xref: /openbmc/linux/fs/xfs/scrub/common.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_btree.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode.h"
16 #include "xfs_icache.h"
17 #include "xfs_alloc.h"
18 #include "xfs_alloc_btree.h"
19 #include "xfs_ialloc.h"
20 #include "xfs_ialloc_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_rmap.h"
23 #include "xfs_rmap_btree.h"
24 #include "xfs_log.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_attr.h"
27 #include "xfs_reflink.h"
28 #include "xfs_ag.h"
29 #include "scrub/scrub.h"
30 #include "scrub/common.h"
31 #include "scrub/trace.h"
32 #include "scrub/repair.h"
33 #include "scrub/health.h"
34 
35 /* Common code for the metadata scrubbers. */
36 
37 /*
38  * Handling operational errors.
39  *
40  * The *_process_error() family of functions are used to process error return
41  * codes from functions called as part of a scrub operation.
42  *
43  * If there's no error, we return true to tell the caller that it's ok
44  * to move on to the next check in its list.
45  *
46  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
47  * caller that something bad happened, and we preserve *error so that
48  * the caller can return the *error up the stack to userspace.
49  *
50  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
51  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
52  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
53  * not via return codes.  We return false to tell the caller that
54  * something bad happened.  Since the error has been cleared, the caller
55  * will (presumably) return that zero and scrubbing will move on to
56  * whatever's next.
57  *
58  * ftrace can be used to record the precise metadata location and the
59  * approximate code location of the failed operation.
60  */
61 
62 /* Check for operational errors. */
63 static bool
64 __xchk_process_error(
65 	struct xfs_scrub	*sc,
66 	xfs_agnumber_t		agno,
67 	xfs_agblock_t		bno,
68 	int			*error,
69 	__u32			errflag,
70 	void			*ret_ip)
71 {
72 	switch (*error) {
73 	case 0:
74 		return true;
75 	case -EDEADLOCK:
76 		/* Used to restart an op with deadlock avoidance. */
77 		trace_xchk_deadlock_retry(
78 				sc->ip ? sc->ip : XFS_I(file_inode(sc->file)),
79 				sc->sm, *error);
80 		break;
81 	case -EFSBADCRC:
82 	case -EFSCORRUPTED:
83 		/* Note the badness but don't abort. */
84 		sc->sm->sm_flags |= errflag;
85 		*error = 0;
86 		fallthrough;
87 	default:
88 		trace_xchk_op_error(sc, agno, bno, *error,
89 				ret_ip);
90 		break;
91 	}
92 	return false;
93 }
94 
95 bool
96 xchk_process_error(
97 	struct xfs_scrub	*sc,
98 	xfs_agnumber_t		agno,
99 	xfs_agblock_t		bno,
100 	int			*error)
101 {
102 	return __xchk_process_error(sc, agno, bno, error,
103 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
104 }
105 
106 bool
107 xchk_xref_process_error(
108 	struct xfs_scrub	*sc,
109 	xfs_agnumber_t		agno,
110 	xfs_agblock_t		bno,
111 	int			*error)
112 {
113 	return __xchk_process_error(sc, agno, bno, error,
114 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
115 }
116 
117 /* Check for operational errors for a file offset. */
118 static bool
119 __xchk_fblock_process_error(
120 	struct xfs_scrub	*sc,
121 	int			whichfork,
122 	xfs_fileoff_t		offset,
123 	int			*error,
124 	__u32			errflag,
125 	void			*ret_ip)
126 {
127 	switch (*error) {
128 	case 0:
129 		return true;
130 	case -EDEADLOCK:
131 		/* Used to restart an op with deadlock avoidance. */
132 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
133 		break;
134 	case -EFSBADCRC:
135 	case -EFSCORRUPTED:
136 		/* Note the badness but don't abort. */
137 		sc->sm->sm_flags |= errflag;
138 		*error = 0;
139 		fallthrough;
140 	default:
141 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
142 				ret_ip);
143 		break;
144 	}
145 	return false;
146 }
147 
148 bool
149 xchk_fblock_process_error(
150 	struct xfs_scrub	*sc,
151 	int			whichfork,
152 	xfs_fileoff_t		offset,
153 	int			*error)
154 {
155 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
156 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
157 }
158 
159 bool
160 xchk_fblock_xref_process_error(
161 	struct xfs_scrub	*sc,
162 	int			whichfork,
163 	xfs_fileoff_t		offset,
164 	int			*error)
165 {
166 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
167 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
168 }
169 
170 /*
171  * Handling scrub corruption/optimization/warning checks.
172  *
173  * The *_set_{corrupt,preen,warning}() family of functions are used to
174  * record the presence of metadata that is incorrect (corrupt), could be
175  * optimized somehow (preen), or should be flagged for administrative
176  * review but is not incorrect (warn).
177  *
178  * ftrace can be used to record the precise metadata location and
179  * approximate code location of the failed check.
180  */
181 
182 /* Record a block which could be optimized. */
183 void
184 xchk_block_set_preen(
185 	struct xfs_scrub	*sc,
186 	struct xfs_buf		*bp)
187 {
188 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
189 	trace_xchk_block_preen(sc, xfs_buf_daddr(bp), __return_address);
190 }
191 
192 /*
193  * Record an inode which could be optimized.  The trace data will
194  * include the block given by bp if bp is given; otherwise it will use
195  * the block location of the inode record itself.
196  */
197 void
198 xchk_ino_set_preen(
199 	struct xfs_scrub	*sc,
200 	xfs_ino_t		ino)
201 {
202 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
203 	trace_xchk_ino_preen(sc, ino, __return_address);
204 }
205 
206 /* Record something being wrong with the filesystem primary superblock. */
207 void
208 xchk_set_corrupt(
209 	struct xfs_scrub	*sc)
210 {
211 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
212 	trace_xchk_fs_error(sc, 0, __return_address);
213 }
214 
215 /* Record a corrupt block. */
216 void
217 xchk_block_set_corrupt(
218 	struct xfs_scrub	*sc,
219 	struct xfs_buf		*bp)
220 {
221 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
222 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
223 }
224 
225 /* Record a corruption while cross-referencing. */
226 void
227 xchk_block_xref_set_corrupt(
228 	struct xfs_scrub	*sc,
229 	struct xfs_buf		*bp)
230 {
231 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
232 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), __return_address);
233 }
234 
235 /*
236  * Record a corrupt inode.  The trace data will include the block given
237  * by bp if bp is given; otherwise it will use the block location of the
238  * inode record itself.
239  */
240 void
241 xchk_ino_set_corrupt(
242 	struct xfs_scrub	*sc,
243 	xfs_ino_t		ino)
244 {
245 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
246 	trace_xchk_ino_error(sc, ino, __return_address);
247 }
248 
249 /* Record a corruption while cross-referencing with an inode. */
250 void
251 xchk_ino_xref_set_corrupt(
252 	struct xfs_scrub	*sc,
253 	xfs_ino_t		ino)
254 {
255 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
256 	trace_xchk_ino_error(sc, ino, __return_address);
257 }
258 
259 /* Record corruption in a block indexed by a file fork. */
260 void
261 xchk_fblock_set_corrupt(
262 	struct xfs_scrub	*sc,
263 	int			whichfork,
264 	xfs_fileoff_t		offset)
265 {
266 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
267 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
268 }
269 
270 /* Record a corruption while cross-referencing a fork block. */
271 void
272 xchk_fblock_xref_set_corrupt(
273 	struct xfs_scrub	*sc,
274 	int			whichfork,
275 	xfs_fileoff_t		offset)
276 {
277 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
278 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
279 }
280 
281 /*
282  * Warn about inodes that need administrative review but is not
283  * incorrect.
284  */
285 void
286 xchk_ino_set_warning(
287 	struct xfs_scrub	*sc,
288 	xfs_ino_t		ino)
289 {
290 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
291 	trace_xchk_ino_warning(sc, ino, __return_address);
292 }
293 
294 /* Warn about a block indexed by a file fork that needs review. */
295 void
296 xchk_fblock_set_warning(
297 	struct xfs_scrub	*sc,
298 	int			whichfork,
299 	xfs_fileoff_t		offset)
300 {
301 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
302 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
303 }
304 
305 /* Signal an incomplete scrub. */
306 void
307 xchk_set_incomplete(
308 	struct xfs_scrub	*sc)
309 {
310 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
311 	trace_xchk_incomplete(sc, __return_address);
312 }
313 
314 /*
315  * rmap scrubbing -- compute the number of blocks with a given owner,
316  * at least according to the reverse mapping data.
317  */
318 
319 struct xchk_rmap_ownedby_info {
320 	const struct xfs_owner_info	*oinfo;
321 	xfs_filblks_t			*blocks;
322 };
323 
324 STATIC int
325 xchk_count_rmap_ownedby_irec(
326 	struct xfs_btree_cur		*cur,
327 	const struct xfs_rmap_irec	*rec,
328 	void				*priv)
329 {
330 	struct xchk_rmap_ownedby_info	*sroi = priv;
331 	bool				irec_attr;
332 	bool				oinfo_attr;
333 
334 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
335 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
336 
337 	if (rec->rm_owner != sroi->oinfo->oi_owner)
338 		return 0;
339 
340 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
341 		(*sroi->blocks) += rec->rm_blockcount;
342 
343 	return 0;
344 }
345 
346 /*
347  * Calculate the number of blocks the rmap thinks are owned by something.
348  * The caller should pass us an rmapbt cursor.
349  */
350 int
351 xchk_count_rmap_ownedby_ag(
352 	struct xfs_scrub		*sc,
353 	struct xfs_btree_cur		*cur,
354 	const struct xfs_owner_info	*oinfo,
355 	xfs_filblks_t			*blocks)
356 {
357 	struct xchk_rmap_ownedby_info	sroi = {
358 		.oinfo			= oinfo,
359 		.blocks			= blocks,
360 	};
361 
362 	*blocks = 0;
363 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
364 			&sroi);
365 }
366 
367 /*
368  * AG scrubbing
369  *
370  * These helpers facilitate locking an allocation group's header
371  * buffers, setting up cursors for all btrees that are present, and
372  * cleaning everything up once we're through.
373  */
374 
375 /* Decide if we want to return an AG header read failure. */
376 static inline bool
377 want_ag_read_header_failure(
378 	struct xfs_scrub	*sc,
379 	unsigned int		type)
380 {
381 	/* Return all AG header read failures when scanning btrees. */
382 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
383 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
384 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
385 		return true;
386 	/*
387 	 * If we're scanning a given type of AG header, we only want to
388 	 * see read failures from that specific header.  We'd like the
389 	 * other headers to cross-check them, but this isn't required.
390 	 */
391 	if (sc->sm->sm_type == type)
392 		return true;
393 	return false;
394 }
395 
396 /*
397  * Grab the perag structure and all the headers for an AG.
398  *
399  * The headers should be released by xchk_ag_free, but as a fail safe we attach
400  * all the buffers we grab to the scrub transaction so they'll all be freed
401  * when we cancel it.  Returns ENOENT if we can't grab the perag structure.
402  */
403 int
404 xchk_ag_read_headers(
405 	struct xfs_scrub	*sc,
406 	xfs_agnumber_t		agno,
407 	struct xchk_ag		*sa)
408 {
409 	struct xfs_mount	*mp = sc->mp;
410 	int			error;
411 
412 	ASSERT(!sa->pag);
413 	sa->pag = xfs_perag_get(mp, agno);
414 	if (!sa->pag)
415 		return -ENOENT;
416 
417 	error = xfs_ialloc_read_agi(mp, sc->tp, agno, &sa->agi_bp);
418 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
419 		return error;
420 
421 	error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, &sa->agf_bp);
422 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
423 		return error;
424 
425 	error = xfs_alloc_read_agfl(mp, sc->tp, agno, &sa->agfl_bp);
426 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL))
427 		return error;
428 
429 	return 0;
430 }
431 
432 /* Release all the AG btree cursors. */
433 void
434 xchk_ag_btcur_free(
435 	struct xchk_ag		*sa)
436 {
437 	if (sa->refc_cur)
438 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
439 	if (sa->rmap_cur)
440 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
441 	if (sa->fino_cur)
442 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
443 	if (sa->ino_cur)
444 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
445 	if (sa->cnt_cur)
446 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
447 	if (sa->bno_cur)
448 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
449 
450 	sa->refc_cur = NULL;
451 	sa->rmap_cur = NULL;
452 	sa->fino_cur = NULL;
453 	sa->ino_cur = NULL;
454 	sa->bno_cur = NULL;
455 	sa->cnt_cur = NULL;
456 }
457 
458 /* Initialize all the btree cursors for an AG. */
459 void
460 xchk_ag_btcur_init(
461 	struct xfs_scrub	*sc,
462 	struct xchk_ag		*sa)
463 {
464 	struct xfs_mount	*mp = sc->mp;
465 
466 	if (sa->agf_bp &&
467 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_BNO)) {
468 		/* Set up a bnobt cursor for cross-referencing. */
469 		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
470 				sa->pag, XFS_BTNUM_BNO);
471 	}
472 
473 	if (sa->agf_bp &&
474 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_CNT)) {
475 		/* Set up a cntbt cursor for cross-referencing. */
476 		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
477 				sa->pag, XFS_BTNUM_CNT);
478 	}
479 
480 	/* Set up a inobt cursor for cross-referencing. */
481 	if (sa->agi_bp &&
482 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_INO)) {
483 		sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
484 				sa->pag, XFS_BTNUM_INO);
485 	}
486 
487 	/* Set up a finobt cursor for cross-referencing. */
488 	if (sa->agi_bp && xfs_has_finobt(mp) &&
489 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_FINO)) {
490 		sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
491 				sa->pag, XFS_BTNUM_FINO);
492 	}
493 
494 	/* Set up a rmapbt cursor for cross-referencing. */
495 	if (sa->agf_bp && xfs_has_rmapbt(mp) &&
496 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_RMAP)) {
497 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
498 				sa->pag);
499 	}
500 
501 	/* Set up a refcountbt cursor for cross-referencing. */
502 	if (sa->agf_bp && xfs_has_reflink(mp) &&
503 	    xchk_ag_btree_healthy_enough(sc, sa->pag, XFS_BTNUM_REFC)) {
504 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
505 				sa->agf_bp, sa->pag);
506 	}
507 }
508 
509 /* Release the AG header context and btree cursors. */
510 void
511 xchk_ag_free(
512 	struct xfs_scrub	*sc,
513 	struct xchk_ag		*sa)
514 {
515 	xchk_ag_btcur_free(sa);
516 	if (sa->agfl_bp) {
517 		xfs_trans_brelse(sc->tp, sa->agfl_bp);
518 		sa->agfl_bp = NULL;
519 	}
520 	if (sa->agf_bp) {
521 		xfs_trans_brelse(sc->tp, sa->agf_bp);
522 		sa->agf_bp = NULL;
523 	}
524 	if (sa->agi_bp) {
525 		xfs_trans_brelse(sc->tp, sa->agi_bp);
526 		sa->agi_bp = NULL;
527 	}
528 	if (sa->pag) {
529 		xfs_perag_put(sa->pag);
530 		sa->pag = NULL;
531 	}
532 }
533 
534 /*
535  * For scrub, grab the perag structure, the AGI, and the AGF headers, in that
536  * order.  Locking order requires us to get the AGI before the AGF.  We use the
537  * transaction to avoid deadlocking on crosslinked metadata buffers; either the
538  * caller passes one in (bmap scrub) or we have to create a transaction
539  * ourselves.  Returns ENOENT if the perag struct cannot be grabbed.
540  */
541 int
542 xchk_ag_init(
543 	struct xfs_scrub	*sc,
544 	xfs_agnumber_t		agno,
545 	struct xchk_ag		*sa)
546 {
547 	int			error;
548 
549 	error = xchk_ag_read_headers(sc, agno, sa);
550 	if (error)
551 		return error;
552 
553 	xchk_ag_btcur_init(sc, sa);
554 	return 0;
555 }
556 
557 /* Per-scrubber setup functions */
558 
559 /*
560  * Grab an empty transaction so that we can re-grab locked buffers if
561  * one of our btrees turns out to be cyclic.
562  *
563  * If we're going to repair something, we need to ask for the largest possible
564  * log reservation so that we can handle the worst case scenario for metadata
565  * updates while rebuilding a metadata item.  We also need to reserve as many
566  * blocks in the head transaction as we think we're going to need to rebuild
567  * the metadata object.
568  */
569 int
570 xchk_trans_alloc(
571 	struct xfs_scrub	*sc,
572 	uint			resblks)
573 {
574 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
575 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
576 				resblks, 0, 0, &sc->tp);
577 
578 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
579 }
580 
581 /* Set us up with a transaction and an empty context. */
582 int
583 xchk_setup_fs(
584 	struct xfs_scrub	*sc)
585 {
586 	uint			resblks;
587 
588 	resblks = xrep_calc_ag_resblks(sc);
589 	return xchk_trans_alloc(sc, resblks);
590 }
591 
592 /* Set us up with AG headers and btree cursors. */
593 int
594 xchk_setup_ag_btree(
595 	struct xfs_scrub	*sc,
596 	bool			force_log)
597 {
598 	struct xfs_mount	*mp = sc->mp;
599 	int			error;
600 
601 	/*
602 	 * If the caller asks us to checkpont the log, do so.  This
603 	 * expensive operation should be performed infrequently and only
604 	 * as a last resort.  Any caller that sets force_log should
605 	 * document why they need to do so.
606 	 */
607 	if (force_log) {
608 		error = xchk_checkpoint_log(mp);
609 		if (error)
610 			return error;
611 	}
612 
613 	error = xchk_setup_fs(sc);
614 	if (error)
615 		return error;
616 
617 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
618 }
619 
620 /* Push everything out of the log onto disk. */
621 int
622 xchk_checkpoint_log(
623 	struct xfs_mount	*mp)
624 {
625 	int			error;
626 
627 	error = xfs_log_force(mp, XFS_LOG_SYNC);
628 	if (error)
629 		return error;
630 	xfs_ail_push_all_sync(mp->m_ail);
631 	return 0;
632 }
633 
634 /*
635  * Given an inode and the scrub control structure, grab either the
636  * inode referenced in the control structure or the inode passed in.
637  * The inode is not locked.
638  */
639 int
640 xchk_get_inode(
641 	struct xfs_scrub	*sc)
642 {
643 	struct xfs_imap		imap;
644 	struct xfs_mount	*mp = sc->mp;
645 	struct xfs_inode	*ip_in = XFS_I(file_inode(sc->file));
646 	struct xfs_inode	*ip = NULL;
647 	int			error;
648 
649 	/* We want to scan the inode we already had opened. */
650 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) {
651 		sc->ip = ip_in;
652 		return 0;
653 	}
654 
655 	/* Look up the inode, see if the generation number matches. */
656 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
657 		return -ENOENT;
658 	error = xfs_iget(mp, NULL, sc->sm->sm_ino,
659 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip);
660 	switch (error) {
661 	case -ENOENT:
662 		/* Inode doesn't exist, just bail out. */
663 		return error;
664 	case 0:
665 		/* Got an inode, continue. */
666 		break;
667 	case -EINVAL:
668 		/*
669 		 * -EINVAL with IGET_UNTRUSTED could mean one of several
670 		 * things: userspace gave us an inode number that doesn't
671 		 * correspond to fs space, or doesn't have an inobt entry;
672 		 * or it could simply mean that the inode buffer failed the
673 		 * read verifiers.
674 		 *
675 		 * Try just the inode mapping lookup -- if it succeeds, then
676 		 * the inode buffer verifier failed and something needs fixing.
677 		 * Otherwise, we really couldn't find it so tell userspace
678 		 * that it no longer exists.
679 		 */
680 		error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap,
681 				XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE);
682 		if (error)
683 			return -ENOENT;
684 		error = -EFSCORRUPTED;
685 		fallthrough;
686 	default:
687 		trace_xchk_op_error(sc,
688 				XFS_INO_TO_AGNO(mp, sc->sm->sm_ino),
689 				XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
690 				error, __return_address);
691 		return error;
692 	}
693 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
694 		xfs_irele(ip);
695 		return -ENOENT;
696 	}
697 
698 	sc->ip = ip;
699 	return 0;
700 }
701 
702 /* Set us up to scrub a file's contents. */
703 int
704 xchk_setup_inode_contents(
705 	struct xfs_scrub	*sc,
706 	unsigned int		resblks)
707 {
708 	int			error;
709 
710 	error = xchk_get_inode(sc);
711 	if (error)
712 		return error;
713 
714 	/* Got the inode, lock it and we're ready to go. */
715 	sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
716 	xfs_ilock(sc->ip, sc->ilock_flags);
717 	error = xchk_trans_alloc(sc, resblks);
718 	if (error)
719 		goto out;
720 	sc->ilock_flags |= XFS_ILOCK_EXCL;
721 	xfs_ilock(sc->ip, XFS_ILOCK_EXCL);
722 
723 out:
724 	/* scrub teardown will unlock and release the inode for us */
725 	return error;
726 }
727 
728 /*
729  * Predicate that decides if we need to evaluate the cross-reference check.
730  * If there was an error accessing the cross-reference btree, just delete
731  * the cursor and skip the check.
732  */
733 bool
734 xchk_should_check_xref(
735 	struct xfs_scrub	*sc,
736 	int			*error,
737 	struct xfs_btree_cur	**curpp)
738 {
739 	/* No point in xref if we already know we're corrupt. */
740 	if (xchk_skip_xref(sc->sm))
741 		return false;
742 
743 	if (*error == 0)
744 		return true;
745 
746 	if (curpp) {
747 		/* If we've already given up on xref, just bail out. */
748 		if (!*curpp)
749 			return false;
750 
751 		/* xref error, delete cursor and bail out. */
752 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
753 		*curpp = NULL;
754 	}
755 
756 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
757 	trace_xchk_xref_error(sc, *error, __return_address);
758 
759 	/*
760 	 * Errors encountered during cross-referencing with another
761 	 * data structure should not cause this scrubber to abort.
762 	 */
763 	*error = 0;
764 	return false;
765 }
766 
767 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
768 void
769 xchk_buffer_recheck(
770 	struct xfs_scrub	*sc,
771 	struct xfs_buf		*bp)
772 {
773 	xfs_failaddr_t		fa;
774 
775 	if (bp->b_ops == NULL) {
776 		xchk_block_set_corrupt(sc, bp);
777 		return;
778 	}
779 	if (bp->b_ops->verify_struct == NULL) {
780 		xchk_set_incomplete(sc);
781 		return;
782 	}
783 	fa = bp->b_ops->verify_struct(bp);
784 	if (!fa)
785 		return;
786 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
787 	trace_xchk_block_error(sc, xfs_buf_daddr(bp), fa);
788 }
789 
790 /*
791  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
792  * pointed to by sc->ip and the ILOCK must be held.
793  */
794 int
795 xchk_metadata_inode_forks(
796 	struct xfs_scrub	*sc)
797 {
798 	__u32			smtype;
799 	bool			shared;
800 	int			error;
801 
802 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
803 		return 0;
804 
805 	/* Metadata inodes don't live on the rt device. */
806 	if (sc->ip->i_diflags & XFS_DIFLAG_REALTIME) {
807 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
808 		return 0;
809 	}
810 
811 	/* They should never participate in reflink. */
812 	if (xfs_is_reflink_inode(sc->ip)) {
813 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
814 		return 0;
815 	}
816 
817 	/* They also should never have extended attributes. */
818 	if (xfs_inode_hasattr(sc->ip)) {
819 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
820 		return 0;
821 	}
822 
823 	/* Invoke the data fork scrubber. */
824 	smtype = sc->sm->sm_type;
825 	sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
826 	error = xchk_bmap_data(sc);
827 	sc->sm->sm_type = smtype;
828 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
829 		return error;
830 
831 	/* Look for incorrect shared blocks. */
832 	if (xfs_has_reflink(sc->mp)) {
833 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
834 				&shared);
835 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
836 				&error))
837 			return error;
838 		if (shared)
839 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
840 	}
841 
842 	return error;
843 }
844 
845 /*
846  * Try to lock an inode in violation of the usual locking order rules.  For
847  * example, trying to get the IOLOCK while in transaction context, or just
848  * plain breaking AG-order or inode-order inode locking rules.  Either way,
849  * the only way to avoid an ABBA deadlock is to use trylock and back off if
850  * we can't.
851  */
852 int
853 xchk_ilock_inverted(
854 	struct xfs_inode	*ip,
855 	uint			lock_mode)
856 {
857 	int			i;
858 
859 	for (i = 0; i < 20; i++) {
860 		if (xfs_ilock_nowait(ip, lock_mode))
861 			return 0;
862 		delay(1);
863 	}
864 	return -EDEADLOCK;
865 }
866 
867 /* Pause background reaping of resources. */
868 void
869 xchk_stop_reaping(
870 	struct xfs_scrub	*sc)
871 {
872 	sc->flags |= XCHK_REAPING_DISABLED;
873 	xfs_blockgc_stop(sc->mp);
874 	xfs_inodegc_stop(sc->mp);
875 }
876 
877 /* Restart background reaping of resources. */
878 void
879 xchk_start_reaping(
880 	struct xfs_scrub	*sc)
881 {
882 	/*
883 	 * Readonly filesystems do not perform inactivation or speculative
884 	 * preallocation, so there's no need to restart the workers.
885 	 */
886 	if (!xfs_is_readonly(sc->mp)) {
887 		xfs_inodegc_start(sc->mp);
888 		xfs_blockgc_start(sc->mp);
889 	}
890 	sc->flags &= ~XCHK_REAPING_DISABLED;
891 }
892