xref: /openbmc/linux/fs/xfs/scrub/common.c (revision a86854d0)
1 /*
2  * Copyright (C) 2017 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_btree.h"
28 #include "xfs_bit.h"
29 #include "xfs_log_format.h"
30 #include "xfs_trans.h"
31 #include "xfs_sb.h"
32 #include "xfs_inode.h"
33 #include "xfs_icache.h"
34 #include "xfs_itable.h"
35 #include "xfs_alloc.h"
36 #include "xfs_alloc_btree.h"
37 #include "xfs_bmap.h"
38 #include "xfs_bmap_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_ialloc_btree.h"
41 #include "xfs_refcount.h"
42 #include "xfs_refcount_btree.h"
43 #include "xfs_rmap.h"
44 #include "xfs_rmap_btree.h"
45 #include "xfs_log.h"
46 #include "xfs_trans_priv.h"
47 #include "xfs_attr.h"
48 #include "xfs_reflink.h"
49 #include "scrub/xfs_scrub.h"
50 #include "scrub/scrub.h"
51 #include "scrub/common.h"
52 #include "scrub/trace.h"
53 #include "scrub/btree.h"
54 #include "scrub/repair.h"
55 
56 /* Common code for the metadata scrubbers. */
57 
58 /*
59  * Handling operational errors.
60  *
61  * The *_process_error() family of functions are used to process error return
62  * codes from functions called as part of a scrub operation.
63  *
64  * If there's no error, we return true to tell the caller that it's ok
65  * to move on to the next check in its list.
66  *
67  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
68  * caller that something bad happened, and we preserve *error so that
69  * the caller can return the *error up the stack to userspace.
70  *
71  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
72  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
73  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
74  * not via return codes.  We return false to tell the caller that
75  * something bad happened.  Since the error has been cleared, the caller
76  * will (presumably) return that zero and scrubbing will move on to
77  * whatever's next.
78  *
79  * ftrace can be used to record the precise metadata location and the
80  * approximate code location of the failed operation.
81  */
82 
83 /* Check for operational errors. */
84 static bool
85 __xfs_scrub_process_error(
86 	struct xfs_scrub_context	*sc,
87 	xfs_agnumber_t			agno,
88 	xfs_agblock_t			bno,
89 	int				*error,
90 	__u32				errflag,
91 	void				*ret_ip)
92 {
93 	switch (*error) {
94 	case 0:
95 		return true;
96 	case -EDEADLOCK:
97 		/* Used to restart an op with deadlock avoidance. */
98 		trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error);
99 		break;
100 	case -EFSBADCRC:
101 	case -EFSCORRUPTED:
102 		/* Note the badness but don't abort. */
103 		sc->sm->sm_flags |= errflag;
104 		*error = 0;
105 		/* fall through */
106 	default:
107 		trace_xfs_scrub_op_error(sc, agno, bno, *error,
108 				ret_ip);
109 		break;
110 	}
111 	return false;
112 }
113 
114 bool
115 xfs_scrub_process_error(
116 	struct xfs_scrub_context	*sc,
117 	xfs_agnumber_t			agno,
118 	xfs_agblock_t			bno,
119 	int				*error)
120 {
121 	return __xfs_scrub_process_error(sc, agno, bno, error,
122 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
123 }
124 
125 bool
126 xfs_scrub_xref_process_error(
127 	struct xfs_scrub_context	*sc,
128 	xfs_agnumber_t			agno,
129 	xfs_agblock_t			bno,
130 	int				*error)
131 {
132 	return __xfs_scrub_process_error(sc, agno, bno, error,
133 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
134 }
135 
136 /* Check for operational errors for a file offset. */
137 static bool
138 __xfs_scrub_fblock_process_error(
139 	struct xfs_scrub_context	*sc,
140 	int				whichfork,
141 	xfs_fileoff_t			offset,
142 	int				*error,
143 	__u32				errflag,
144 	void				*ret_ip)
145 {
146 	switch (*error) {
147 	case 0:
148 		return true;
149 	case -EDEADLOCK:
150 		/* Used to restart an op with deadlock avoidance. */
151 		trace_xfs_scrub_deadlock_retry(sc->ip, sc->sm, *error);
152 		break;
153 	case -EFSBADCRC:
154 	case -EFSCORRUPTED:
155 		/* Note the badness but don't abort. */
156 		sc->sm->sm_flags |= errflag;
157 		*error = 0;
158 		/* fall through */
159 	default:
160 		trace_xfs_scrub_file_op_error(sc, whichfork, offset, *error,
161 				ret_ip);
162 		break;
163 	}
164 	return false;
165 }
166 
167 bool
168 xfs_scrub_fblock_process_error(
169 	struct xfs_scrub_context	*sc,
170 	int				whichfork,
171 	xfs_fileoff_t			offset,
172 	int				*error)
173 {
174 	return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error,
175 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
176 }
177 
178 bool
179 xfs_scrub_fblock_xref_process_error(
180 	struct xfs_scrub_context	*sc,
181 	int				whichfork,
182 	xfs_fileoff_t			offset,
183 	int				*error)
184 {
185 	return __xfs_scrub_fblock_process_error(sc, whichfork, offset, error,
186 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
187 }
188 
189 /*
190  * Handling scrub corruption/optimization/warning checks.
191  *
192  * The *_set_{corrupt,preen,warning}() family of functions are used to
193  * record the presence of metadata that is incorrect (corrupt), could be
194  * optimized somehow (preen), or should be flagged for administrative
195  * review but is not incorrect (warn).
196  *
197  * ftrace can be used to record the precise metadata location and
198  * approximate code location of the failed check.
199  */
200 
201 /* Record a block which could be optimized. */
202 void
203 xfs_scrub_block_set_preen(
204 	struct xfs_scrub_context	*sc,
205 	struct xfs_buf			*bp)
206 {
207 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
208 	trace_xfs_scrub_block_preen(sc, bp->b_bn, __return_address);
209 }
210 
211 /*
212  * Record an inode which could be optimized.  The trace data will
213  * include the block given by bp if bp is given; otherwise it will use
214  * the block location of the inode record itself.
215  */
216 void
217 xfs_scrub_ino_set_preen(
218 	struct xfs_scrub_context	*sc,
219 	xfs_ino_t			ino)
220 {
221 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
222 	trace_xfs_scrub_ino_preen(sc, ino, __return_address);
223 }
224 
225 /* Record a corrupt block. */
226 void
227 xfs_scrub_block_set_corrupt(
228 	struct xfs_scrub_context	*sc,
229 	struct xfs_buf			*bp)
230 {
231 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
232 	trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address);
233 }
234 
235 /* Record a corruption while cross-referencing. */
236 void
237 xfs_scrub_block_xref_set_corrupt(
238 	struct xfs_scrub_context	*sc,
239 	struct xfs_buf			*bp)
240 {
241 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
242 	trace_xfs_scrub_block_error(sc, bp->b_bn, __return_address);
243 }
244 
245 /*
246  * Record a corrupt inode.  The trace data will include the block given
247  * by bp if bp is given; otherwise it will use the block location of the
248  * inode record itself.
249  */
250 void
251 xfs_scrub_ino_set_corrupt(
252 	struct xfs_scrub_context	*sc,
253 	xfs_ino_t			ino)
254 {
255 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
256 	trace_xfs_scrub_ino_error(sc, ino, __return_address);
257 }
258 
259 /* Record a corruption while cross-referencing with an inode. */
260 void
261 xfs_scrub_ino_xref_set_corrupt(
262 	struct xfs_scrub_context	*sc,
263 	xfs_ino_t			ino)
264 {
265 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
266 	trace_xfs_scrub_ino_error(sc, ino, __return_address);
267 }
268 
269 /* Record corruption in a block indexed by a file fork. */
270 void
271 xfs_scrub_fblock_set_corrupt(
272 	struct xfs_scrub_context	*sc,
273 	int				whichfork,
274 	xfs_fileoff_t			offset)
275 {
276 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
277 	trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address);
278 }
279 
280 /* Record a corruption while cross-referencing a fork block. */
281 void
282 xfs_scrub_fblock_xref_set_corrupt(
283 	struct xfs_scrub_context	*sc,
284 	int				whichfork,
285 	xfs_fileoff_t			offset)
286 {
287 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
288 	trace_xfs_scrub_fblock_error(sc, whichfork, offset, __return_address);
289 }
290 
291 /*
292  * Warn about inodes that need administrative review but is not
293  * incorrect.
294  */
295 void
296 xfs_scrub_ino_set_warning(
297 	struct xfs_scrub_context	*sc,
298 	xfs_ino_t			ino)
299 {
300 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
301 	trace_xfs_scrub_ino_warning(sc, ino, __return_address);
302 }
303 
304 /* Warn about a block indexed by a file fork that needs review. */
305 void
306 xfs_scrub_fblock_set_warning(
307 	struct xfs_scrub_context	*sc,
308 	int				whichfork,
309 	xfs_fileoff_t			offset)
310 {
311 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
312 	trace_xfs_scrub_fblock_warning(sc, whichfork, offset, __return_address);
313 }
314 
315 /* Signal an incomplete scrub. */
316 void
317 xfs_scrub_set_incomplete(
318 	struct xfs_scrub_context	*sc)
319 {
320 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
321 	trace_xfs_scrub_incomplete(sc, __return_address);
322 }
323 
324 /*
325  * rmap scrubbing -- compute the number of blocks with a given owner,
326  * at least according to the reverse mapping data.
327  */
328 
329 struct xfs_scrub_rmap_ownedby_info {
330 	struct xfs_owner_info	*oinfo;
331 	xfs_filblks_t		*blocks;
332 };
333 
334 STATIC int
335 xfs_scrub_count_rmap_ownedby_irec(
336 	struct xfs_btree_cur			*cur,
337 	struct xfs_rmap_irec			*rec,
338 	void					*priv)
339 {
340 	struct xfs_scrub_rmap_ownedby_info	*sroi = priv;
341 	bool					irec_attr;
342 	bool					oinfo_attr;
343 
344 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
345 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
346 
347 	if (rec->rm_owner != sroi->oinfo->oi_owner)
348 		return 0;
349 
350 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
351 		(*sroi->blocks) += rec->rm_blockcount;
352 
353 	return 0;
354 }
355 
356 /*
357  * Calculate the number of blocks the rmap thinks are owned by something.
358  * The caller should pass us an rmapbt cursor.
359  */
360 int
361 xfs_scrub_count_rmap_ownedby_ag(
362 	struct xfs_scrub_context		*sc,
363 	struct xfs_btree_cur			*cur,
364 	struct xfs_owner_info			*oinfo,
365 	xfs_filblks_t				*blocks)
366 {
367 	struct xfs_scrub_rmap_ownedby_info	sroi;
368 
369 	sroi.oinfo = oinfo;
370 	*blocks = 0;
371 	sroi.blocks = blocks;
372 
373 	return xfs_rmap_query_all(cur, xfs_scrub_count_rmap_ownedby_irec,
374 			&sroi);
375 }
376 
377 /*
378  * AG scrubbing
379  *
380  * These helpers facilitate locking an allocation group's header
381  * buffers, setting up cursors for all btrees that are present, and
382  * cleaning everything up once we're through.
383  */
384 
385 /* Decide if we want to return an AG header read failure. */
386 static inline bool
387 want_ag_read_header_failure(
388 	struct xfs_scrub_context	*sc,
389 	unsigned int			type)
390 {
391 	/* Return all AG header read failures when scanning btrees. */
392 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
393 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
394 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
395 		return true;
396 	/*
397 	 * If we're scanning a given type of AG header, we only want to
398 	 * see read failures from that specific header.  We'd like the
399 	 * other headers to cross-check them, but this isn't required.
400 	 */
401 	if (sc->sm->sm_type == type)
402 		return true;
403 	return false;
404 }
405 
406 /*
407  * Grab all the headers for an AG.
408  *
409  * The headers should be released by xfs_scrub_ag_free, but as a fail
410  * safe we attach all the buffers we grab to the scrub transaction so
411  * they'll all be freed when we cancel it.
412  */
413 int
414 xfs_scrub_ag_read_headers(
415 	struct xfs_scrub_context	*sc,
416 	xfs_agnumber_t			agno,
417 	struct xfs_buf			**agi,
418 	struct xfs_buf			**agf,
419 	struct xfs_buf			**agfl)
420 {
421 	struct xfs_mount		*mp = sc->mp;
422 	int				error;
423 
424 	error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi);
425 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
426 		goto out;
427 
428 	error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf);
429 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
430 		goto out;
431 
432 	error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl);
433 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL))
434 		goto out;
435 	error = 0;
436 out:
437 	return error;
438 }
439 
440 /* Release all the AG btree cursors. */
441 void
442 xfs_scrub_ag_btcur_free(
443 	struct xfs_scrub_ag		*sa)
444 {
445 	if (sa->refc_cur)
446 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
447 	if (sa->rmap_cur)
448 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
449 	if (sa->fino_cur)
450 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
451 	if (sa->ino_cur)
452 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
453 	if (sa->cnt_cur)
454 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
455 	if (sa->bno_cur)
456 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
457 
458 	sa->refc_cur = NULL;
459 	sa->rmap_cur = NULL;
460 	sa->fino_cur = NULL;
461 	sa->ino_cur = NULL;
462 	sa->bno_cur = NULL;
463 	sa->cnt_cur = NULL;
464 }
465 
466 /* Initialize all the btree cursors for an AG. */
467 int
468 xfs_scrub_ag_btcur_init(
469 	struct xfs_scrub_context	*sc,
470 	struct xfs_scrub_ag		*sa)
471 {
472 	struct xfs_mount		*mp = sc->mp;
473 	xfs_agnumber_t			agno = sa->agno;
474 
475 	if (sa->agf_bp) {
476 		/* Set up a bnobt cursor for cross-referencing. */
477 		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
478 				agno, XFS_BTNUM_BNO);
479 		if (!sa->bno_cur)
480 			goto err;
481 
482 		/* Set up a cntbt cursor for cross-referencing. */
483 		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
484 				agno, XFS_BTNUM_CNT);
485 		if (!sa->cnt_cur)
486 			goto err;
487 	}
488 
489 	/* Set up a inobt cursor for cross-referencing. */
490 	if (sa->agi_bp) {
491 		sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
492 					agno, XFS_BTNUM_INO);
493 		if (!sa->ino_cur)
494 			goto err;
495 	}
496 
497 	/* Set up a finobt cursor for cross-referencing. */
498 	if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb)) {
499 		sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
500 				agno, XFS_BTNUM_FINO);
501 		if (!sa->fino_cur)
502 			goto err;
503 	}
504 
505 	/* Set up a rmapbt cursor for cross-referencing. */
506 	if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb)) {
507 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
508 				agno);
509 		if (!sa->rmap_cur)
510 			goto err;
511 	}
512 
513 	/* Set up a refcountbt cursor for cross-referencing. */
514 	if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb)) {
515 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
516 				sa->agf_bp, agno, NULL);
517 		if (!sa->refc_cur)
518 			goto err;
519 	}
520 
521 	return 0;
522 err:
523 	return -ENOMEM;
524 }
525 
526 /* Release the AG header context and btree cursors. */
527 void
528 xfs_scrub_ag_free(
529 	struct xfs_scrub_context	*sc,
530 	struct xfs_scrub_ag		*sa)
531 {
532 	xfs_scrub_ag_btcur_free(sa);
533 	if (sa->agfl_bp) {
534 		xfs_trans_brelse(sc->tp, sa->agfl_bp);
535 		sa->agfl_bp = NULL;
536 	}
537 	if (sa->agf_bp) {
538 		xfs_trans_brelse(sc->tp, sa->agf_bp);
539 		sa->agf_bp = NULL;
540 	}
541 	if (sa->agi_bp) {
542 		xfs_trans_brelse(sc->tp, sa->agi_bp);
543 		sa->agi_bp = NULL;
544 	}
545 	if (sa->pag) {
546 		xfs_perag_put(sa->pag);
547 		sa->pag = NULL;
548 	}
549 	sa->agno = NULLAGNUMBER;
550 }
551 
552 /*
553  * For scrub, grab the AGI and the AGF headers, in that order.  Locking
554  * order requires us to get the AGI before the AGF.  We use the
555  * transaction to avoid deadlocking on crosslinked metadata buffers;
556  * either the caller passes one in (bmap scrub) or we have to create a
557  * transaction ourselves.
558  */
559 int
560 xfs_scrub_ag_init(
561 	struct xfs_scrub_context	*sc,
562 	xfs_agnumber_t			agno,
563 	struct xfs_scrub_ag		*sa)
564 {
565 	int				error;
566 
567 	sa->agno = agno;
568 	error = xfs_scrub_ag_read_headers(sc, agno, &sa->agi_bp,
569 			&sa->agf_bp, &sa->agfl_bp);
570 	if (error)
571 		return error;
572 
573 	return xfs_scrub_ag_btcur_init(sc, sa);
574 }
575 
576 /*
577  * Grab the per-ag structure if we haven't already gotten it.  Teardown of the
578  * xfs_scrub_ag will release it for us.
579  */
580 void
581 xfs_scrub_perag_get(
582 	struct xfs_mount	*mp,
583 	struct xfs_scrub_ag	*sa)
584 {
585 	if (!sa->pag)
586 		sa->pag = xfs_perag_get(mp, sa->agno);
587 }
588 
589 /* Per-scrubber setup functions */
590 
591 /*
592  * Grab an empty transaction so that we can re-grab locked buffers if
593  * one of our btrees turns out to be cyclic.
594  *
595  * If we're going to repair something, we need to ask for the largest possible
596  * log reservation so that we can handle the worst case scenario for metadata
597  * updates while rebuilding a metadata item.  We also need to reserve as many
598  * blocks in the head transaction as we think we're going to need to rebuild
599  * the metadata object.
600  */
601 int
602 xfs_scrub_trans_alloc(
603 	struct xfs_scrub_context	*sc,
604 	uint				resblks)
605 {
606 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
607 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
608 				resblks, 0, 0, &sc->tp);
609 
610 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
611 }
612 
613 /* Set us up with a transaction and an empty context. */
614 int
615 xfs_scrub_setup_fs(
616 	struct xfs_scrub_context	*sc,
617 	struct xfs_inode		*ip)
618 {
619 	uint				resblks;
620 
621 	resblks = xfs_repair_calc_ag_resblks(sc);
622 	return xfs_scrub_trans_alloc(sc, resblks);
623 }
624 
625 /* Set us up with AG headers and btree cursors. */
626 int
627 xfs_scrub_setup_ag_btree(
628 	struct xfs_scrub_context	*sc,
629 	struct xfs_inode		*ip,
630 	bool				force_log)
631 {
632 	struct xfs_mount		*mp = sc->mp;
633 	int				error;
634 
635 	/*
636 	 * If the caller asks us to checkpont the log, do so.  This
637 	 * expensive operation should be performed infrequently and only
638 	 * as a last resort.  Any caller that sets force_log should
639 	 * document why they need to do so.
640 	 */
641 	if (force_log) {
642 		error = xfs_scrub_checkpoint_log(mp);
643 		if (error)
644 			return error;
645 	}
646 
647 	error = xfs_scrub_setup_fs(sc, ip);
648 	if (error)
649 		return error;
650 
651 	return xfs_scrub_ag_init(sc, sc->sm->sm_agno, &sc->sa);
652 }
653 
654 /* Push everything out of the log onto disk. */
655 int
656 xfs_scrub_checkpoint_log(
657 	struct xfs_mount	*mp)
658 {
659 	int			error;
660 
661 	error = xfs_log_force(mp, XFS_LOG_SYNC);
662 	if (error)
663 		return error;
664 	xfs_ail_push_all_sync(mp->m_ail);
665 	return 0;
666 }
667 
668 /*
669  * Given an inode and the scrub control structure, grab either the
670  * inode referenced in the control structure or the inode passed in.
671  * The inode is not locked.
672  */
673 int
674 xfs_scrub_get_inode(
675 	struct xfs_scrub_context	*sc,
676 	struct xfs_inode		*ip_in)
677 {
678 	struct xfs_imap			imap;
679 	struct xfs_mount		*mp = sc->mp;
680 	struct xfs_inode		*ip = NULL;
681 	int				error;
682 
683 	/* We want to scan the inode we already had opened. */
684 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) {
685 		sc->ip = ip_in;
686 		return 0;
687 	}
688 
689 	/* Look up the inode, see if the generation number matches. */
690 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
691 		return -ENOENT;
692 	error = xfs_iget(mp, NULL, sc->sm->sm_ino,
693 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip);
694 	switch (error) {
695 	case -ENOENT:
696 		/* Inode doesn't exist, just bail out. */
697 		return error;
698 	case 0:
699 		/* Got an inode, continue. */
700 		break;
701 	case -EINVAL:
702 		/*
703 		 * -EINVAL with IGET_UNTRUSTED could mean one of several
704 		 * things: userspace gave us an inode number that doesn't
705 		 * correspond to fs space, or doesn't have an inobt entry;
706 		 * or it could simply mean that the inode buffer failed the
707 		 * read verifiers.
708 		 *
709 		 * Try just the inode mapping lookup -- if it succeeds, then
710 		 * the inode buffer verifier failed and something needs fixing.
711 		 * Otherwise, we really couldn't find it so tell userspace
712 		 * that it no longer exists.
713 		 */
714 		error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap,
715 				XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE);
716 		if (error)
717 			return -ENOENT;
718 		error = -EFSCORRUPTED;
719 		/* fall through */
720 	default:
721 		trace_xfs_scrub_op_error(sc,
722 				XFS_INO_TO_AGNO(mp, sc->sm->sm_ino),
723 				XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
724 				error, __return_address);
725 		return error;
726 	}
727 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
728 		iput(VFS_I(ip));
729 		return -ENOENT;
730 	}
731 
732 	sc->ip = ip;
733 	return 0;
734 }
735 
736 /* Set us up to scrub a file's contents. */
737 int
738 xfs_scrub_setup_inode_contents(
739 	struct xfs_scrub_context	*sc,
740 	struct xfs_inode		*ip,
741 	unsigned int			resblks)
742 {
743 	int				error;
744 
745 	error = xfs_scrub_get_inode(sc, ip);
746 	if (error)
747 		return error;
748 
749 	/* Got the inode, lock it and we're ready to go. */
750 	sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
751 	xfs_ilock(sc->ip, sc->ilock_flags);
752 	error = xfs_scrub_trans_alloc(sc, resblks);
753 	if (error)
754 		goto out;
755 	sc->ilock_flags |= XFS_ILOCK_EXCL;
756 	xfs_ilock(sc->ip, XFS_ILOCK_EXCL);
757 
758 out:
759 	/* scrub teardown will unlock and release the inode for us */
760 	return error;
761 }
762 
763 /*
764  * Predicate that decides if we need to evaluate the cross-reference check.
765  * If there was an error accessing the cross-reference btree, just delete
766  * the cursor and skip the check.
767  */
768 bool
769 xfs_scrub_should_check_xref(
770 	struct xfs_scrub_context	*sc,
771 	int				*error,
772 	struct xfs_btree_cur		**curpp)
773 {
774 	/* No point in xref if we already know we're corrupt. */
775 	if (xfs_scrub_skip_xref(sc->sm))
776 		return false;
777 
778 	if (*error == 0)
779 		return true;
780 
781 	if (curpp) {
782 		/* If we've already given up on xref, just bail out. */
783 		if (!*curpp)
784 			return false;
785 
786 		/* xref error, delete cursor and bail out. */
787 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
788 		*curpp = NULL;
789 	}
790 
791 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
792 	trace_xfs_scrub_xref_error(sc, *error, __return_address);
793 
794 	/*
795 	 * Errors encountered during cross-referencing with another
796 	 * data structure should not cause this scrubber to abort.
797 	 */
798 	*error = 0;
799 	return false;
800 }
801 
802 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
803 void
804 xfs_scrub_buffer_recheck(
805 	struct xfs_scrub_context	*sc,
806 	struct xfs_buf			*bp)
807 {
808 	xfs_failaddr_t			fa;
809 
810 	if (bp->b_ops == NULL) {
811 		xfs_scrub_block_set_corrupt(sc, bp);
812 		return;
813 	}
814 	if (bp->b_ops->verify_struct == NULL) {
815 		xfs_scrub_set_incomplete(sc);
816 		return;
817 	}
818 	fa = bp->b_ops->verify_struct(bp);
819 	if (!fa)
820 		return;
821 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
822 	trace_xfs_scrub_block_error(sc, bp->b_bn, fa);
823 }
824 
825 /*
826  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
827  * pointed to by sc->ip and the ILOCK must be held.
828  */
829 int
830 xfs_scrub_metadata_inode_forks(
831 	struct xfs_scrub_context	*sc)
832 {
833 	__u32				smtype;
834 	bool				shared;
835 	int				error;
836 
837 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
838 		return 0;
839 
840 	/* Metadata inodes don't live on the rt device. */
841 	if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) {
842 		xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino);
843 		return 0;
844 	}
845 
846 	/* They should never participate in reflink. */
847 	if (xfs_is_reflink_inode(sc->ip)) {
848 		xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino);
849 		return 0;
850 	}
851 
852 	/* They also should never have extended attributes. */
853 	if (xfs_inode_hasattr(sc->ip)) {
854 		xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino);
855 		return 0;
856 	}
857 
858 	/* Invoke the data fork scrubber. */
859 	smtype = sc->sm->sm_type;
860 	sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
861 	error = xfs_scrub_bmap_data(sc);
862 	sc->sm->sm_type = smtype;
863 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
864 		return error;
865 
866 	/* Look for incorrect shared blocks. */
867 	if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) {
868 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
869 				&shared);
870 		if (!xfs_scrub_fblock_process_error(sc, XFS_DATA_FORK, 0,
871 				&error))
872 			return error;
873 		if (shared)
874 			xfs_scrub_ino_set_corrupt(sc, sc->ip->i_ino);
875 	}
876 
877 	return error;
878 }
879 
880 /*
881  * Try to lock an inode in violation of the usual locking order rules.  For
882  * example, trying to get the IOLOCK while in transaction context, or just
883  * plain breaking AG-order or inode-order inode locking rules.  Either way,
884  * the only way to avoid an ABBA deadlock is to use trylock and back off if
885  * we can't.
886  */
887 int
888 xfs_scrub_ilock_inverted(
889 	struct xfs_inode	*ip,
890 	uint			lock_mode)
891 {
892 	int			i;
893 
894 	for (i = 0; i < 20; i++) {
895 		if (xfs_ilock_nowait(ip, lock_mode))
896 			return 0;
897 		delay(1);
898 	}
899 	return -EDEADLOCK;
900 }
901