xref: /openbmc/linux/fs/xfs/scrub/common.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_itable.h"
21 #include "xfs_alloc.h"
22 #include "xfs_alloc_btree.h"
23 #include "xfs_bmap.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_refcount.h"
28 #include "xfs_refcount_btree.h"
29 #include "xfs_rmap.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_log.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_attr.h"
34 #include "xfs_reflink.h"
35 #include "scrub/xfs_scrub.h"
36 #include "scrub/scrub.h"
37 #include "scrub/common.h"
38 #include "scrub/trace.h"
39 #include "scrub/btree.h"
40 #include "scrub/repair.h"
41 
42 /* Common code for the metadata scrubbers. */
43 
44 /*
45  * Handling operational errors.
46  *
47  * The *_process_error() family of functions are used to process error return
48  * codes from functions called as part of a scrub operation.
49  *
50  * If there's no error, we return true to tell the caller that it's ok
51  * to move on to the next check in its list.
52  *
53  * For non-verifier errors (e.g. ENOMEM) we return false to tell the
54  * caller that something bad happened, and we preserve *error so that
55  * the caller can return the *error up the stack to userspace.
56  *
57  * Verifier errors (EFSBADCRC/EFSCORRUPTED) are recorded by setting
58  * OFLAG_CORRUPT in sm_flags and the *error is cleared.  In other words,
59  * we track verifier errors (and failed scrub checks) via OFLAG_CORRUPT,
60  * not via return codes.  We return false to tell the caller that
61  * something bad happened.  Since the error has been cleared, the caller
62  * will (presumably) return that zero and scrubbing will move on to
63  * whatever's next.
64  *
65  * ftrace can be used to record the precise metadata location and the
66  * approximate code location of the failed operation.
67  */
68 
69 /* Check for operational errors. */
70 static bool
71 __xchk_process_error(
72 	struct xfs_scrub	*sc,
73 	xfs_agnumber_t		agno,
74 	xfs_agblock_t		bno,
75 	int			*error,
76 	__u32			errflag,
77 	void			*ret_ip)
78 {
79 	switch (*error) {
80 	case 0:
81 		return true;
82 	case -EDEADLOCK:
83 		/* Used to restart an op with deadlock avoidance. */
84 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
85 		break;
86 	case -EFSBADCRC:
87 	case -EFSCORRUPTED:
88 		/* Note the badness but don't abort. */
89 		sc->sm->sm_flags |= errflag;
90 		*error = 0;
91 		/* fall through */
92 	default:
93 		trace_xchk_op_error(sc, agno, bno, *error,
94 				ret_ip);
95 		break;
96 	}
97 	return false;
98 }
99 
100 bool
101 xchk_process_error(
102 	struct xfs_scrub	*sc,
103 	xfs_agnumber_t		agno,
104 	xfs_agblock_t		bno,
105 	int			*error)
106 {
107 	return __xchk_process_error(sc, agno, bno, error,
108 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
109 }
110 
111 bool
112 xchk_xref_process_error(
113 	struct xfs_scrub	*sc,
114 	xfs_agnumber_t		agno,
115 	xfs_agblock_t		bno,
116 	int			*error)
117 {
118 	return __xchk_process_error(sc, agno, bno, error,
119 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
120 }
121 
122 /* Check for operational errors for a file offset. */
123 static bool
124 __xchk_fblock_process_error(
125 	struct xfs_scrub	*sc,
126 	int			whichfork,
127 	xfs_fileoff_t		offset,
128 	int			*error,
129 	__u32			errflag,
130 	void			*ret_ip)
131 {
132 	switch (*error) {
133 	case 0:
134 		return true;
135 	case -EDEADLOCK:
136 		/* Used to restart an op with deadlock avoidance. */
137 		trace_xchk_deadlock_retry(sc->ip, sc->sm, *error);
138 		break;
139 	case -EFSBADCRC:
140 	case -EFSCORRUPTED:
141 		/* Note the badness but don't abort. */
142 		sc->sm->sm_flags |= errflag;
143 		*error = 0;
144 		/* fall through */
145 	default:
146 		trace_xchk_file_op_error(sc, whichfork, offset, *error,
147 				ret_ip);
148 		break;
149 	}
150 	return false;
151 }
152 
153 bool
154 xchk_fblock_process_error(
155 	struct xfs_scrub	*sc,
156 	int			whichfork,
157 	xfs_fileoff_t		offset,
158 	int			*error)
159 {
160 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
161 			XFS_SCRUB_OFLAG_CORRUPT, __return_address);
162 }
163 
164 bool
165 xchk_fblock_xref_process_error(
166 	struct xfs_scrub	*sc,
167 	int			whichfork,
168 	xfs_fileoff_t		offset,
169 	int			*error)
170 {
171 	return __xchk_fblock_process_error(sc, whichfork, offset, error,
172 			XFS_SCRUB_OFLAG_XFAIL, __return_address);
173 }
174 
175 /*
176  * Handling scrub corruption/optimization/warning checks.
177  *
178  * The *_set_{corrupt,preen,warning}() family of functions are used to
179  * record the presence of metadata that is incorrect (corrupt), could be
180  * optimized somehow (preen), or should be flagged for administrative
181  * review but is not incorrect (warn).
182  *
183  * ftrace can be used to record the precise metadata location and
184  * approximate code location of the failed check.
185  */
186 
187 /* Record a block which could be optimized. */
188 void
189 xchk_block_set_preen(
190 	struct xfs_scrub	*sc,
191 	struct xfs_buf		*bp)
192 {
193 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
194 	trace_xchk_block_preen(sc, bp->b_bn, __return_address);
195 }
196 
197 /*
198  * Record an inode which could be optimized.  The trace data will
199  * include the block given by bp if bp is given; otherwise it will use
200  * the block location of the inode record itself.
201  */
202 void
203 xchk_ino_set_preen(
204 	struct xfs_scrub	*sc,
205 	xfs_ino_t		ino)
206 {
207 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_PREEN;
208 	trace_xchk_ino_preen(sc, ino, __return_address);
209 }
210 
211 /* Record a corrupt block. */
212 void
213 xchk_block_set_corrupt(
214 	struct xfs_scrub	*sc,
215 	struct xfs_buf		*bp)
216 {
217 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
218 	trace_xchk_block_error(sc, bp->b_bn, __return_address);
219 }
220 
221 /* Record a corruption while cross-referencing. */
222 void
223 xchk_block_xref_set_corrupt(
224 	struct xfs_scrub	*sc,
225 	struct xfs_buf		*bp)
226 {
227 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
228 	trace_xchk_block_error(sc, bp->b_bn, __return_address);
229 }
230 
231 /*
232  * Record a corrupt inode.  The trace data will include the block given
233  * by bp if bp is given; otherwise it will use the block location of the
234  * inode record itself.
235  */
236 void
237 xchk_ino_set_corrupt(
238 	struct xfs_scrub	*sc,
239 	xfs_ino_t		ino)
240 {
241 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
242 	trace_xchk_ino_error(sc, ino, __return_address);
243 }
244 
245 /* Record a corruption while cross-referencing with an inode. */
246 void
247 xchk_ino_xref_set_corrupt(
248 	struct xfs_scrub	*sc,
249 	xfs_ino_t		ino)
250 {
251 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
252 	trace_xchk_ino_error(sc, ino, __return_address);
253 }
254 
255 /* Record corruption in a block indexed by a file fork. */
256 void
257 xchk_fblock_set_corrupt(
258 	struct xfs_scrub	*sc,
259 	int			whichfork,
260 	xfs_fileoff_t		offset)
261 {
262 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
263 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
264 }
265 
266 /* Record a corruption while cross-referencing a fork block. */
267 void
268 xchk_fblock_xref_set_corrupt(
269 	struct xfs_scrub	*sc,
270 	int			whichfork,
271 	xfs_fileoff_t		offset)
272 {
273 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XCORRUPT;
274 	trace_xchk_fblock_error(sc, whichfork, offset, __return_address);
275 }
276 
277 /*
278  * Warn about inodes that need administrative review but is not
279  * incorrect.
280  */
281 void
282 xchk_ino_set_warning(
283 	struct xfs_scrub	*sc,
284 	xfs_ino_t		ino)
285 {
286 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
287 	trace_xchk_ino_warning(sc, ino, __return_address);
288 }
289 
290 /* Warn about a block indexed by a file fork that needs review. */
291 void
292 xchk_fblock_set_warning(
293 	struct xfs_scrub	*sc,
294 	int			whichfork,
295 	xfs_fileoff_t		offset)
296 {
297 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_WARNING;
298 	trace_xchk_fblock_warning(sc, whichfork, offset, __return_address);
299 }
300 
301 /* Signal an incomplete scrub. */
302 void
303 xchk_set_incomplete(
304 	struct xfs_scrub	*sc)
305 {
306 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_INCOMPLETE;
307 	trace_xchk_incomplete(sc, __return_address);
308 }
309 
310 /*
311  * rmap scrubbing -- compute the number of blocks with a given owner,
312  * at least according to the reverse mapping data.
313  */
314 
315 struct xchk_rmap_ownedby_info {
316 	const struct xfs_owner_info	*oinfo;
317 	xfs_filblks_t			*blocks;
318 };
319 
320 STATIC int
321 xchk_count_rmap_ownedby_irec(
322 	struct xfs_btree_cur		*cur,
323 	struct xfs_rmap_irec		*rec,
324 	void				*priv)
325 {
326 	struct xchk_rmap_ownedby_info	*sroi = priv;
327 	bool				irec_attr;
328 	bool				oinfo_attr;
329 
330 	irec_attr = rec->rm_flags & XFS_RMAP_ATTR_FORK;
331 	oinfo_attr = sroi->oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK;
332 
333 	if (rec->rm_owner != sroi->oinfo->oi_owner)
334 		return 0;
335 
336 	if (XFS_RMAP_NON_INODE_OWNER(rec->rm_owner) || irec_attr == oinfo_attr)
337 		(*sroi->blocks) += rec->rm_blockcount;
338 
339 	return 0;
340 }
341 
342 /*
343  * Calculate the number of blocks the rmap thinks are owned by something.
344  * The caller should pass us an rmapbt cursor.
345  */
346 int
347 xchk_count_rmap_ownedby_ag(
348 	struct xfs_scrub		*sc,
349 	struct xfs_btree_cur		*cur,
350 	const struct xfs_owner_info	*oinfo,
351 	xfs_filblks_t			*blocks)
352 {
353 	struct xchk_rmap_ownedby_info	sroi = {
354 		.oinfo			= oinfo,
355 		.blocks			= blocks,
356 	};
357 
358 	*blocks = 0;
359 	return xfs_rmap_query_all(cur, xchk_count_rmap_ownedby_irec,
360 			&sroi);
361 }
362 
363 /*
364  * AG scrubbing
365  *
366  * These helpers facilitate locking an allocation group's header
367  * buffers, setting up cursors for all btrees that are present, and
368  * cleaning everything up once we're through.
369  */
370 
371 /* Decide if we want to return an AG header read failure. */
372 static inline bool
373 want_ag_read_header_failure(
374 	struct xfs_scrub	*sc,
375 	unsigned int		type)
376 {
377 	/* Return all AG header read failures when scanning btrees. */
378 	if (sc->sm->sm_type != XFS_SCRUB_TYPE_AGF &&
379 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGFL &&
380 	    sc->sm->sm_type != XFS_SCRUB_TYPE_AGI)
381 		return true;
382 	/*
383 	 * If we're scanning a given type of AG header, we only want to
384 	 * see read failures from that specific header.  We'd like the
385 	 * other headers to cross-check them, but this isn't required.
386 	 */
387 	if (sc->sm->sm_type == type)
388 		return true;
389 	return false;
390 }
391 
392 /*
393  * Grab all the headers for an AG.
394  *
395  * The headers should be released by xchk_ag_free, but as a fail
396  * safe we attach all the buffers we grab to the scrub transaction so
397  * they'll all be freed when we cancel it.
398  */
399 int
400 xchk_ag_read_headers(
401 	struct xfs_scrub	*sc,
402 	xfs_agnumber_t		agno,
403 	struct xfs_buf		**agi,
404 	struct xfs_buf		**agf,
405 	struct xfs_buf		**agfl)
406 {
407 	struct xfs_mount	*mp = sc->mp;
408 	int			error;
409 
410 	error = xfs_ialloc_read_agi(mp, sc->tp, agno, agi);
411 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGI))
412 		goto out;
413 
414 	error = xfs_alloc_read_agf(mp, sc->tp, agno, 0, agf);
415 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGF))
416 		goto out;
417 
418 	error = xfs_alloc_read_agfl(mp, sc->tp, agno, agfl);
419 	if (error && want_ag_read_header_failure(sc, XFS_SCRUB_TYPE_AGFL))
420 		goto out;
421 	error = 0;
422 out:
423 	return error;
424 }
425 
426 /* Release all the AG btree cursors. */
427 void
428 xchk_ag_btcur_free(
429 	struct xchk_ag		*sa)
430 {
431 	if (sa->refc_cur)
432 		xfs_btree_del_cursor(sa->refc_cur, XFS_BTREE_ERROR);
433 	if (sa->rmap_cur)
434 		xfs_btree_del_cursor(sa->rmap_cur, XFS_BTREE_ERROR);
435 	if (sa->fino_cur)
436 		xfs_btree_del_cursor(sa->fino_cur, XFS_BTREE_ERROR);
437 	if (sa->ino_cur)
438 		xfs_btree_del_cursor(sa->ino_cur, XFS_BTREE_ERROR);
439 	if (sa->cnt_cur)
440 		xfs_btree_del_cursor(sa->cnt_cur, XFS_BTREE_ERROR);
441 	if (sa->bno_cur)
442 		xfs_btree_del_cursor(sa->bno_cur, XFS_BTREE_ERROR);
443 
444 	sa->refc_cur = NULL;
445 	sa->rmap_cur = NULL;
446 	sa->fino_cur = NULL;
447 	sa->ino_cur = NULL;
448 	sa->bno_cur = NULL;
449 	sa->cnt_cur = NULL;
450 }
451 
452 /* Initialize all the btree cursors for an AG. */
453 int
454 xchk_ag_btcur_init(
455 	struct xfs_scrub	*sc,
456 	struct xchk_ag		*sa)
457 {
458 	struct xfs_mount	*mp = sc->mp;
459 	xfs_agnumber_t		agno = sa->agno;
460 
461 	if (sa->agf_bp) {
462 		/* Set up a bnobt cursor for cross-referencing. */
463 		sa->bno_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
464 				agno, XFS_BTNUM_BNO);
465 		if (!sa->bno_cur)
466 			goto err;
467 
468 		/* Set up a cntbt cursor for cross-referencing. */
469 		sa->cnt_cur = xfs_allocbt_init_cursor(mp, sc->tp, sa->agf_bp,
470 				agno, XFS_BTNUM_CNT);
471 		if (!sa->cnt_cur)
472 			goto err;
473 	}
474 
475 	/* Set up a inobt cursor for cross-referencing. */
476 	if (sa->agi_bp) {
477 		sa->ino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
478 					agno, XFS_BTNUM_INO);
479 		if (!sa->ino_cur)
480 			goto err;
481 	}
482 
483 	/* Set up a finobt cursor for cross-referencing. */
484 	if (sa->agi_bp && xfs_sb_version_hasfinobt(&mp->m_sb)) {
485 		sa->fino_cur = xfs_inobt_init_cursor(mp, sc->tp, sa->agi_bp,
486 				agno, XFS_BTNUM_FINO);
487 		if (!sa->fino_cur)
488 			goto err;
489 	}
490 
491 	/* Set up a rmapbt cursor for cross-referencing. */
492 	if (sa->agf_bp && xfs_sb_version_hasrmapbt(&mp->m_sb)) {
493 		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
494 				agno);
495 		if (!sa->rmap_cur)
496 			goto err;
497 	}
498 
499 	/* Set up a refcountbt cursor for cross-referencing. */
500 	if (sa->agf_bp && xfs_sb_version_hasreflink(&mp->m_sb)) {
501 		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
502 				sa->agf_bp, agno);
503 		if (!sa->refc_cur)
504 			goto err;
505 	}
506 
507 	return 0;
508 err:
509 	return -ENOMEM;
510 }
511 
512 /* Release the AG header context and btree cursors. */
513 void
514 xchk_ag_free(
515 	struct xfs_scrub	*sc,
516 	struct xchk_ag		*sa)
517 {
518 	xchk_ag_btcur_free(sa);
519 	if (sa->agfl_bp) {
520 		xfs_trans_brelse(sc->tp, sa->agfl_bp);
521 		sa->agfl_bp = NULL;
522 	}
523 	if (sa->agf_bp) {
524 		xfs_trans_brelse(sc->tp, sa->agf_bp);
525 		sa->agf_bp = NULL;
526 	}
527 	if (sa->agi_bp) {
528 		xfs_trans_brelse(sc->tp, sa->agi_bp);
529 		sa->agi_bp = NULL;
530 	}
531 	if (sa->pag) {
532 		xfs_perag_put(sa->pag);
533 		sa->pag = NULL;
534 	}
535 	sa->agno = NULLAGNUMBER;
536 }
537 
538 /*
539  * For scrub, grab the AGI and the AGF headers, in that order.  Locking
540  * order requires us to get the AGI before the AGF.  We use the
541  * transaction to avoid deadlocking on crosslinked metadata buffers;
542  * either the caller passes one in (bmap scrub) or we have to create a
543  * transaction ourselves.
544  */
545 int
546 xchk_ag_init(
547 	struct xfs_scrub	*sc,
548 	xfs_agnumber_t		agno,
549 	struct xchk_ag		*sa)
550 {
551 	int			error;
552 
553 	sa->agno = agno;
554 	error = xchk_ag_read_headers(sc, agno, &sa->agi_bp,
555 			&sa->agf_bp, &sa->agfl_bp);
556 	if (error)
557 		return error;
558 
559 	return xchk_ag_btcur_init(sc, sa);
560 }
561 
562 /*
563  * Grab the per-ag structure if we haven't already gotten it.  Teardown of the
564  * xchk_ag will release it for us.
565  */
566 void
567 xchk_perag_get(
568 	struct xfs_mount	*mp,
569 	struct xchk_ag		*sa)
570 {
571 	if (!sa->pag)
572 		sa->pag = xfs_perag_get(mp, sa->agno);
573 }
574 
575 /* Per-scrubber setup functions */
576 
577 /*
578  * Grab an empty transaction so that we can re-grab locked buffers if
579  * one of our btrees turns out to be cyclic.
580  *
581  * If we're going to repair something, we need to ask for the largest possible
582  * log reservation so that we can handle the worst case scenario for metadata
583  * updates while rebuilding a metadata item.  We also need to reserve as many
584  * blocks in the head transaction as we think we're going to need to rebuild
585  * the metadata object.
586  */
587 int
588 xchk_trans_alloc(
589 	struct xfs_scrub	*sc,
590 	uint			resblks)
591 {
592 	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)
593 		return xfs_trans_alloc(sc->mp, &M_RES(sc->mp)->tr_itruncate,
594 				resblks, 0, 0, &sc->tp);
595 
596 	return xfs_trans_alloc_empty(sc->mp, &sc->tp);
597 }
598 
599 /* Set us up with a transaction and an empty context. */
600 int
601 xchk_setup_fs(
602 	struct xfs_scrub	*sc,
603 	struct xfs_inode	*ip)
604 {
605 	uint			resblks;
606 
607 	resblks = xrep_calc_ag_resblks(sc);
608 	return xchk_trans_alloc(sc, resblks);
609 }
610 
611 /* Set us up with AG headers and btree cursors. */
612 int
613 xchk_setup_ag_btree(
614 	struct xfs_scrub	*sc,
615 	struct xfs_inode	*ip,
616 	bool			force_log)
617 {
618 	struct xfs_mount	*mp = sc->mp;
619 	int			error;
620 
621 	/*
622 	 * If the caller asks us to checkpont the log, do so.  This
623 	 * expensive operation should be performed infrequently and only
624 	 * as a last resort.  Any caller that sets force_log should
625 	 * document why they need to do so.
626 	 */
627 	if (force_log) {
628 		error = xchk_checkpoint_log(mp);
629 		if (error)
630 			return error;
631 	}
632 
633 	error = xchk_setup_fs(sc, ip);
634 	if (error)
635 		return error;
636 
637 	return xchk_ag_init(sc, sc->sm->sm_agno, &sc->sa);
638 }
639 
640 /* Push everything out of the log onto disk. */
641 int
642 xchk_checkpoint_log(
643 	struct xfs_mount	*mp)
644 {
645 	int			error;
646 
647 	error = xfs_log_force(mp, XFS_LOG_SYNC);
648 	if (error)
649 		return error;
650 	xfs_ail_push_all_sync(mp->m_ail);
651 	return 0;
652 }
653 
654 /*
655  * Given an inode and the scrub control structure, grab either the
656  * inode referenced in the control structure or the inode passed in.
657  * The inode is not locked.
658  */
659 int
660 xchk_get_inode(
661 	struct xfs_scrub	*sc,
662 	struct xfs_inode	*ip_in)
663 {
664 	struct xfs_imap		imap;
665 	struct xfs_mount	*mp = sc->mp;
666 	struct xfs_inode	*ip = NULL;
667 	int			error;
668 
669 	/* We want to scan the inode we already had opened. */
670 	if (sc->sm->sm_ino == 0 || sc->sm->sm_ino == ip_in->i_ino) {
671 		sc->ip = ip_in;
672 		return 0;
673 	}
674 
675 	/* Look up the inode, see if the generation number matches. */
676 	if (xfs_internal_inum(mp, sc->sm->sm_ino))
677 		return -ENOENT;
678 	error = xfs_iget(mp, NULL, sc->sm->sm_ino,
679 			XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, &ip);
680 	switch (error) {
681 	case -ENOENT:
682 		/* Inode doesn't exist, just bail out. */
683 		return error;
684 	case 0:
685 		/* Got an inode, continue. */
686 		break;
687 	case -EINVAL:
688 		/*
689 		 * -EINVAL with IGET_UNTRUSTED could mean one of several
690 		 * things: userspace gave us an inode number that doesn't
691 		 * correspond to fs space, or doesn't have an inobt entry;
692 		 * or it could simply mean that the inode buffer failed the
693 		 * read verifiers.
694 		 *
695 		 * Try just the inode mapping lookup -- if it succeeds, then
696 		 * the inode buffer verifier failed and something needs fixing.
697 		 * Otherwise, we really couldn't find it so tell userspace
698 		 * that it no longer exists.
699 		 */
700 		error = xfs_imap(sc->mp, sc->tp, sc->sm->sm_ino, &imap,
701 				XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE);
702 		if (error)
703 			return -ENOENT;
704 		error = -EFSCORRUPTED;
705 		/* fall through */
706 	default:
707 		trace_xchk_op_error(sc,
708 				XFS_INO_TO_AGNO(mp, sc->sm->sm_ino),
709 				XFS_INO_TO_AGBNO(mp, sc->sm->sm_ino),
710 				error, __return_address);
711 		return error;
712 	}
713 	if (VFS_I(ip)->i_generation != sc->sm->sm_gen) {
714 		xfs_irele(ip);
715 		return -ENOENT;
716 	}
717 
718 	sc->ip = ip;
719 	return 0;
720 }
721 
722 /* Set us up to scrub a file's contents. */
723 int
724 xchk_setup_inode_contents(
725 	struct xfs_scrub	*sc,
726 	struct xfs_inode	*ip,
727 	unsigned int		resblks)
728 {
729 	int			error;
730 
731 	error = xchk_get_inode(sc, ip);
732 	if (error)
733 		return error;
734 
735 	/* Got the inode, lock it and we're ready to go. */
736 	sc->ilock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
737 	xfs_ilock(sc->ip, sc->ilock_flags);
738 	error = xchk_trans_alloc(sc, resblks);
739 	if (error)
740 		goto out;
741 	sc->ilock_flags |= XFS_ILOCK_EXCL;
742 	xfs_ilock(sc->ip, XFS_ILOCK_EXCL);
743 
744 out:
745 	/* scrub teardown will unlock and release the inode for us */
746 	return error;
747 }
748 
749 /*
750  * Predicate that decides if we need to evaluate the cross-reference check.
751  * If there was an error accessing the cross-reference btree, just delete
752  * the cursor and skip the check.
753  */
754 bool
755 xchk_should_check_xref(
756 	struct xfs_scrub	*sc,
757 	int			*error,
758 	struct xfs_btree_cur	**curpp)
759 {
760 	/* No point in xref if we already know we're corrupt. */
761 	if (xchk_skip_xref(sc->sm))
762 		return false;
763 
764 	if (*error == 0)
765 		return true;
766 
767 	if (curpp) {
768 		/* If we've already given up on xref, just bail out. */
769 		if (!*curpp)
770 			return false;
771 
772 		/* xref error, delete cursor and bail out. */
773 		xfs_btree_del_cursor(*curpp, XFS_BTREE_ERROR);
774 		*curpp = NULL;
775 	}
776 
777 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_XFAIL;
778 	trace_xchk_xref_error(sc, *error, __return_address);
779 
780 	/*
781 	 * Errors encountered during cross-referencing with another
782 	 * data structure should not cause this scrubber to abort.
783 	 */
784 	*error = 0;
785 	return false;
786 }
787 
788 /* Run the structure verifiers on in-memory buffers to detect bad memory. */
789 void
790 xchk_buffer_recheck(
791 	struct xfs_scrub	*sc,
792 	struct xfs_buf		*bp)
793 {
794 	xfs_failaddr_t		fa;
795 
796 	if (bp->b_ops == NULL) {
797 		xchk_block_set_corrupt(sc, bp);
798 		return;
799 	}
800 	if (bp->b_ops->verify_struct == NULL) {
801 		xchk_set_incomplete(sc);
802 		return;
803 	}
804 	fa = bp->b_ops->verify_struct(bp);
805 	if (!fa)
806 		return;
807 	sc->sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
808 	trace_xchk_block_error(sc, bp->b_bn, fa);
809 }
810 
811 /*
812  * Scrub the attr/data forks of a metadata inode.  The metadata inode must be
813  * pointed to by sc->ip and the ILOCK must be held.
814  */
815 int
816 xchk_metadata_inode_forks(
817 	struct xfs_scrub	*sc)
818 {
819 	__u32			smtype;
820 	bool			shared;
821 	int			error;
822 
823 	if (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT)
824 		return 0;
825 
826 	/* Metadata inodes don't live on the rt device. */
827 	if (sc->ip->i_d.di_flags & XFS_DIFLAG_REALTIME) {
828 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
829 		return 0;
830 	}
831 
832 	/* They should never participate in reflink. */
833 	if (xfs_is_reflink_inode(sc->ip)) {
834 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
835 		return 0;
836 	}
837 
838 	/* They also should never have extended attributes. */
839 	if (xfs_inode_hasattr(sc->ip)) {
840 		xchk_ino_set_corrupt(sc, sc->ip->i_ino);
841 		return 0;
842 	}
843 
844 	/* Invoke the data fork scrubber. */
845 	smtype = sc->sm->sm_type;
846 	sc->sm->sm_type = XFS_SCRUB_TYPE_BMBTD;
847 	error = xchk_bmap_data(sc);
848 	sc->sm->sm_type = smtype;
849 	if (error || (sc->sm->sm_flags & XFS_SCRUB_OFLAG_CORRUPT))
850 		return error;
851 
852 	/* Look for incorrect shared blocks. */
853 	if (xfs_sb_version_hasreflink(&sc->mp->m_sb)) {
854 		error = xfs_reflink_inode_has_shared_extents(sc->tp, sc->ip,
855 				&shared);
856 		if (!xchk_fblock_process_error(sc, XFS_DATA_FORK, 0,
857 				&error))
858 			return error;
859 		if (shared)
860 			xchk_ino_set_corrupt(sc, sc->ip->i_ino);
861 	}
862 
863 	return error;
864 }
865 
866 /*
867  * Try to lock an inode in violation of the usual locking order rules.  For
868  * example, trying to get the IOLOCK while in transaction context, or just
869  * plain breaking AG-order or inode-order inode locking rules.  Either way,
870  * the only way to avoid an ABBA deadlock is to use trylock and back off if
871  * we can't.
872  */
873 int
874 xchk_ilock_inverted(
875 	struct xfs_inode	*ip,
876 	uint			lock_mode)
877 {
878 	int			i;
879 
880 	for (i = 0; i < 20; i++) {
881 		if (xfs_ilock_nowait(ip, lock_mode))
882 			return 0;
883 		delay(1);
884 	}
885 	return -EDEADLOCK;
886 }
887