 390 * see read failures from that specific header. We'd like the 391 * other headers to cross-check them, but this isn't required. 392 */ 393 if (sc->sm->sm_type == type) 394 return true; 395 return false; 396 } 397 398 /* 399 * Grab the perag structure and all the headers for an AG. 400 * 401 * The headers should be released by xchk_ag_free, but as a fail safe we attach 402 * all the buffers we grab to the scrub transaction so they'll all be freed 403 * when we cancel it. Returns ENOENT if we can't grab the perag structure. 404 */ 405 int 406 xchk_ag_read_headers( 407 struct xfs_scrub *sc, 408 xfs_agnumber_t agno, 409 struct xchk_ag *sa) 410 { 411 struct xfs_mount *mp = sc->mp; 412 int error; 413 414 ASSERT(!sa->pag); 415 sa->pag = xfs_perag_get(mp, agno); 416 if (!sa->pag) 417 return -ENOENT; 418 419 error = xfs_ialloc_read_agi(sa->pag, sc->tp, &sa->agi_bp); 420 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI)) 421 return error; 422 423 error = xfs_alloc_read_agf(sa->pag, sc->tp, 0, &sa->agf_bp); 424 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF)) 425 return error; 426 427 error = xfs_alloc_read_agfl(sa->pag, sc->tp, &sa->agfl_bp); 428 if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL)) 429 return error; 430 431 return 0; 432 } 433 434 /* Release all the AG btree cursors. */ 435 void 436 xchk_ag_btcur_free( 437 struct xchk_ag *sa) 438 { 439 if (sa->refc_cur) 440 xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR); 441 if (sa->rmap_cur) 442 xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR); 443 if (sa->fino_cur) 444 xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR); 445 if (sa->ino_cur) 446 xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR); 447 if (sa->cnt_cur) 448 xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR); 449 if (sa->bno_cur) 450 xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR); 451 452 sa->refc_cur = NULL; 453 sa->rmap_cur = NULL; 454 sa->fino_cur = NULL; 455 sa->ino_cur = NULL; 456 sa->bno_cur = NULL; 457 sa->cnt_cur = NULL; 458 } 459 460 /* Initialize all the btree cursors for an AG. */ 461 void 462 xchk_ag_btcur_init( 463 struct xfs_scrub *sc, 464 struct xchk_ag *sa) 465 { 466 struct xfs_mount *mp = sc->mp; 467 468 if (sa->agf_bp && 469 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) { 470 /* Set up a bnobt cursor for cross-referencing. */ 471 sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 472 sa->pag, XFS_BTNUM_BNO); 473 } 474 475 if (sa->agf_bp && 476 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) { 477 /* Set up a cntbt cursor for cross-referencing. */ 478 sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp, 479 sa->pag, XFS_BTNUM_CNT); 480 } 481 482 /* Set up a inobt cursor for cross-referencing. */ 483 if (sa->agi_bp && 484 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) { 485 sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 486 sa->pag, XFS_BTNUM_INO); 487 } 488 489 /* Set up a finobt cursor for cross-referencing. */ 490 if (sa->agi_bp && xfs_has_finobt(mp) && 491 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) { 492 sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp, 493 sa->pag, XFS_BTNUM_FINO); 494 } 495 496 /* Set up a rmapbt cursor for cross-referencing. */ 497 if (sa->agf_bp && xfs_has_rmapbt(mp) && 498 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) { 499 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 500 sa->pag); 501 } 502 503 /* Set up a refcountbt cursor for cross-referencing. */ 504 if (sa->agf_bp && xfs_has_reflink(mp) && 505 xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) { 506 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 507 sa->agf_bp, sa->pag); 508 } 509 } 510 511 /* Release the AG header context and btree cursors. */ 512 void 513 xchk_ag_free( 514 struct xfs_scrub *sc, 515 struct xchk_ag *sa) 516 { 517 xchk_ag_btcur_free(sa); 518 if (sa->agfl_bp) { 519 xfs_trans_brelse(sc->tp, sa->agfl_bp); 520 sa->agfl_bp = NULL; 521 } 522 if (sa->agf_bp) { 523 xfs_trans_brelse(sc->tp, sa->agf_bp); 524 sa->agf_bp = NULL; 525 } 526 if (sa->agi_bp) { 527 xfs_trans_brelse(sc->tp, sa->agi_bp); 528 sa->agi_bp = NULL; 529 } 530 if (sa->pag) { 531 xfs_perag_put(sa->pag); 532 sa->pag = NULL; 533 } 534 } 535 536 /* 537 * For scrub, grab the perag structure, the AGI, and the AGF headers, in that 538 * order. Locking order requires us to get the AGI before the AGF. We use the 539 * transaction to avoid deadlocking on crosslinked metadata buffers; either the 540 * caller passes one in (bmap scrub) or we have to create a transaction 541 * ourselves. Returns ENOENT if the perag struct cannot be grabbed. 542 */ 543 int 544 xchk_ag_init( 545 struct xfs_scrub *sc, 546 xfs_agnumber_t agno, 547 struct xchk_ag *sa) 548 { 549 int error; 550 551 error = xchk_ag_read_headers(sc, agno, sa); 552 if (error) 553 return error; 554 555 xchk_ag_btcur_init(sc, sa); 556 return 0; 557 } 558 559 /* Per-scrubber setup functions */ 560 561 /* 562 * Grab an empty transaction so that we can re-grab locked buffers if 563 * one of our btrees turns out to be cyclic. 564 * 565 * If we're going to repair something, we need to ask for the largest possible 566 * log reservation so that we can handle the worst case scenario for metadata 567 * updates while rebuilding a metadata item. We also need to reserve as many 568 * blocks in the head transaction as we think we're going to need to rebuild 569 * the metadata object. 570 */ 571 int 572 xchk_trans_alloc( 573 struct xfs_scrub *sc, 574 uint resblks) 575 { 576 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) 577 return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate, 578 resblks, 0, 0, &sc->tp); 579 580 return xfs_trans_alloc_empty(sc->mp, &sc->tp); 581 } 582 583 /* Set us up with a transaction and an empty context. */ 584 int 585 xchk_setup_fs( 586 struct xfs_scrub *sc) 587 { 588 uint resblks; 589 590 resblks = xrep_calc_ag_resblks(sc); 591 return xchk_trans_alloc(sc, resblks); 592 } 593 594 /* Set us up with AG headers and btree cursors. */ 595 int 596 xchk_setup_ag_btree( 597 struct xfs_scrub *sc, 598 bool force_log) 599 { 600 struct xfs_mount *mp = sc->mp; 601 int error; 602 603 /* 604 * If the caller asks us to checkpont the log, do so. This 605 * expensive operation should be performed infrequently and only 606 * as a last resort. Any caller that sets force_log should 607 * document why they need to do so. 608 */ 609 if (force_log) { 610 error = xchk_checkpoint_log(mp); 611 if (error) 612 return error; 613 } 614 615 error = xchk_setup_fs(sc); 616 if (error) 617 return error; 618 619 return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa); 620 } 621 622 /* Push everything out of the log onto disk. */ 623 int 624 xchk_checkpoint_log( 625 struct xfs_mount *mp) 626 { 627 int error; 628 629 error = xfs_log_force(mp, XFS_LOG_SYNC); 630 if (error) 631 return error; 632 xfs_ail_push_all_sync(mp->m_ail); 633 return 0; 634 } 635 636 /* 637 * Given an inode and the scrub control structure, grab either the 638 * inode referenced in the control structure or the inode passed in. 639 * The inode is not locked. 640 */ 641 int 642 xchk_get_inode( 643 struct xfs_scrub *sc) 644 { 645 struct xfs_imap imap; 646 struct xfs_mount *mp = sc->mp; 647 struct xfs_inode *ip_in = XFS_I(file_inode(sc->file)); 648 struct xfs_inode *ip = NULL; 649 int error; 650 651 /* We want to scan the inode we already had opened. */ 652 if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) { 653 sc->ip = ip_in; 654 return 0; 655 } 656 657 /* Look up the inode, see if the generation number matches. */ 658 if (xfs_internal_inum(mp, sc->sm->sm_ino)) 659 return -ENOENT; 660 error = xfs_iget(mp, NULL, sc->sm->sm_ino, 661 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip); 662 switch (error) { 663 case -ENOENT: 664 /* Inode doesn't exist, just bail out. */ 665 return error; 666 case 0: 667 /* Got an inode, continue. */ 668 break; 669 case -EINVAL: 670 /* 671 * -EINVAL with IGET_UNTRUSTED could mean one of several 672 * things: userspace gave us an inode number that doesn't 673 * correspond to fs space, or doesn't have an inobt entry; 674 * or it could simply mean that the inode buffer failed the 675 * read verifiers. 676 * 677 * Try just the inode mapping lookup -- if it succeeds, then 678 * the inode buffer verifier failed and something needs fixing. 679 * Otherwise, we really couldn't find it so tell userspace 680 * that it no longer exists. 681 */ 682 error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap, 683 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE); 684 if (error) 685 return -ENOENT; 686 error = -EFSCORRUPTED; 687 fallthrough; 688 default: 689 trace_xchk_op_error(sc, 690 XFS_INO_TO_AGNO(mp, sc->sm->sm_ino), 691 XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino), 692 error, __return_address); 693 return error; 694 } 695 if (VFS_I(ip)->i_generation != sc->sm->sm_gen) { 696 xfs_irele(ip); 697 return -ENOENT; 698 } 699 700 sc->ip = ip; 701 return 0; 702 } 703 704 /* Set us up to scrub a file's contents. */ 705 int 706 xchk_setup_inode_contents( 707 struct xfs_scrub *sc, 708 unsigned int resblks) 709 { 710 int error; 711 712 error = xchk_get_inode(sc); 713 if (error) 714 return error; 715 716 /* Got the inode, lock it and we're ready to go. */ 717 sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 718 xfs_ilock(sc->ip, sc->ilock_flags); 719 error = xchk_trans_alloc(sc, resblks); 720 if (error) 721 goto out; 722 sc->ilock_flags |= XFS_ILOCK_EXCL; 723 xfs_ilock(sc->ip, XFS_ILOCK_EXCL); 724 725 out: 726 /* scrub teardown will unlock and release the inode for us */ 727 return error; 728 } 729 730 /* 731 * Predicate that decides if we need to evaluate the cross-reference check. 732 * If there was an error accessing the cross-reference btree, just delete 733 * the cursor and skip the check. 734 */ 735 bool 736 xchk_should_check_xref( 737 struct xfs_scrub *sc, 738 int *error, 739 struct xfs_btree_cur **curpp) 740 { 741 /* No point in xref if we already know we're corrupt. */ 742 if (xchk_skip_xref(sc->sm)) 743 return false; 744 745 if (*error == 0) 746 return true; 747 748 if (curpp) { 749 /* If we've already given up on xref, just bail out. */ 750 if (!*curpp) 751 return false; 752 753 /* xref error, delete cursor and bail out. */ 754 xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR); 755 *curpp = NULL; 756 } 757 758 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL; 759 trace_xchk_xref_error(sc, *error, __return_address); 760 761 /* 762 * Errors encountered during cross-referencing with another 763 * data structure should not cause this scrubber to abort. 764 */ 765 *error = 0; 766 return false; 767 } 768 769 /* Run the structure verifiers on in-memory buffers to detect bad memory. */ 770 void 771 xchk_buffer_recheck( 772 struct xfs_scrub *sc, 773 struct xfs_buf *bp) 774 { 775 xfs_failaddr_t fa; 776 777 if (bp->b_ops == NULL) { 778 xchk_block_set_corrupt(sc, bp); 779 return; 780 } 781 if (bp->b_ops->verify_struct == NULL) { 782 xchk_set_incomplete(sc); 783 return; 784 } 785 fa = bp->b_ops->verify_struct(bp); 786 if (!fa) 787 return; 788 sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT; 789 trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa); 790 } 791 792 /* 793 * Scrub the attr/data forks of a metadata inode. The metadata inode must be 794 * pointed to by sc->ip and the ILOCK must be held. 795 */ 796 int 797 xchk_metadata_inode_forks( 798 struct xfs_scrub *sc) 799 { 800 __u32 smtype; 801 bool shared; 802 int error; 803 804 if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT) 805 return 0; 806 807 /* Metadata inodes don't live on the rt device. */ 808 if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) { 809 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 810 return 0; 811 } 812 813 /* They should never participate in reflink. */ 814 if (xfs_is_reflink_inode(sc->ip)) { 815 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 816 return 0; 817 } 818 819 /* They also should never have extended attributes. */ 820 if (xfs_inode_hasattr(sc->ip)) { 821 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 822 return 0; 823 } 824 825 /* Invoke the data fork scrubber. */ 826 smtype = sc->sm->sm_type; 827 sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD; 828 error = xchk_bmap_data(sc); 829 sc->sm->sm_type = smtype; 830 if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)) 831 return error; 832 833 /* Look for incorrect shared blocks. */ 834 if (xfs_has_reflink(sc->mp)) { 835 error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip, 836 &shared); 837 if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0, 838 &error)) 839 return error; 840 if (shared) 841 xchk_ino_set_corrupt(sc, sc->ip->i_ino); 842 } 843 844 return error; 845 } 846 847 /* 848 * Try to lock an inode in violation of the usual locking order rules. For 849 * example, trying to get the IOLOCK while in transaction context, or just 850 * plain breaking AG-order or inode-order inode locking rules. Either way, 851 * the only way to avoid an ABBA deadlock is to use trylock and back off if 852 * we can't. 853 */ 854 int 855 xchk_ilock_inverted( 856 struct xfs_inode *ip, 857 uint lock_mode) 858 { 859 int i; 860 861 for (i = 0; i < 20; i++) { 862 if (xfs_ilock_nowait(ip, lock_mode)) 863 return 0; 864 delay(1); 865 } 866 return -EDEADLOCK; 867 } 868 869 /* Pause background reaping of resources. */ 870 void 871 xchk_stop_reaping( 872 struct xfs_scrub *sc) 873 { 874 sc->flags |= XCHK_REAPING_DISABLED; 875 xfs_blockgc_stop(sc->mp); 876 xfs_inodegc_stop(sc->mp); 877 } 878 879 /* Restart background reaping of resources. */ 880 void 881 xchk_start_reaping( 882 struct xfs_scrub *sc) 883 { 884 /* 885 * Readonly filesystems do not perform inactivation or speculative 886 * preallocation, so there's no need to restart the workers. 887 */ 888 if (!xfs_is_readonly(sc->mp)) { 889 xfs_inodegc_start(sc->mp); 890 xfs_blockgc_start(sc->mp); 891 } 892 sc->flags &= ~XCHK_REAPING_DISABLED; 893 } 894